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Estimation of Signal Parameters in the Frequency
Domain in the Presence of Harmonic
Interference: A Comparative Analysis

Consolatina Liguori, Member, IEEE, Alfredo Paolillo, and Alfonso Pignotti

Abstract—In this paper, a novel method for the estimation of the
parameters of the spectral components of a signal, also in the case
of harmonic interference, is characterized and compared to other
methods proposed in literature. The comparison criteria include
the evaluation of residual errors and uncertainties on estimated
parameters for different multicomponent signals.

Index Terms—Digital signal processing, fast Fourier transform
(FFT), interpolated fast Fourier transform (IFFT), uncertainty.

I. INTRODUCTION

IN THE FIELD of spectral waveform analysis, digital tech-
niques are very common, especially for the signal parameter

estimation. Most of these techniques are based on the win-
dowed discrete Fourier transform (DFT) implemented by the
fast Fourier transform (FFT). In particular, many algorithms
are presented in literature that allow the estimation of signal
parameters, namely the frequency, amplitude, and phase of their
spectral components, starting from the DFT samples. The most
common approaches suggest processing the DFT samples in the
neighborhood of the relative maxima of the amplitude spectrum
in order to evaluate the frequency, amplitude, and phase of each
spectral component. Consequently, the implementation of these
methods include a preliminary analysis of the amplitude spec-
trum to search for these maxima; then, for each maximum, the
component frequency is evaluated, and its amplitude and phase
are calculated. Some differences can be observed among the al-
gorithms used in evaluating the frequency, amplitude, and phase
of spectral components; they can be grouped as an energy-based
approach [1] and an interpolated FFT (IFFT) [2]–[6]. When
adjacent spectral components occur, parameter estimations are
affected, since tones very close to each other may cause spectral
interference. The DFT samples in the neighborhood of the ith
peak depend not only on the ith sinusoidal component, but also
on the other sinusoids. Neglecting this phenomenon can cause
errors in the signal characteristic estimation; in the worst case,
a higher harmonic component may hide a lower one. However,
some of these methods do not take into account the effects
of the harmonic interference. In reference to this problem,
Liguori et al. [7] proposed a two-step method based on the
two-point IFFT, thereinafter called IFFTc, in which the contri-
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butions of spectral components altered by the interference are
estimated and compensated. The aim of this paper is a com-
parison between some traditional methods present in literature
and the one proposed by the authors in terms of residual bias
and uncertainty. With reference to this last point, a “white-box”
approach will be followed [7]–[12].

II. CONSIDERED METHODS

Since all the methods considered for the comparison are
founded on the DFT theory, the terms involved in the DFT
calculation will be introduced. Considering a signal x(t) sam-
pled with a sampling period TS , we have an N-point sequence
{x(n)} = {x(t)|nTs

}. The DFT of the signal weighted with a
window function {w(n)} is defined as follows:

X(k) =
1
S

N−1∑
n=0

w(n) · x(n)e−jkβn k = 0, . . . , N − 1

(1)
where

S =
N−1∑
n=0

w(n) and βn =
2πn
N

.

For all the methods, the performance also depends on the
window function employed [5]. In the analysis, only the Han-
ning window is used since its good capability of filtering the
harmonic interference is highlighted in literature [13]. In fact,
the rectangular window function would exhibit a heavier bias
in the parameter estimation due to the scallop loss while other
window functions exhibit a larger main lobe and a worse tone
resolvability.

The amplitude spectrum of a signal with P frequency com-
ponents is

x(t) =
P∑

i=1

Ai sen (2πfit+ φi) (2)

characterized by P peaks if no tone is hidden. The peak corre-
sponding to the ith tone frequency will be located at index ki:
ki = int(fi/∆f) where ∆f is the DFT frequency resolution,
∆f = fs/N . The considered methods [1], [5], [6] evaluate the
frequency of ith component as follows:

fi = (ki + δi)∆f, where − 1
2
≤ δi

1
2
. (3)
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However, these methods differ in the way the δi, the am-
plitude, and the phase are evaluated for each peak. In the
following, a brief review of the compared methods is reported.

