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Introduction

Many real-life signals are multicomponent and frequency modulated (FM), i.e.

they consist of the superposition of oscillating modes having a specific time-

dependent frequency content. The list of applications dealing with FM mul-

ticomponent signals (MCS) is quite large and it involves geology [1], wireless

communication [2], speech processing [3], gravitational waves detection [4], biol-

ogy [5–7], radar and micro-doppler analysis [8–13] and so on. In the literature,

a single FM signal is classified depending on its specific frequency modulation,

i.e. the class of its phase function or equivalently, its instantaneous frequency

(IF) — the phase time derivative. For example, chirp-like signals are char-

acterized by an increasing (or decreasing) frequency with respect to time and

they are widely used to model radar, communication and seismic signals [14].

Sinusoidally modulated signals have periodic frequency, instead and they also

appear in several applications involving radar and human gait detection [11].

Independently of the specific frequency modulation, the correct analysis of

a MCS requires the separation of its single modes. In other words, an observed

signal has to be properly decomposed in order to extract its characteristics (am-

plitude and IF). It is worth observing that interference between modes generally

makes the separation task remarkably hard. As a matter of fact, the current

literature does not offer a general solution to the problem of decomposing MCS

with interfering modes. Indeed, the existing methods are mostly parametric,

i.e. they assume a specific signal class, otherwise they consist of interpolation

techniques. In the first case, methods’ drawback is to only adapt to specific

situations, while the second approach is quite limited as it does not rely on

signal’s physical properties. Therefore, both are unsatisfactory views and, as a

consequence, efficient modes separation still represents a very demanding goal

in signal processing.

The aim of the presented thesis is to exhaustively investigate the problem
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of FM-MCS decomposition, with particular focus on the pathological case of

almost complete interference between individual modes, as well as to propose

practical and efficient strategies for signal modes separation. Chapter 1 presents

the mathematical tools and the main definitions needed to introduce and for-

malize the problem. An extended state of the art concerning the topic is then

provided. It is worth pointing out that both the classical and the more recent

methods for MCS decomposition are revised for a complete background, but

focusing on some parts is enough to get a comprehensive understanding of the

thesis. In particular, Sections 1.1.1, 1.1.3, 1.1.5 and 1.2 contain classical and

fundamental topics. The reader is encouraged to consider reassignment method

presented in Section 1.3.2.1 and to focus on methods’ pros. and cons. summa-

rized in Section 1.4. The latter are crucial for fully appreciating the original

results that will be presented in this work.

Chapters 2 and 3 contain the results achieved during my Phd course. Each

chapter is self-contained, as far as possible, to facilitate reading. The two chap-

ters reflect the main strategies adopted in this research, i.e. the iterative one,

aimed at enhancing MCS’ resolution in the time-frequency (TF) domain and the

transform-based approach, whose purpose is to effectively separate individual

components, by analyzing signal energy in a proper domain. More specifically,

Chapter 2 first introduces a MCS’ model in the TF plane and deeply discusses

the problem of modes separability. Based on these results, it then presents

an iterative reallocation approach for signal resolution improvement, which is

compared to one of the most popular reallocation technique, i.e. reassignment

method. Chapter 3 addresses MCS decomposition by further processing the sig-

nal under analysis. In particular, it will be proved that energy-based transforms,

such as Radon Transform, are suitable for characterizing interference between

signal modes and, for this reason, they can be adopted for successfully sepa-

rating individual modes. The presented approach leads to the definition of an

effective non-parametric method, whose main advantages as well as limitations

will be deeply discussed and compared to existing procedures.

Notice that short proofs can be found below the corresponding proposition,

while the more structured ones are listed in the Appendix. Finally, the Conclu-

sions summarize the thesis’s main findings, highlighting their contribution to

advance the state of the art. Possible future developments are also discussed.
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Chapter 1

Analysis and decomposition of

frequency modulated signals:

state of the art

Most real-world signals are non-stationary, i.e. they have time-dependent fre-

quency content. Some examples of real-world FM signals are shown in Fig.1.1.

Given a superposition of such waveforms, namely a FM-MCS, the decompo-

sition task consists of recovering each individual component. Methods in the

literature, designed to this aim, can be grouped into two main classes: the first

one refers to strategies that analyze the signal directly in the time domain and

the second class is based on TF analysis. The latter is more suitable for IF

estimation, which is a fundamental goal in applications. Given a FM-MCS, the

problem of estimating its IF is solved if all its IFs, defined as the time derivatives

of the phases corresponding to each mode, have been detected. Signal decompo-

sition and IF detection are therefore two closely related concepts, as the former

is necessary to separate and detect each IF and, conversely, the latter allows

for the recovery of each individual component. TF analysis provides powerful

mathematical tools for the correct study of non-stationary signals. Contrary

to the classical Fourier transform (FT), TF transforms and TF distributions

(TFDs) map a signal into a joint TF domain, which is the suitable space for

observing the frequency time-behaviour.

The decomposition problem, as well as IF estimation, is substantially solved

for MCS with well separated components in the TF plane and the list of different

approaches dealing with the problem is quite large [15–31]. Conversely, the
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most challenging problem in FM-MSC analysis is the decomposition of signals

affected by interference, i.e. with overlapping or crossing components in the TF

plane. The latter is a common scenario in real applications [8, 10]. In this case,

methods designed for well separated components are not able to distinguish

between modes and therefore they fail in estimating signal IFs.

As presented in this chapter, there exist several methods addressing the

problem of overlapped MCS. In most of them, IF estimation relies on specific

assumptions on the signal under study (parametric approaches); other methods

estimate IF based on image processing techniques aimed at finding the optimal

path connecting TFD peaks through minimization, which often involves a high

computational cost. As already outlined in the Introduction, existing methods

do not fully solve the problem of IFs separation, which is a perspective of the

presented work.

The chapter is organized as follows. Section 1.1 introduces the fundamental

mathematical tools for TF analysis. In Section 1.2, the main definitions to for-

mally introduce the problem of signals decomposition, as well as IFs separation,

are given. A brief review of the main methods dealing with the problem is then

provided. Specifically, the various methods for well separated components are

described in Section 1.3, as background information. Particular attention is

devoted to approaches dealing with overlapping modes, which are reviewed in

Section 1.4.

1.1 Linear TF transforms and quadratic distri-

butions

A FM-MCS is non-stationary, i.e. its frequency depends on time, therefore the

classical FT is not suitable for signal characterization and a joint TF represen-

tation is needed to process the signal. For this reason, linear TF transforms

and quadratic distributions have been proposed. They are mainly windowed

transforms aimed at localizing the signal FT in time.

A linear TF transform decomposes a signal into a family of waveforms,

known as TF atoms, that are well concentrated in time and frequency. Let

us denote a family of TF atoms as {ϕγ}γ where γ is a multi-index parameter.

Let ϕγ ∈ L2(R) and ||ϕγ‖|L2(R) = 1. The corresponding TF transform of

2



(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Real-world AM-FM signals. (a) Ultrasound signal emitted by a bat
[32]; (b) Whale trill [33]; (c) Speech signal [32]; (d) Electrocardiogram (ECG)
signal [33]; (e) Seismic signal [33]; (f) Doppler radar signal corresponding to the
measurement of a moving hand [34].

f(t) ∈ L2(R), at a point γ, is defined as [35]

Tf (γ) =< f, ϕγ >L2(R)=

∫ +∞

−∞
f(t)ϕ∗γ(t) dt.
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Linear transforms’ resolution depends on atoms’ spread in the TF plane. ϕγ

resolution is represented in TF plane by a so-called Heisenberg box which is

centered at the point (uγ, ξγ), defined as

uγ =

∫ +∞

−∞
t |ϕγ(t)|2 dt,

ξγ =
1

2π

∫ +∞

−∞
ω |ϕ̂γ(ω)|2 dω,

and whose widths in time and frequency are respectively given by the variances

σ2
t (γ) =

∫ +∞

−∞
(t− uγ)2|ϕγ(t)|2 dt.

σ2
ω(γ) =

1

2π

∫ +∞

−∞
(ω − ξγ)2|ϕ̂γ(ω)|2 dω.

Heisenberg boxes are shown in Fig.1.2. As stated by Heisenberg principle,

it is not possible to reach arbitrary localization both in time and frequency.

Formally, the widths satisfy

σt(γ)σω(γ) ≥ 1

2
,

which limits the joint TF resolution.

If for any (u, ξ) there exists a unique atom ϕγ centered at (u, ξ), then each

Heisenberg box specifies a TF neighborhood of (u, ξ) where the energy of the

analyzed signal f is measured by the energy density |Tγ(u, ξ)|2.

1.1.1 STFT and spectrogram

STFT has been introduced in order to localize FT in time, that’s why in the lit-

erature it is also referred as Windowed FT. Atoms are derived as translated and

modulated version of a real, even and smooth window g such that ||g||L2(R) = 1,

modulated by the frequency ξ, i.e. {ϕ(u, ξ)}(u,ξ) = {eiξtg(t − u)}(u,ξ). More

precisely, for any TF point (u, ξ) ∈ R×R+, the STFT of a function f ∈ L2(R)

with respect to the analysis window g is [15, 35]

Sgf (u, ξ) =

+∞∫
−∞

f(t)g(t− u)e−iξt dt . (1.1)
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Figure 1.2: Heisenberg boxes in TF plane.

The spectrogram is defined as the squared modulus of the STFT, i.e.

P (u, ξ) = |Sgf (u, ξ)|2 , (1.2)

and it measures the energy of f in the TF neighborhood of (u, ξ). The spectro-

gram of a linear chirp, computed by a gaussian window, is depicted in Fig.1.3.

A signal can be recovered by its STFT and the energy is preserved, as stated

in the following

Theorem 1. Let f ∈ L2(R) then

f(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Sgf (u, ξ)g(t− u)eiξtdudξ

and ∫ +∞

−∞
|f(t)|2 dt =

∫ +∞

−∞

∫ +∞

−∞
|Sgf (u, ξ)|2 du dξ.

STFT resolution depends on Heisenberg box area and it can be modified, in

the constraints of Heisenberg principle, by a scaling of the analysis window g.

Indeed, if we consider gs(t) = 1√
s
g
(
t
s

)
, with s > 0, then Heisenberg boxes are

dilated by s in time and compressed by s in frequency, but its area is preserved.

The parameter s is usually set to better represent the specific analyzed signal;

in general, the choice of its optimal value is an independent research topic

[36]. In numerical applications, g must be compactly supported. It follows
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(a) (b)

(c) (d)

Figure 1.3: Spectrogram of a linear chirp. (a) Signal; (b) Gaussian analysis
window for STFT computation; (c) Spectrogram, 3D view; (d) Spectrogram,
view from above.

that its FT ĝ necessarily has an infinite support. The assumptions on g also

ensure that ĝ is a symmetric function with a main lobe center at ω = 0, as

depicted in Fig.1.4. In order to maximize frequency resolution, it is desirable

to concentrate the energy of ĝ around ω = 0. The root mean-square bandwidth

∆̃ω is an important parameter to evaluate the spread of ĝ and it is defined by

|ĝ
(

∆̃ω
2

)
|2

|ĝ (0) |2
=

1

2
,

while the frequency bandwidth of g is defined as the bandwidth of its FT ĝ

instead, that is ∆ω satisfying

|ĝ(ω)| � 1 for ω ≥ ∆ω.
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STFT is designed for revealing IF, indeed spectrogram maxima are closely

related to IF. For getting a better understanding, let us consider the following

Definition 1. The local maxima of P (u, ξ) are defined as ridge points.

The proposition below provides a spectrogram model directly depending on

ridge points and IF.

Proposition 1.1 (Mallat model [35]). Let f(t) = a(t) cosφ(t) and let s > 0.

For each ξ ≥ 0, the STFT of f can be expressed as

Sgf (u, ξ) =

√
s

2
a(u)ei(φ(u)−ξ·u) [ĝ (s(ξ − φ′(u)) + ε(u, ξ))] , (1.3)

where ε(u, ξ) is a corrective term satisfying

|ε(u, ξ)| ≤ εa,1 + εa,2 + εφ,2 + sup|ω|≥s|φ′(u)||ĝ(ω)|,

with

εa,1 ≤
s|a′(u)|
a(u)

, εa,2 ≤ sup
|t−u|≤s/2

s2|a′′(t)|
a(u)

, (1.4)

and if s |a
′(u)|
|a(u)| ≤ 1, then

εφ,2 ≤ sup|t−u|≤s/2s
2|φ′′(u)|. (1.5)

In addition, if ξ = φ′(u), then εa,1 = s|a′(u)|
a(u)
|ĝ′(2sφ′(u))|.

Remark 1. Assuming ε(u, ξ) negligible in eq.(1.3) and by taking the absolute

value, we obtain the following model for the spectrogram

P (u, ξ) =
s

4
a2(u)ĝ2 (s(ξ − φ′(u))) . (1.6)

According to the assumptions on the window g, ĝ is maximum in ω = 0,

then by eq.(1.6) it follows

max
ξ
P (u, ξ) = P (u, φ′(u)),

For this reason, the curve (u, φ′(u)) is denoted as ridge curve (or IF curve).

The expressions in eqs.(1.4)-(1.5) show that the corrective terms εa,1, εa,1 and

εφ,2 are small if a(t) and φ′(t) have small relative variations over the support of
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the window g. In addition, the term sup|ω|≥s|φ′(u)||ĝ(ω)| is negligible if φ′(u) ≥
∆ω
s

. In practical applications, s is chosen in order to meet the above conditions,

so that ε(u, ξ) could be neglected.

Eq.(1.3) also shows that ridge points are the phase stationary points. Any-

way, the procedures exploiting this property have turned out to be numerically

unstable, that’s why it is preferable to derive IF from ridge points.

As it can be observed in Fig.1.5, since the FT of a gaussian function is

still gaussian, the spectrogram profile is gaussian, according to eq.(1.6)—see

Fig.1.5(b). In addition, the local maxima of the spectrogram reveal exactly

signal IF, as it can be derived by comparing Fig.1.5(c)-(d).

Figure 1.4: A generic analysis window in the Fourier domain and its parameters
[35]. The energy spread of ĝ is measured by its frequency bandwidth ∆ω and
by the maximum amplitude A of the first side-lobes located at ω = ±ω0.

1.1.2 Wavelet Transforms

Contrary to STFT, Wavelet transform (WT) decomposes a signal over TF atoms

having different time supports. A wavelet is a unitary function ψ(t) ∈ L2(R)

with zero mean, i.e.
∫ +∞
−∞ ψ(t)dt = 0 and centered at t = 0. Atoms are obtained

as scaled and translated versions of the ”mother” function ψ, i.e.

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
.

8



(a) (b)

(c) (d)

Figure 1.5: Mallat Model. (a) Spectrogram of the linear chirp in Fig. 1.3(a).
The section at u = 250 is emphasized by the dashed line; (b) Normalized
section at u = 250. Spectrogram profile is a gaussian; (c) Local maxima in the
TF plane; (d) IF.

The continuous WT (CWT) of a function f ∈ L2(R) at a point (u, s) ∈ R×R+

is then defined as

Wf (u, s) =

∫ +∞

−∞
f(t)ψ∗u,s(t) dt.

In order to measure the frequency time evolution and to separate amplitude

and phase components, the analytic WT has been introduced.