A. Energy-Based Approach

The energy-based approach provides the parameters δi, Ai

and φi by evaluating certain energy parameters related to
each spectral component of the signal being analyzed in the
frequency domain [10].

In particular, with reference to the ith detected tone on the
signal spectrum X(k), the following quantities are evaluated:
the energies of the tone Exi

of the tone first derivative Exdi
and

of the conjugate symmetric of the tone Exci

Exi
=

∑
�∈B

M(ki + �)2

Exdi
=

∑
�∈B

� ·M(ki + �)2

Exci
=

∑
�∈B

R(ki + �)2. (4)

The tone characteristics are obtained as follows:

δ0 =
Exdi

Exi

Ai = 2 · S
√
Exi

Ew
cos2(βi) =

Eci

Exi

(5)

where Ew =
∑N

k=0 |W (k)|2 is the window energy parameter.
Since most of the window’s energy does not spread over a

wide range around the center frequency, the energy parameters
are evaluated on a few spectral samples, taken within a very nar-
row frequency band B located around the peak B ≡ [−K,K]
(in our testsK = 5∆f since it was shown in [1] that this choice
is characterized by the best performance).

B. Interpolated DFT

These techniques realize an interpolation of the DFT output
based on the window spectrum. In particular, the two-point
interpolated FFT determines the spectral component frequency,
considering only the two largest samples corresponding to the
tone peak [2], [4], [5]. Specifically, this technique evaluates
δi considering the ratio αi between the two largest samples
corresponding to the peak

αi =
|X(ki + εi)|

|X(ki)|
(6)

where εi = 1 · sign(|X(ki + 1)| − |X(ki − 1)|).
Furthermore, considering the window frequency spectrum

W (k), we have [7], [8]

|W (εi − δi)|
|W (−δi)|

=
|X(ki + εi)|

|X(ki)|
(7)

and from (6) and (7), we can obtain δi.
For the Hanning window, we have

δi = εi
2αi − 1
1 + αi

(8)

Ai =2 |X(ki)| ·
πδi ·

(
1 − δ2i

)
sen(πδi)

φi = arg (X(ki)) +
π

2
− πδi. (9)

A similar approach is followed for the multipoint IFFT, which
evaluates the amplitude and frequency for the ith spectral
component, processing the three or five (IFFT3p and IFFT5p,
respectively) DFT samples [6], [14] in the neighborhood of the
index ki, shown in (10) and (11) at the bottom of the next page.

C. Proposed Method

The proposed method applies a two-point IFFT, but corrects
the effect of the harmonic interference. In particular, the rela-
tionships of the IFFT are derived from (9); they are valid for
a single tone signal, but cannot be extended to multifrequency
signals when harmonic interference is present. In fact, X(ki)
and X(ki + εi) depends not only on the main lobe of the
windowed ith sinusoidal component, but also on those of the
other sinusoids. In particular, each DFT sample can be obtained
as follows:

X(k) =
1
S

[
P∑

i=1

Vi ·W
(
k∆f − fi

∆f

)

+
P∑

i=1

V ∗
i ·W

(
k∆f + fi

∆f

)]
(12)

with Vi = (Ai/2j)ejφi V ∗
i = −(Ai/2j)e−jφi .

Equation (12) can be rewritten in the neighborhood of ki,
highlighting the contribution due to the ith sinusoid, termed
fki = ki · ∆f and fεi = (ki + εi) · ∆f ; therefore, we have

X(ki) =
1
S

[
ViW (−δi) +

∑
r 
=i

VrW

(
fki − fr

∆f

)

+
p∑

r=1

V ∗
r W

(
fki + fr

∆f

) ]

=
Vi

S
W (−δi) + Fi ⇒W (−δi)

=
S

Vi
(X(ki) − Fi)

X(ki + εi) =
1
S

[
ViW (εi − δi) +

∑
r 
=i

VrW

(
fεi − fr

∆f

)