Definition 2. A function f(t) ∈ L2(R) is analytic if f̂(ω) = 0 ∀ω < 0. The

analytic part of a generic f ∈ L2(R) is defined as the inverse FT of

f̂a(ω) =

2f̂(ω), ω ≥ 0

0, ω < 0.
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Contrary to CWT, the analytic WT is computed by considering an analytic

wavelet, which is forced to be complex. Thanks to WT adaptivity, WT squared

modulus, referred as scalogram, is particularly suitable for detecting IFs that

rapidly vary in time. For instance, a hyperbolic chirp f(t) = cos
(

α
β−t

)
, α, β ∈

R is better represented by the scalogram rather than the spectrogram [35].

1.1.3 Wigner Ville distribution

As all linear TF transforms, STFT and WT are computed by correlating a

function with families of TF atoms. Therefore, linear TFDs’ resolution is limited

to Heisenberg principle. Wigner-Ville distribution (WVD) is a quadratic TF

energy with high resolution properties, instead. It is defined by correlating a

signal f(t) with its TF translations, i.e.

WVf (u, ξ) =

∫ +∞

−∞
f
(
u+

τ

2

)
f ∗
(
u− τ

2

)
e−iτξ dt, ∀ (u, ξ) ∈ R× R+.

It is worth observing that WVD is real, for each (u, ξ) ∈ R× R+. In addition,

time and frequency have a symmetrical role, as Parseval relation implies

WVf (u, ξ) =

∫ +∞

−∞
f̂
(
ξ +

γ

2

)
f̂ ∗
(
ξ − γ

2

)
e−iγu dγ.

Thanks to its high resolution property, WVD is preferred for IF estimation. For

a monocomponent signal f(t) = a(t)eiφ(t), IF can be expressed as local moment

of the WVD, as stated in the following

Proposition 1.2. Let fa(t) be the analytic part of f , then

φ′(t) =

∫ +∞
−∞ ξWVfa(u, ξ) dξ∫ +∞
−∞ WVfa(u, ξ) dξ

.

Despite of its remarkable localization properties, due to its quadratic nature,

WVD is affected by the presence of cross terms, i.e. interference terms between

single modes — see Fig.1.6. Indeed, WVD of the composite signal f(t) =

10



(a) (b)

Figure 1.6: WVD. (a) WVD of a linear chirp; (b) WVD of a two-components
signal having overlapping modes.

∑N
k=1 fk(t) can be expressed as

WVf (u, ξ) =
N∑
k=1

WVfk(u, ξ)︸ ︷︷ ︸
auto−terms

+
∑
k 6=j

Q[fk, fj](u, ξ)︸ ︷︷ ︸
cross−terms

,

where Q denotes the cross WVD, i.e.

Q[h, z](u, ξ) =

∫ +∞

−∞
h
(
u+

τ

2

)
z∗
(
u− τ

2

)
e−iτξ dτ, h, z ∈ L2(R).

Cross-terms can be attenuated by applying proper TF filtering/averaging

but it results in a loss of resolution. Actually, spectrogram, scalogram and all

squared TF energy densities can be expressed as WVD smoothing. In particular,

the spectrogram is the 2-dimensional convolution, in time and frequency, of the

signal WVD with the analysis window WVD, i.e.

P g
f (u, ξ) =

1

2π
WVf ∗ ∗WVg =

1

2π

∫∫ +∞

−∞
WVf (t, ω)WVg(t− u, ω − ξ) dt dω.

(1.7)

More in general, since cross-terms include both positive and negative oscilla-

tions, they can be partially removed by applying a smoothing kernel, i.e.

WV θ
f (u, ξ) =

∫ +∞

−∞

∫ +∞

−∞
WVf (u

′, ξ′) Θ(u, u′, ξ, ξ′) du′ dξ′,
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resulting in the so-called smoothed WVD.

1.1.4 S-method

Spectrogram is the most common tool used in TF analysis, but it suffers from a

lack of concentration, especially in case of highly non-stationary signals. On the

contrary, WVD provides very concentrated distributions but, in case of MCS, it

also produces cross-terms that can deteriorate resolution and make the represen-

tation unreadable. Many efforts have been done to propose smoother versions

of WVD with attenuated cross-terms [37–39]. Unfortunately, the smoothing

also causes auto-terms’ degradation. In contrast to these approaches, S-method

(SM) is designed for enhancing spectrogram resolution gradually. Based on the

following expression of the WVD of a signal f(t) ∈ L2(R) [40]

WVf (u, ξ) = 2

∫ +∞

−∞
Sgf (u, ξ + ω)(Sgf (u, ξ − ω))∗ dω, (1.8)

the TF representation referred as SM is defined as [15, 41]

SMf (u, ξ) = 2

∫ +∞

−∞
Θ(ω)Sgf (u, ξ + ω)(Sgf (u, ξ − ω))∗ dω, ∀ (u, ξ) ∈ R× R+,

(1.9)

where Θ(ω) is a window function. It is worth observing that if Θ(ω) = 1,

then SM coincides to WVD, while Θ(ω) = δ(ω)/2 corresponds to the spectro-

gram. By changing the width of the window Θ(ω) we thus obtain a gradual

transition from spectrogram to WVD. If f(t) =
∑N

k=1 fk(t) =
∑N

k=1 ak(t)e
iφk(t)

is a composite signal with separated modes in the TF plane, i.e. fk lies in

Dk(u, ξ) ⊂ Π, ∀ k = 1, ..., N , with Π is the TF plane and Dk ∩Dj = ∅, ∀k 6= j,

then SM provides TF representations having high concentration and cross-terms

free. Indeed, in this case, the window length can be chosen so that SM is the

sum of the WVDs of each signal components, i.e.

SMf (u, ξ) =
N∑
k=1

WVfk(u, ξ). (1.10)

The discrete version of eq.(1.9) for a rectangular window and defined on the

12



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.7: Two-components signal with separated modes in the TF plane. SM
obtained for an increasing number of correcting terms. (a) L = 0, spectrogram;
(b) L = 1; (c) L = 2; (d) L = 3; (e) L = 4; (f) L = 5; (g) L = 10; (h) L = 20 ;
(i) WVD.

grid {(i, j)}i,j ⊂ Π is

SMf (i, j) = P g
f (i, j) + 2<

{
L∑
l=1

Sgf (i, j + l)(Sgf (i, j − l))∗
}
, (1.11)

where 2L+1 is Θ(ω) length. As it can be observed, SM as in eq.(1.11) is the sum

of the spectrogram plus corrective terms. The optimal signal length is signal-

dependent. Theoretically, for well separated components, eq.(1.11) reduces to

eq.(1.10) if 2L is equal to the width of the widest auto-term. Fig.1.7 shows the

SM applied to a two-components signal whose modes are separated in the TF

plane. As it can be noticed, the spectrogram smears the quadratic component.

By adding the corrective terms in eq.(1.11), the resolution gradually increases,
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(a) (b) (c)

(d) (e) (f)

Figure 1.8: Two-components signal with crossing modes in the TF plane. SM
obtained for an increasing number of correcting terms. (a) L = 0, spectrogram;
(b) L = 1; (c) L = 2; (d) L = 3; (e) L = 5; (f) WVD.

until more concentration is obtained, as shown in Fig.1.7(c). For larger values

of L, cross-terms appear in representation, which approaches WVD. Unfortu-

nately, the same result can not be achieved if modes are not separated, as in the

case shown in Fig.1.8. Fig.1.8(a) depicts the spectrogram of a signal composed

of a quadratic plus a linear component that do cross in the TF plane. Even if

SM helps in concentrating distribution at the intersection point, at the same

time it introduces cross-terms that degrade the readability.

1.1.5 Radon transform

Radon transform (RT) is widely used in tomography as a tool for the recovery

of the internal structure of an object by the knowledge of some projections.

Nowadays, RT is adopted in many applications, including signal processing.

RT is a non-linear transform which can be combined with WVD, as well as

with the spectrogram, resulting in a powerful TF tool.

RT of a smooth function F (x, y) ∈ R2 at a point (r, θ) ∈ R2 is defined as

the integral of F along the line identified by the parameters r and θ, i.e. [42]

RF (r, θ) =

∫
R
F (rnθ + sn⊥θ ) ds ,

14



where nθ = (cos θ, sin θ) and n⊥θ = (− sin θ, cos θ). A rotation of the coordinate

system (x, y) by an angle θ gives the new coordinates[
x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
;

therefore RT can be rewritten as [42]

RF (r, θ) =

∫
R
F (r cos θ − s sin θ, r sin θ + s cos θ)ds .

RT is 2π-periodic with respect to θ. It is worth recalling the equivalent definition

making use of delta function, i.e.

RF (r, θ) =

∫ +∞

−∞
F (x, y)δ(r − x cos θ − y sin θ) dx dy.

According to the notation R[F (x, y)] = RF (r, θ), RT main properties are listed

below. The proof can be found in [43].

1. Linearity

R[aF + bG] = aR[F ] + bR[G]

2. Similarity

R[F (ax, by)] =
1

|ab|
RF

(
r,

cos θ

a
,
sin θ

b

)
3. Symmetry

RF (ar, a cos θ, a sin θ) =
1

|a|
RF (r, cos θ, sin θ)

RF (−r,− cos θ,− sin θ) = RF (r, cos θ, sin θ)

RF (r, ρ cos θ, ρ sin θ) =
1

|ρ|
RF

(
r

ρ
, cos θ, sin θ

)
4. Shifting

R[F (x− a, y − b)] = RF (r − a cos θ − b sin θ, cos θ, sin θ)
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5. Differentiation

R

[
∂

∂x
F (x, y)

]
= cos θ

∂

∂r
RF (r, θ)

R

[
∂

∂y
F (x, y)

]
= sin θ

∂

∂r
RF (r, θ)

R

[
∂2

∂x2
F (x, y)

]
= cos2 θ

∂2

∂r2
RF (r, θ)

R

[
∂2

∂y2
F (x, y)

]
= sin2 θ

∂2

∂r2
RF (r, θ)

R

[
∂2

∂x∂y
F (x, y)

]
= cos θ sin θ

∂2

∂r2
RF (r, θ)

6. Convolution

F ∗ ∗G(x, y) =

∫ +∞

−∞
F (x′, y′)G(x− x′, y − y′) dx′ dy′

RF∗∗G = RF ∗RG =

∫ +∞

−∞
RF (τ, cos θ, sin θ)RG(r − τ, cos θ, sin θ) dτ

7. Linear transformation

R[F (Ax)] = | det(A−1)|RF (r, A−Tnθ).

The Fourier Central-Slice Theorem states that the n-dimensional FT of a func-

tion F (~x), ~x ∈ Rn, evaluated on the slice specified by the angle θ, is the 1-

dimensional FT of RF (r, θ) with respect the radial coordinate r. The result for

n = 2 is provided by the following

Theorem 2 (Fourier Central-Slice Theorem). Let us consider the 2-dimensional

FT of the function F , i.e. F̂ (q1, q2) =
∫
R2 F (x, y)e−i2π(q1x+q2y) dx dy, then

F̂ (q cos θ, q sin θ) =

∫
R
RF (r, θ)e−i2πrqdr. (1.12)

Theorem 2 establishes a fundamental relation between Euclidean, Radon

and Fourier domains, that is depicted in Fig.1.9. Equivalently, the following
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equality between operators acting on L2(R2) is satisfied

SF2 = FR,

where F and F2 respectively denote the 1-dimensional and 2-dimensional Fourier

operators, R is the Radon operator and S is the operator extracting a central

slice, i.e. SG(q1, q2) = G(q cos θ, q sin θ), with G ∈ L2(R2). In terms of involved

variables, instead

F2|(q cos θ,q sin θ) = Fr→qR|(r,θ),

and then

F−1
q→r(F2(F ))|(q cos θ,q sin θ) = R(r, θ). (1.13)

RT is thus equivalent to the inverse FT of the 2-dimensional FT of the signal

with respect to the radial variable and eq.(1.13) provides an alternative method

for RT computation, known as Fourier direct method and sketched in Fig.1.10.

Theorem 2 allows for the formal definition of the Inverse RT (IRT), whenever

the 2-dimensional inverse FT is considered. Indeed, F (x, y) = F−1
2 F̂ (q1, q2), i.e.

F (x, y) =

∫ +∞

−∞

∫ π

0

F̂ (q cos θ, q sin θ)e−iq(x cos θ+y sin θ)|q|dθdq =∫ π

0

dθ

[∫ +∞

−∞
|q|F̂ (q cos θ, q sin θ)e−iq rdq

]∣∣r = x cos θ + y sin θ
,

(1.14)

where polar coordinates have been used.

The term in square brackets in eq.(1.14) is the inverse 1-dimensional FT of

the product function |q|F̂ (q cos θ, q sin θ) evaluated at r = x cos θ+ y sin θ, then

by FT properties, the term can be replaced by the convolution of the FTs at

the same point. For this reason, by recalling eq.(1.13), we obtain

F (x, y) =

∫ π

0

dθ
[
F−1(|q|) ∗R(r, θ)

]∣∣r = x cos θ + y sin θ
.

It is possible to prove that [44]

F−1(|q|) = δ′(r) ∗ 1

2π2
P
(

1

r

)
,

where P stands for the Cauchy principal value. Finally, by delta function
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properties

F (x, y) = − 1

2π2

∫ π

0

dθ P

(∫ +∞

−∞

∂R
∂r

(r, θ)

x cos θ + y sin θ
dr

)

= − 1

2π2

∫ π

0

lim
M→+∞

(∫ M

−M

∂R
∂r

(r, θ)

x cos θ + y sin θ
dr

)
dθ,

with ∂R
∂r

denoting the derivative of RF with respect to radial coordinate r.

Figure 1.9: Relation between Euclidean, Radon and Fourier domains established
by Theorem 2. R,F2 and F respectively denote Radon, 2-dimensional Fourier
and Fourier operator.

Figure 1.10: Fourier direct method for RT computation. R and F2 respectively
denote Radon and 2-dimensional Fourier operator, while F−1 stands for the
1-dimensional inverse Fourier operator.

The inversion formula is valid for θ ∈ [0, π) with continuity. In applied

problems, only a discrete set of projections is available, that’s why only an

approximation of the function F can be recovered. For this reason, the back-

projection formula below (eventually filtered) is commonly used, i.e.

F (x, y) =
1

π

∫ π

0

RF ((x, y) · nθ) dθ. (1.15)
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As mentioned before, RT is nowadays a useful tool in signal processing, espe-

cially in linear FM signals representation. Indeed, the problem of detecting a

linear chirp reduces to peak detection in Radon domain, as shown in Fig.1.11,

which respectively depicts the RT of the spectrogram and the WVD of a linear

chirp (this last is referred as Radon Wigner in the literature). As it will been

shown in Chapter 3, the joint use of RT and TF analysis can be effective also

for non-linearly FM signals.

(a) (b)

(c) (d)

Figure 1.11: Combination of RT and TF signal analysis. (a) RT of the spectro-
gram in Fig.1.3(d), 3D view; (b) view from above of (a); (c) RT of the WVD in
Fig.1.6(a), also known as Radon Wigner, 3D view; (d) view from above of (c).