+
p∑

r=1

V ∗
r W

(
fεi + fr

∆f

) ]

=
Vi

S
W (εi − δi) +Bi ⇒W (εi − δi)

=
S

Vi
(X(ki + εi) −Bi) . (13)
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Substituting (13) in (7), we obtain

|W (εi − δi)|
|W (−δi)|

=
|X(ki + εi) −Bi|

|X(ki) − Fi|
= α′

i. (14)

Using this corrected α′
ι, the new δ′i can be evaluated, and

from its value, the amplitude and the phase of the ith spectral
components are calculated. In particular

δ′i = εi
2α′

i − 1
1 + α′

i

(15)

Ai = 2 ·
πδ′i

(
1 − δ′2i

)
sen (πδ′i)

· |X(ki) − Fi|

φi = arg (X(ki) − Fi) +
π

2
− πδ′i. (16)

It has to be noted that in order to estimate the correction factors
Fi and Bi, the frequency, amplitude, and phase of the signal
tones would need to be known. However, in this application,
the values of the signal parameters are the unknown quantities
that have to be measured. We propose a two-step procedure
in which, firstly, the two-point IFFT is applied, and then the
measured values are used in the evaluation of the correction
factors F̂i and B̂i. Obviously, the obtained correction factors
are still corrupted by harmonic interference; using these values,
instead of the actual ones, Fi and Bi, causes the correction to
be incomplete (the residual errors will be evaluated in the next
section). Thus, the proposed procedure is described as follows.

1) The two-point IFFT is applied to each peak in order to
estimate frequency, amplitude, and phase of the corre-
sponding spectral component, neglecting the harmonic
interference effects.

2) By using these estimations, the correction factors for each
peak are determined.

3) The relationships (15) and (16) are used in order to
calculate the frequencies, amplitudes, and phases of each
spectral component corrected by the harmonic interfer-
ence effects.

III. RESIDUAL ERROR ESTIMATION

In order to evaluate the performance of the proposed method
and to make a comparison with traditional solutions, suit-
able signals for the specific analysis are used. Multifrequency
signals x(t) =

∑P
i=1Ai sen (2πfit+ φi) are considered and

the tests are made for different values of P , N , fi, Ai, and
φi. In particular, for terms fi = (ki + δi) · ∆f , Ai = βi ·A0,
dij = (fj − fi/∆f), the experiments are made by changing
the value of ki, δi, dij , βi, φi, and N in order to analyze

the dependence of the harmonic interference effects on the
signal characteristics and the measurement system’s settings.
Once the signal and the measurement parameters are fixed, the
signal samples are generated and the algorithms are run on
these points, and finally, the systematic errors are evaluated.
The following analysis is mainly concentrated on the estimation
of δ. Since the frequency, amplitude, and phase are calculated
from δ, the bias and the uncertainty of δ propagates through the
algorithms, affecting the estimations of the other parameters. In
the first tests (A−E), P = 2 is fixed.

A. Sensitivity to Frequency

Tests are carried out for different values of the first tone
frequency f1 = (k1 + δ1) · ∆f , having a fixed value of d12.
As an example, the maximum measured errors for each k1

versus δ1 are reported in Fig. 1(a) (where N = 128), and the
errors versus δ1 are shown in Fig. 1(b), having fixed k1 =
N/4. For all the considered methods, the results show that
the errors decrease with k1, as long as k1 remains less than a
threshold (about nine), and then they become constant. A little
dependence on δ1 has been evidenced, and this dependence is
less noticeable for the IFFTc.

Hereinafter, the k1 and δ1 values will be kept constant;
k1 = N/4, since k1 does not affect the error provided it is
greater than nine, and δ1 = 0.25, in order to have an intermedi-
ate behavior [see Fig. 1(b)] between 0 (no error) and δ1 = 0.5
(worst case).

B. Sensitivity to the Tone Distance dij

In Fig. 2 and in Table I, the envelopes of the absolute errors
of δ versus the frequency and the percentage of errors on the
amplitude of the first tone versus the distance d12 between tones
are shown. Some considerations are discussed below.