1.1.6 Fractional Fourier transform

The Fractional Fourier transform (FrFT) belongs to the class of linear TFRs

and it can be seen as a generalization of the classical FT. The FrFT of a function
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f ∈ L2(R) at a point (r, θ) ∈ R2 is defined as [15, 45]

Ff (r, θ) =

∫ +∞

−∞
f(t)K(θ, t, r) dt, (1.16)

where the kernel K(θ, t, r) is given by

K(θ, t, r) =
ei
θ
2

√
i sin θ

eiπ
(t2+r2) cos θ−2rt

sin θ .

It is worth observing that for θ = 0 and θ = π, the kernel K reduces to the Dirac

delta functions δ(x − r) and δ(x + r), respectively. Therefore, Ff (r, 0) = f(r)

and Ff (r, π) = f(−r). In addition, Ff (r, π/2) and Ff (r,−π/2) respectively

correspond to the classical FT and the inverse FT. In addition, the following

properties hold [46, 47]:

1. Linearity

Faf(t)+bg(t)(r, θ) = aFf (r, θ) + bFg(r, θ)

2. Parseval’s equality∫ +∞

−∞
f(t)g∗(t) dt =

∫ +∞

−∞
Ff (r, θ)F∗g(r, θ) dr

3. Shifting

Ff(t−τ)(r, θ) = Ff (r − τ cos θ, θ)eiπ sin θ(τ2 cos θ−2rτ), ∀ τ ∈ R

4. Modulation theorem

Ff(t)ei2πνt(r, θ) = Ff (r − ν sin θ, θ)eiπ sin θ(ν2 sin θ−2rν), ∀ ν ∈ R

5. Scaling theorem

Ff(ct)(r, θ) =

√
cos γ

cos θ
ei
θ−γ

2 e
iπr2 cot θ

(
1− cos2 γ

cos2 θ

)
Ff(t)

(
r

c

sin γ

sin θ
, γ

)
,

∀ c γ ∈ R :
tan γ

tan θ
= c2

6. Continuity Ff (r, θ) is a continuous function with respect to θ
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7. 2π-periodicity

Ff (r, θ + 2kπ) = Ff (r, θ), ∀ k ∈ Z

8. Additivity

Ff (r, θ1)Ff (r, θ2) = Ff (r, θ1 + θ2)

9. Symmetry

F∗f (r, θ) = {Ff (r,−θ)}∗.

From the properties listed above, it follows the inverse formula

f(t) =

∫ +∞

−∞
Ff (r, θ)K(−θ, t, r) dr.

The Hermite-Gauss functions defined as Ψn(t) = 1√
2n−

1
2 n!
e−πt

2
Hn(
√

2πt), with

Hn(t) = (−1)net
2 dn

dtn
e−t

2
denoting the Hermite polynomials, are eigenfunctions

of the FrFT with eigenvalues e−inθ. Since the family {Ψn(t)}n is a complete

orthonormal set, then the fractional kernel K can be expressed as

K(θ, t, r) =
∑
n≥0

e−inθΨn(t)Ψn(r).

The variable θ can be interpreted as a rotation angle in the phase plane as it

holds

WFf (u, ξ) = Wf (u cos θ − ξ sin θ, u sin θ + ξ cos θ),

or equivalently WFf (u
′, ξ′) = Wf (u, ξ) where (u′, ξ′) are the coordinates in the

rotated plane, i.e. [
u′

ξ′

]
=

[
cos θ sin θ

− sin θ cos θ

][
u

ξ

]
.

A similar relation holds for the ambiguity function. The above relations es-

tablish a connection between FrFT and WVD. In particular, for each angle θ,

the squared modulus of the FrFT, referred as fractional power spectrum, corre-

sponds to the projection of the WVD along the direction identified by θ. More

precisely, the fractional power spectrum is

|Ff (u, θ)|2 =

∫ +∞

−∞
WFf (r,θ)(u, ξ)dξ =

∫ +∞

−∞
Wf (u cos θ−ξ sin θ, u sin θ+ξ cos θ) dξ,
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with θ ∈ [0, π). The latter is also called Radon Wigner transform (RW) —

the RT of WVD. In signal processing, RW was originally adopted for detecting

multicomponent linearly modulated (LFM) signals [48, 49]. Indeed, the FrFT

of a linear chirp f(t) = e−i
πt2

tan β is

ei
θ
2

√
sin β

sin(β − θ)
e−iπ

r2

tan(β−θ) ,

which becomes proportional to a Dirac function δ(r) for θ → β, thus the con-

stant chirp slope (IF) can be detected as a local maximum of RW.

The following proposition gives the expression of IF in terms of the FrFT.

Proposition 1.3. [50] Let f(t) = a(t)eiφ(t) be a monocomponent signal

φ′(t) =
1

2|Ff (r, π)|2

∫ +∞

−∞

∂|Ff (r, β)|2

∂β

∣∣∣∣
β=θ

sgn(τ − t) dτ =

1

2RW (r, θ)

∫ +∞

−∞

∂RW (r, β)

∂β

∣∣∣∣
β=θ

sgn(τ − t) dτ.

1.2 Main definitions

This section formally defines the most important concepts introduced in the

previous section.

Definition 3. An AM-FM-MCS is defined as

f(t) =
N∑
k=1

fk(t) =
N∑
k=1

ak(t)e
iφk(t) , (1.17)

where fk ∈ L2(R) is the k−th mode and ak and φk are smooth time-varying

functions respectively denoting the amplitude and the phase of fk. N is finally

the number of components.

According to Def.3, the decomposition task is achieved if each mode fk(t)

is separated from the mixture signal f(t). The decomposition allows for the

estimation of the IFs of the signal, which are defined in the following

Definition 4. The instantaneous frequencies (IFs) of f(t) as in eq.(1.17) are

defined as the phases time derivatives, i.e.

φ′k(t), k = 1, ..., N. (1.18)
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Fig.1.12(a) shows a monocomponent signal having quadratic frequency mod-

ulation, whose IF is depicted in Fig.1.12(b).

It is worth pointing out that, in the multicomponent framework, IFs sepa-

ration enables signal decomposition.

Analysis window and its spread are formally defined in the following

Definition 5. An analysis window g(t) is a positive and symmetric function,

compactly supported or smooth and fast decreasing to zero. The frequency band-

width of g, denoted as ∆ω, is defined by the following condition

|ĝ(ω)| � 1 for ω ≥ ∆ω. (1.19)

In the literature, the definition of separable components depends on the

adopted analysis window.

Definition 6. Let f be a AM-FM MCS signal as defined in eq.(1.17) and let

fk1 and fk2, k1, k2 ∈ {1, ..., N} be two single modes. fk1 and fk2 are separable

in Ω ⊆ R by the analysis window g if

|φ′k1
(t)− φ′k2

(t)| ≥ ∆ω, ∀ t ∈ Ω , (1.20)

where ∆ω is the frequency bandwidth of g.

Equivalently speaking, φ′k1
and φ′k2

satisfy the separability condition in Ω.

Otherwise, they are said non-separable in Ω.

On the contrary, the definition of well separated and overlapping components

is independent of the specific transforms (the device used to analyze the signal),

as they refer to an intrinsic feature of the signal.

Definition 7. A FM-MCS signal f as defined in eq.(1.17) is composed of well

separated components if its IFs can be ordered so that

φ′N(t) > φ′N−1(t) > ... > φ′1(t), ∀ t ∈ supp{f}.

Definition 8. Let f be a FM-MCS signal as defined in eq.(1.17) and let fk1

and fk2, k1, k2 ∈ {1, ..., N} be two single modes. fk1 and fk2 are overlapped

components if their supports overlap both in time and frequency, i.e.

supp{fk1} ∩ supp{fk1} 6= ∅ and supp{f̂k1} ∩ supp{f̂k1} 6= ∅.
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Definition 9. Let f be a FM-MCS signal as defined in eq.(1.17) and let fk1 and

fk2, k1, k2 ∈ {1, ..., N} be two single modes. fk1 and fk2 are crossing components

in t0 ∈ R if

φ′1(t0) = φ′2(t0)

A similar definition has been introduced in [51], i.e.

Definition 10. Two components f1 and f2 are said to be crossing (or overlap-

ping) in the TF domain if there exists a time instant t0 and a bound d > 0 such

that

φ′1(t0) = φ′2(t0),

|φ′′1(t0)− φ′′2(t0)| ≥ d. (1.21)

It is worth observing that eq.(1.21) excludes the case of tangent modes at

t0. For this reason, Def.10 is not adopted in this thesis.

Remark 2. If two modes do cross in the TF plane, then they are overlapping

components. The latter are non-separable, as it can not exist a proper window

g such that condition in eq.(1.20) holds true. In all these cases, we say that

modes interfere with each other.

Fig.1.13(a) shows the spectrogram of a signal having two well separated

components, in the sense of Def.7. In addition, modes are separable, according

to Def.6. As a consequence, spectrogram section at each fixed time instant u

matches with the single profiles — the sections referred to the spectrogram of

the single modes, processed separately — as shown in Fig.1.13(b).

Fig.1.14 provides an example of crossing modes. As it can be noticed in

Fig.1.14(b) and (d), spectrogram section does not match the single profiles,

even if the window size is changed. In particular, maxima points positions are

highly deviated due to interference and spectrogram energy is much lower than

the energy of the individual profiles, as depicted in Fig.1.14(b). In addition,

only a component is perceived at u = 170, see Fig.1.14(d).

1.3 Decomposition of non-overlapping compo-

nents

The main methods for the decomposition of well separated components are re-

viewed in this section. Section 1.3.1 briefly presents methods which process the
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(a) (b)

Figure 1.12: (a) Quadratic chirp; (b) IF profile.

(a) (b)

Figure 1.13: Separable components. (a) Spectrogram; (b) Spectrogram section
(solid line) and sections of the spectrogram of the single modes (dotted grey
lines).

signal in the time domain while Section 1.3.2 is devoted to TF-based approaches.

1.3.1 Analysis in the time domain: EMD

First introduced in [52], the Empirical Mode Decomposition (EMD) is a non-

linear technique aimed at representing non-stationary signals. It decomposes a

FM-MCS into a small number of oscillating components, referred as intrinsic

mode functions (IMFs), provided they are well separated in the TF plane.

According to [52], a MCS f(t) =
∑N

k=1 fk(t) can be decomposed into its

IMFs fk(t) = ak(t) cosφk(t), k = 1, ..., N if the following conditions are satisfied:

(i) the number of extrema and the number of zeros crossing of fk is either
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(a) (b)

(c) (d)

Figure 1.14: Non separable components. (a) Spectrogram, window size = 44;
(b) Section of the spectrogram (solid line) and sections of the spectrogram
of the single modes (dotted grey lines) at u = 200;(c) Spectrogram, window
size s = 70; (b) Section of the spectrogram (solid line) and sections of the
spectrogram of the single modes (dotted grey lines) at u = 170.

equal or differs at most by one;

(ii) for any t, the value of a smooth envelope defined by the local minima

of fk is the negative of the corresponding envelope defined by the local

maxima.

Notice that IMFs fk satisfy condition (i) and (ii), but the reverse inclusion does

not hold in general.

EMD considers signal oscillations at a very local level. Indeed, it looks at two

consecutive extrema and extracts the high-frequency part (or local detail r(t))

and the low-frequency part (local trend m(t)), so that the signal is decomposed

as f(t) = r(t) +m(t).
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(a) (b)

(c) (d)

Figure 1.15: Two-components signal f(t) = f1(t) + f2(t) with separated modes.
(a) Signal in the time domain; (b) Spectrogram; (c) True f1(t); (d) True f2(t).

EMD consists of a sifting process. At each step, two smooth envelopes are

constructed by cubic splines, respectively interpolating the local maxima and

the local minima. Then, the mean of the two envelopes is taken and subtracted

from the original signal. The latter is the candidate first IMF, i.e. the harmonic

function with higher IF. The above procedure is repeated on the residual signal

for a fixed number of iterations or, alternatively, until the residual is almost

zero-mean, according to some stopping criterion. The desired decomposition is

achieved by taking the residuals {rk, k = 1, ..., N} as IMFs.

The whole algorithm can be summarized as follows:

1. identify the extrema of f(t);

2. interpolate the minima and the maxima, ending up with two envelopes

f̄(t) and f(t);

3. compute the mean m(t) =
(
f̄(t) + f(t)

)
/2 (local trend);

4. extract the residual r(t) = f(t)−m(t) (local detail);
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Figure 1.16: IMFs obtained by EMD applied to the signal in Fig.1.15(a).

5. iterate steps 1-4 on the residual r(t).

Fig.1.16 shows EMD output when applied to the two-components signal in

Fig.1.15(a). As it can be observed, IMFs in the first line of Fig.1.16(a)-(b) well

approximate the true components depicted in Fig.1.15(c)-(d). Unfortunately,

the same algorithm is not suitable for analysing overlapped components in the

TF plane, as the ones shown in Fig.1.17. In this case, IMFs do not match the

true modes at all—compare Fig.1.18 to Fig.1.17(c)-(d).

EMD pros. Linear methods (e.g. STFT) decompose a signal by computing its

inner product (or correlation) with a pre-assigned family of functions (atoms).
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Figure 1.17: Two-components signal f(t) = f1(t)+f2(t) with overlapped modes.
(a) Signal in the time domain; (b) Spectrogram; (c) True f1(t); (d) True f2(t).

This unavoidably results in TF representations that are spread all over the

domain and whose readability is affected by the chosen atoms. Furthermore, TF

representations are subjected to Heisenberg uncertainty principle which limits

the resolution. EMD does not present these drawbacks, as it directly processes

the signal in the time domain.

EMD cons. The decomposition into IMFs is not unique. Since the number of

components is generally unknown, EMD output depends on the pre-fixed and

arbitrary choice of the number of IMFs. As further limitation, EMD technique

does not admit any analytical formulation which would allow for its theoretical

analysis and rigorous performance evaluation. Finally, EMD is sensitive to noise

and limited to well separated components.

EMD modifications. The Ensemble Empirical Mode Decomposition (EEMD)

has been introduced in [53] in order to overcome the sensitivity to noise of the

original algorithm.

Inspired by EMD, an iterative filtering method has been proposed in [54].

Contrary to EMD and EEMD, in this procedure the mean is computed as a

local average of the values of the signal [55]. As a result, in many cases the
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Figure 1.18: IMFs obtained by EMD applied to the signal in Fig.1.17(a).

convergence can be rigorously proved.

Recently, EMD has been extended to multivariate signals [56, 57] and suc-

cessfully applied for the analysis of real-life signals [6].

Similarly to EMD, the local mean decomposition (LMD) is an iterative ap-

proach aimed at demodulating AM-FM signals, such as electrocardiograms,

functional magnetic resonance imaging data, and earthquake data. Introduced

in [5], LMD decomposes signals into a set of functions, each of which is the

product of an envelope signal and a frequency modulated signal. Differently

from EMD, LMD of a signal is accomplished by progressively smoothing the

signal using moving averaging which is weighted by the distance between the

successive extrema of the signal. As a result, a time-varying IF can be derived
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by LMD.

1.3.2 TF analysis

TF signal analysis provides an efficient characterization of non-stationary sig-

nals. In order to overcome the limitations given by Heisenberg uncertainty

principle and to further enhance TF resolution, Reassignment method and Syn-

crosqueezing transform have been introduced.