1) The energy-based approach is strongly affected by the
interference; the error becomes comparable with the other
methods only for d12 greater than eight.

2) The three-point IFFT and the five-point IFFT do not give
very good results for tones which are very close (d12 <
5), but results are similar to those obtained with the two-
point IFFT. This is due to the use of DFT samples that are
altered heavily by the near tone X(ki ± 2). However, the
five-point IFFT gives better results among the considered
traditional methods for higher distances (d12 > 10).

3) The proposed IFFTc is characterized by a residual error
that is lower than that of all the other methods for very
small distances, and for a higher d12, the errors still
remain the smallest.

3δi = εi
|X(ki + 1)| − |X(ki − 1)|

2 · |X(ki)| + |X(ki + 1)| + |X(ki − 1)| (10)

5δi = 3
2 · [|X(ki + 1)| − |X(ki − 1)|] + εi [|X(ki + 2)| + |X(ki − 2)|]

6 · |X(ki)| + 4 · [|X(ki + 1)| + |X(ki − 1)|] + εi [|X(ki + 2)| − |X(ki − 2)|] . (11)
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Fig. 1. For a signal with P = 2, d12 = 10, β1 = β2 = 1; f1 = f2 = 0. (a) Maximum measured Eδ for all possible values of δ1 versus k1. (b) Eδ versus δ1
with k1 = N/4.

Fig. 2. Eδ versus d12 for the different methods using P = 2, k1 = N/4; δ1 = 0.25; β1 = β2 = 1; φ1 = φ2 = 0; N = 256.

TABLE I
MAXIMUM Eδ AT DIFFERENT d12; P = 2, k1 = N/4; δ1 = 0.25;

β1 = β2 = 1; φ1 = φ2 = 0; N = 256

The subsequent analysis will be focused on the case of small
distances between the tones where the harmonic interference
effects are significant.

C. Sensitivity to the Tone Amplitude βi

In Fig. 3, the trends of the errors of δ for both tones are
reported versus the amplitude of the second tone (β2), for the
proposed IFFTc and for the five-point IFFT.

As expected, for the other methods, the residual errors in-
crease on the first sinusoid and decrease for the second one

when β2; consequently,A2 increases. The higher tone gives rise
to higher effects and is less susceptible than the smaller one,
while if the amplitudes are equal, the harmonic interference
effects have comparable intensities. Instead, the IFFTc residual
errors are always very low, as well as very slightly influenced by
β2, which proves the capability of the proposed method in cor-
recting the harmonic interference. A small increase is shown,
since the estimations of the correction factors get slightly worse
because of the high mutual interference.

D. Sensitivity to the Tone Phases

In order to highlight the relationships between the difference
of tone’s initial phases and the residual errors, tests were made
by fixing all the signal parameters and changing φ2. In Fig. 4,
the errors of δ1 for the IFFTc and the five-point IFFT are
reported. The interference is stronger for φ2 = φ1 + π/2; also,
in this case, the IFFTc is characterized by better performance
(an order of magnitude of lower errors), and it is less influenced
by the signal characteristics.

E. Sensitivity to the Number of Points N

In Fig. 5, the residual errors versus N are reported for a
given signal. There is no dependence of the residual errors on
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Fig. 3. Eδ1 Eδ2 versus β2 for (a) IFFTc. (b) IFFT5p. P = 2, k1 = N/4; δ1 = 0.25; d12 = 4.5; φ1 = φ2 = 0; N = 256.

Fig. 4. Eδ versus φ2 − φ1 for IFFTc and IFFT5p P = 2, d12 = 4.5; β1 =
β2 = 1; N = 256.

Fig. 5. Eδ versus N . P = 2, d12 = 4.5; β1 = β2 = 1; φ1 = φ2 = 0;
N = 256.

the number of the processed points. This is expected, since the
error of δ is considered, not the error on the frequency. With
the sampling frequency fixed the greater the number of points,
the lesser the spectral resolution and the lesser the error on
frequency. The best performance of the IFFTc are confirmed
for each N .

F. Sensitivity to Number of Tones P

Several tests were carried out by changing the number of
sinusoidal components P of the test signal and the distance
between them. From these, we can say that the proposed IFFTc
is influenced by the number of tones in a negligible manner, and
on the other hand, the residual errors increase only slightly due
to the nonexact estimation of the correction factors for a high
number of interfering tones. Conversely, for the other methods,
there is a superimposition of effects, and consequently, the

estimation gets significantly worse, as shown in Fig. 6, where
the errors on the frequency estimation versus d are reported for
the cases P = 2 and P = 4.

IV. UNCERTAINTY

To evaluate the combined standard uncertainty on the tone
parameters provided by the different methods, a white-box
theoretical approach is followed. The uncertainty propagation
law [8] is applied to their relationships. As mentioned in the
previous section, in presence of considerable harmonic inter-
ference, the residual error on the δi estimation is significant
especially for traditional methods, and consequently, it has to
be taken into account. To this aim, a new quantity is defined
(δ̆i) from which the uncertainties of the signal parameters
(frequency, amplitude, and phase for each spectral component)
are evaluated. Basically, in presence of interference, the uncer-
tainty propagation law has to be applied to the implemented
relationships (16), using uδ̆i

instead of uδi
.

For all the considered methods, we define δ̆i as follows:

δ̆i = δi + δE (17)

where δi is returned by the specific algorithm, and δE takes into
account the residual error. In particular, δE is a random variable
with a mean equal to zero; consequently, it does not alter the
value estimated by the algorithm and with a standard deviation
related to the residual error.

The uncertainty of δ̆i, uδi
, has to be evaluated as follows:

u2
δ̆i

= u2
δi

+ u2
δE

(18)

where uδi
is the uncertainty on the estimated δ, while uδE

is the
uncertainty due to the residual error and is equal to the standard
deviation of the random variable δE .

A. Uncertainty on the Estimated δ

In literature, some studies based on a white-box approach
for the uncertainty evaluation of δ for the considered traditional
methods are present. In [11], the analytical evaluation of the
uncertainty on the signal parameter estimation is obtained by
means of the energy-based algorithm and the two-point IFFT.
The combined uncertainties on the final results (tone frequency,
amplitude, and phase) due to the propagation of the uncer-
tainty on the input samples are analytically evaluated. For both
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Fig. 6. Eδ versus dij for two signals with different P . βi = 1; φi = φ; N = 256.

algorithms, the uncertainty of the final results will be evaluated
combining the uncertainty of the DFT samples obtained as in
[10]. The results reported in [11] show that the uncertainties
obtainable with the two algorithms are very similar, even if
the uncertainties obtained by using the energy-based approach
is slightly greater than the ones obtained by using the IDFT.
Moreover, the uncertainty decreases with N for both methods
and particularly for an effective number of bitsNbit of the ADC
greater than 12.

A very similar approach was followed in [14] in order to
characterize the multipoint IFFTs in terms of bias and uncer-
tainty. The author demonstrates that the uncertainty of the three-
point IFFT is lower than the five-point IFFT and greater than
two-point IFFT; moreover, all the IFFT uncertainties decreases
as N increases. Following the same approach, the proposed
IFFTc algorithm also has to be characterized. Applying the
uncertainty propagation law to (15), we have

u2
δ′

i
=

(
∂δi
∂αi

)2

u2
α′

i
=

(
3

(1 + αi)2

)2

· u2
α′

i
. (19)

The uncertainty of α′
i depends on the uncertainty of the

two used DFT samples X(ki), X(ki + εi) and on the un-
certainty of the correction factors Bi and Fi. In this case,
some approximations can be made; for instance, in the term
|X(ki) − Fi|, Fi e uFi

are much lesser than X(k) and uX(k),
respectively, since the Hanning window has a fast decay and
W (k∆f ± fi/∆f) is very small.