Modes separation, as well as IFs estimation, is commonly achieved by the

detection of TFD local maxima, e.g. spectrogram, WVD, absolute value of

ST or higher-resolution representation such as Adaptive directional TFD or

FrFT. A brief review of the above-mentioned transforms and related separation

methods is given below.

1.3.2.1 Sparsification approaches (RM and SST)

Reassignment method

Reassignment method (RM) has been proposed for enhancing the readability

of TF and time-scale distributions. Specifically, reallocation techniques allow

to achieve both concentration of signals components and no misleading inter-

ference terms, such as the cross terms arising in WVD. Reassignment principle

formalizes and extends the Modified Moving Window Method introduced in

[58]. In particular, [59] presented the method in a modern way and proved its

efficiency theoretically, opening the way to its application to general bilinear

TF and time-scale representations. Reliable algorithms for RM has been then

proposed [60], as well as some modifications and extension to multidimensional

signals [61]. In this section, without loss of generality, the reassigned spectro-

gram is presented.

It is well known that spectrogram can be expressed as an averaging of WVD,

i.e.

P g
f (u, ξ) =

1

2π

∫ ∫ +∞

−∞
WVf (t, ω)WVg(t− u, ω − ξ) dt dω,

that is the value of the spectrogram at a given point (u, ξ) in the TF plane is

the convolution of the signal WVD with the window WVD. In other words, the

whole WVD is weighted by the WVD of the window and the resulting sum is

assigned to the geometrical center of the domain over which the distribution

is considered. In RM, the total mass is conversely assigned to the center of
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gravity of the distribution within the domain, i.e. the following quantities are

computed

ûf (u, ξ) =
1

2πP g
f (u, ξ)

∫ ∫ +∞

−∞
tWVf (t, ω)WVg(t− u, ω − ξ) dt dω, (1.22)

ξ̂f (u, ξ) =
1

2πP g
f (u, ξ)

∫ ∫ +∞

−∞
ωWVf (t, ω)WVg(t− u, ω − ξ) dt dω, (1.23)

which define the local centroids of WVf , as seen through the TF window WVg

centered in (u, ξ). The reassigned spectrogram is then given by

P̂ (u, ξ) =

∫
R2

P (u′, ξ′)δ(u′ − ûf (u′, ξ′), ξ′ − ξ̂f (u′, ξ′))
du′dξ′

2π
. (1.24)

Denoting by ϕ the phase of the STFT, it can be proved that quantities in

eqs.(1.22) and (1.23) are equivalent to [58]

ûf (u, ξ) =
u

2
− ∂

∂ω
ϕ(u, ξ),

ξ̂f (u, ξ) =
ω

2
+

∂

∂u
ϕ(u, ξ),

which can be interpreted as the local IF and group delay (GD) of the analyzed

signal. Unfortunately, the computation of phase derivatives suffers from the

phase unwrapping problem. A more reliable algorithm is based on the following

expressions for the centroids, i.e.

ûf (u, ξ) = u+ <

(
Stgf (u, ξ)

Sgf (u, ξ)

)
, ξ̂f (u, ξ) = ξ −=

(
Sg
′

f (u, ξ)

Sgf (u, ξ)

)
, (1.25)

where <(z) and =(z) respectively denote the real and the imaginary part of

z ∈ C. Notice that eqs.(1.25) require the computation of the STFT of f with

respect to three windows: g, tg (its product by t) and its derivative g′.

Reassignment operators are shown in Fig.1.20(a). When applied to a TFD of

a signal having well separated components, RM gives a representation which is

sparse and well-concentrated on the single IF curves, allowing for IFs estimation,

as shown in Fig.1.20(b). On the contrary, if two modes do not satisfy the

separability condition as in Def.6, then the interference between modes can

highly affect maxima positions, resulting in a loss of resolution in the region of
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non-separability, see Fig.1.20.

(a) (b)

Figure 1.19: RM applied to separable components. (a) Spectrogram of two well
separated components. White arrows indicate the reassignment operators; (b)
Reassigned spectrogram.

(a) (b)

Figure 1.20: RM applied to non-separable components. (a) Spectrogram of
two crossing components. White box indicates the non-separability region; (b)
Reassigned spectrogram.

Syncrosqueezing Transform

Syncrosqueezing transform (SST) was originally introduced for analyzing audi-

tory signals [62] and then formalized in [31]. It belongs to the class of reallo-

cation methods. Contrary to RM, it operates directly on the transform (and

not on the related distribution); therefore, it allows for signal reconstruction.
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Moreover, TF points are moved only along the frequency direction, that is the

considered local centroid does not depend on time.

To motivate the idea behind SST, let us consider a purely harmonic signal

(constant chirp), i.e.

f0(t) = A cos(Ωt) (1.26)

and its analytic WT defined as [35]

Wf0(u, s) =

∫
f0(t)

1√
s
ψ∗
(
t− u
s

)
dt, (1.27)

where ψ is an analytic wavelet mother, i.e. ψ̂(ω) = 0, ∀ω < 0. By Parseval

Theorem, eq.(1.27) can be rewritten as

Wf0(u, s) =
1

2π

∫
f̂0(ω)

1√
s
ψ̂∗(sω)eiuω dω

=
A

2π

∫
[δ(ω − Ω) + δ(ω + Ω)]

1√
s
ψ̂∗(sω)eiuω dω

=
A

2π

1√
s
ψ̂∗(sΩ)eiuΩ.

If ψ̂∗ is well concentrated around ω0, then Wf0(u, s) will be well concentrated

around ω0/Ω.

As observed in [62], Wf0(u, s) spreads out over the time-scale plane around

the horizontal line s = ω0/Ω, but its oscillatory behaviour with respect to time

u points to the original frequency Ω, independently on the value of s. For

this reason, for a generic real signal f(t) = A cosφ(t) and for each (u, s) s.t.

Wf (u, s) 6= 0, IF is approximated by

ω̂f (u, s) = −i
∂
∂u
Wf (u, s)

Wf (u, s)
, (1.28)

that gives exactly ω̂f (u, s) = Ω in the case f(t) = f0(t) as in eq. (1.26).

SST essentially consists in applying the map (u, s) −→ (u, ω̂f (u, s)). By

considering a uniform discretization of Wf in the scale variable (i.e. Wf is

computed only at discrete points sk, with sk − sk−1 = (∆s)k), then the SST

is defined only at centers ωl of the successive bins [ωl − 1
2
∆ω, ωl + 1

2
∆ω], with
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∆ω = ωl − ωl−1, as

Tf (u, ωl) =
1

∆ω

∑
sk:|ω̂(u,sk)−ωl|≤∆ω/2

1

s
√
s
Wf (u, sk)(∆s)k. (1.29)

If u and ω are continuous variables, the analogous of eq.(1.29) is

Tf (u, ω) =

∫
{s :Wf (u,s)6=0}

Wf (u, s)
1

s
√
s
δ(ω̂ − ω) ds.

The signal can be recovered by its SST. Indeed, if f is real, f̂(ω) = f̂ ∗(−ω) and

it holds ∫ +∞

0

Wf (u, s)
1

s
√
s
ds =

1

2π

∫ +∞

−∞

f̂(ω)√
s
ψ̂∗(sω)eiuωdsdω

=

∫ +∞

0

ψ̂∗(ω)

ω
dω ·

∫ +∞

0

f̂(ζ)eiuζ dζ;

thus, by setting Cψ = 1
2

∫ +∞
0

ψ̂∗(ω)
ω
dω, it follows

f(t) = <
[

1

Cψ

∫ +∞

0

Wf (u, s)
1

s
√
s
ds

]
. (1.30)

By considering a piecewise constant approximation according to the binning in

s, eq.(1.30) becomes

f(t) ≈ <

[
1

Cψ

∑
l

Tf (u, ωl) ∆ω

]
.