Consequently, we can pose uδi = u′δi.
Such an approximation has been verified numerically, com-

paring the variability of the estimations of δi obtained by the
two-point IFFT with the variability of estimations of δ′i for
different kinds of signals and in different operation conditions.
The variability of δ′i has always turned out as significantly
lesser than the variability of δi (σδi′ < 1.1 σδi); thus, the
approximation can be considered to be valid. The description
of numerical simulations carried out for the assessment of this
approximation has not been reported for sake of brevity.

B. Uncertainty Due to the Residual Error

The uncertainty due to the residual error is evaluated for
each method measuring the standard deviation on a set of
similar signals. In particular, since the analysis carried out in
Section III shows that the residual error depends mainly on
dij , the test sets have been composed for each N and βij , dij ,
changing δ1 to [−0.5, 0.5], φ2 to [−π/2, π/2], and also dij

is changed to [d0 − 0.5, d0 + 0.5]. In Table II, the measured
standard deviations versus d0 for the considered methods are
reported for a signal with two tones (P = 2). As we can see,
the proposed IFFTc is characterized by a σδE much lower than
the other methods (up to two to three orders of magnitude);
also, the variability versus d and N is much lower than that
of the other methods. Moreover, the considerable worsening
of the traditional methods when the two tones have different
amplitudes does not happen for the IFFTc.

C. Examples of Combined Uncertainty

In order to better quantify the contribution of the δE on the
total uncertainty, it is necessary to introduce some parameters
concerning the hardware configuration (number of effective bits
Nbit, full scale fs of the A/D converter), the operative condition
(number of processing points N ), as well as the characteristics
of the input signal. As an example, Fig. 7 reports uδ̆i

, uδi

and uδE
for IFFTc, two-point IFFT, and five-point IFFT in the

function of the distance between the two tones d12, the number
of processing points, and the number of effective bits of the
ADC. Considering the IFFTc algorithm, the contribution of the
error is always practically negligible, except for small values of
d (d < 4) or for a high number of points (since in this case, the
uncertainty is small). For the two-point IFFT, the error is always
bigger than the uncertainty, except for low numbers of the
ADC effective bits. The five-point IFFT has a similar behavior,
but shows a significantly smaller error particularly for high
values of d12.

The residual error of the traditional method is maximum
especially for very close tones; consequently, in these cases,
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TABLE II
MEASURED STANDARD DEVIATIONS σδE , OF THE RESIDUAL ERROR ON δ VERSUS d12

Fig. 7. Contributions to the uncertainty (dotted: uδ̆i
; dashed: uδi

; solid: uδE
) for a signal with P = 2, k1 = N/4, δ1 = 0.25, β1 = β2 = 1, and an ADC with

fs = 2A0. (a) Versus d12 with N = 256, Nbit = 12. (b) Versus N with d12 = 4.5, Nbit = 12. (c) Versus Nbit with d12 = 4.5, N = 256.

the contribution to the combined uncertainty of the provided δi
of the residual error is very significant.

V. CONCLUSION

In this paper, a novel method (IFFTc) for the evaluation of the
parameters of spectral components, which are able to correct
the effects of harmonic interference have been characterized in
comparison to other methods proposed in literature. The first
sequences of numerical tests are run in order to evaluate the
sensitivity of the methods to different operating conditions and
to different values of typical influence quantities. This analysis
has shown that the IFFTc residual errors are always lower than
the errors of the other methods, especially when the harmonic
interference is significant. Moreover, while traditional methods
are sensitive to signal characteristics and to the frequency
distance between the spectral components, the IFFTc is much
less sensitive to the specific characteristics of the signal.

A second series of tests has allowed a comparison of the lev-
els of uncertainty on the parameter estimations of the methods,

obtained through a combination of a study of the propagation
of the uncertainty through the algorithms and a statistical treat-
ment of the residual error. These tests have shown the accuracy
of the proposed method that has given the lowest uncertainty
values for each kind of signal.
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