Syncrosqueezing operator can be defined for a generic TF transform. In the

case of the STFT, the SST is closely related to the synthesis formula

f(t) =
1

2πg(0)

∫
Sgf (u, ξ)eiξtdξ,

and it can be expressed as [63]

Tf (u, ξ) =
1

2πg(0)

∫
Sgf (u, ξ)eiξtδ(ξ − ξ̂f )dξ,

where ξ̂f is the local centroid referred to RM as defined in eq.(1.25). It follows
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that SST can be understood as a frequency reassignment.

If f(t) =
∑

k akfk(t) is a superposition of well separated components, then

the k-th mode can be recovered by integrating T gf in the vicinity of the corre-

sponding ridge, i.e.

fk(t) =

∫
{ξ : |ξ−φ′k(t)|<d}

Tf (u, ξ)dξ,

for some small parameter d > 0.

Recently, SST has been improved by the introduction of higher-order ap-

proximation in eq.(1.28) [4, 64, 65].

RM and SST pros. They are completely automatic and apply to general TF

representations. In addition, SST enables signal modes recovery.

RM and SST cons. Their applicability is limited to well separated components.

1.3.2.2 Adaptive signal representations

Adaptive directional TFD

WVD distribution has ideal energy concentration for monocomponent LFM

signals. For MCS, it suffers from cross-term interference which can significantly

affect signal readability in the TF domain. Cross-terms reduction is possible by

applying a low-pass filter in TF domain [15], i.e.

ρ(u, ξ) = WVf (u, ξ) ∗ ∗γ(u, ξ),

where γ is a smoothing kernel depending on some parameters. The resulting

TFD ρ is a smoothed version of WVD. Unfortunately, the smoothing also dete-

riorates signal resolution. In particular, close components could appear merged

in the TF domain, not allowing for correct IF estimation. A high-resolution

TFD can be obtained by adapting the direction of the smoothing kernel, as

proposed in [18]. The adaptive directional TF distribution (ADTFD) is defined

as

ρAD(u, ξ) = WVf (u, ξ) ∗ ∗γθ(u, ξ),

where the shape adjustment of γθ is based on the following characteristics of

cross-terms and auto-terms in quadratic TFDs [66]:
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1. cross-terms oscillate along their major axis and they have high pass char-

acteristics in the frequency domain; therefore, cross-terms can be sup-

pressed by smoothing them along their major axis;

2. the amplitude of auto-terms changes slowly along their major axis and

the most of them lies in a low frequency band; as a consequence, low

pass filtering along the major axis of auto-terms will not deteriorate their

energy concentration.

For these reasons, the direction of a smoothing kernel should remain aligned

with the major axis of auto-terms and cross-terms. The oscillatory charac-

teristics of cross-terms can be avoided by taking the modulus of a quadratic

TFD. For absolute values of a TFD, both auto-terms and cross-terms appear

as ridges. Therefore, the direction of γθ is chosen as the one which maximizes

the correlation of the kernel with the modulus of a quadratic TFD, i.e.

θ(u, ξ) = arg max
θ

∣∣∣|ρ(u, ξ)| ∗u ∗ξγθ(u, ξ)
∣∣∣. (1.31)

In the ideal case, the smoothing kernel should have maximum output when it is

parallel to the ridge and it should be zero otherwise, so that eq.(1.31) gives the

correct local IF direction. The even derivatives of the Gaussian filter (DGF)

satisfy the above conditions, thus the proposed filter in [18] is

γθ(u, ξ) =
ab

2π

∂2

∂ξ2
θ

e−(a2u2
θ+b2ξ2

θ),

where uθ = u cos θ+ξ sin θ, ξθ = −u sin θ+ξ cos θ, θ ∈ [−π/2, π/2) is the rotation

angle with respect to the time axis, while a and b respectively control the spread

and the smoothing along the time and frequency axis. DGF performs smoothing

along its major axis, i.e. e−a
2u2
θ and performs second-order differentiation along

its minor axis, i.e. ∂2

∂ξ2
θ
e−b

2ξ2
θ . Therefore, the filter output reduces to zero as the

direction of filter is made orthogonal to the major axis of ridges.

The basic principle behind the choice of parameters is that the rate of os-

cillation of cross-terms decreases as signal components are getting closer in the

TF domain [66]. In order to avoid merging components, a long filter (with

sharp cuttoff) should be applied along the major axis of ridges for suppressing

cross-terms, whereas a short filter should be applied in the direction orthogonal

to the major axis of ridges. Thus, the value of the parameter a should be small
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(i.e. around 2) to ensure a long filter while a large value should be assigned to

b to ensure a short filter (i.e. b around 30).

Global parameters optimization should fail to provide the desired results

when the signal presents close or short-duration components. To address this

issue, a two-stage algorithm for parameter automatic tuning is proposed in [67].

First, the length of the smoothing kernel is optimized globally. In the second

stage, the parameters which control the shape of the selected smoothing window

are optimized, locally. Given a set of possible values for a and b {(ai, bi), i =

1, ..., I}, the ADTFD at each TF point (u, ξ) is defined as

ρAD = min
i
WVf (u, ξ) ∗ ∗γai,bi(u, ξ).

ADTFD pros. Resolution of close components is enhanced.

ADTFD cons. ADTFD is not suitable for estimating the IF of crossing compo-

nents, as it does not achieve energy concentration at the intersection point.

1.3.2.3 Peaks detection and tracking algorithm

Image processing techniques

Image processing techniques for IF estimation exploit local connectivity of peaks

detected by a TFD [19]. These methods are computationally efficient and suit-

able for real-life signals such as EEG seizure signals and heart rate variability

signals, as shown in [68, 69].

The key steps of the IF estimation procedure in [19] are the following:

• detect all peaks along the frequency axis at each time instant u of the

considered TFD ρ(u, ξ) as the points satisfying

d

dξ
ρ(u, ξ) = 0 and

d2

dξ2
ρ(u, ξ) < 0

• define B(u, ξ) as a binary image having ones at each peak location and

zeros otherwise and assume that the detected peaks correspond to the

signal components IFs.

• discriminate peaks between modes accordingly to the 10-connectivity cri-

terion, which states that a detected peak belongs to a signal component

if it has at least one other peak in its 10-neighborhood of the same signal
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component and it does not have any peak of any other component in its

10-neighborhood.

Specifically, given a pixel (x, y), the set of its 10-neighborhood is defined as

{x + i, y + j, i = −1, 1, j = −2, ..., 2}. In practical implementations, IF curve

with a duration longer than a predetermined threshold are retained to improve

the robustness of the algorithm against noise.

Generalized Viterbi Algorithm for IF estimation

For monocomponent signals, IF can be derived at each time instant by the

locations of TFDs peaks detected along the frequency direction. The same

technique can be adapted to MCS having well separated modes by exploiting

IF slow variation between consecutive time instants. Unfortunately, high noise

can significantly affects peaks positions resulting in inaccurate IF estimation

[70]. A Viterbi-based IF estimation method has been proposed in [20] to face

this issue.

The basic assumptions taken into account are: (i) if a peak is deviated,

with high probability the correct IF is at a point having one of the largest

TFD values; (ii) IF variations between two consecutive points are not abrupt.

In other words, (i*) IF curve should maximize the number of high energy TF

points; (ii*) given a discrete time interval [n1, n2], the IF curve should minimize

the function
∑n2

n=n1
|ω̂(n)− ω̂(n−1)|, where ω̂(n) is the estimated IF at discrete

time n.

Formally, let us assume that all paths between time n1 and n2 take only

discrete frequency values and belong to a set K. IF estimation can be thus

formulated as the optimization problem

ω̂(n) = arg min
k(n)∈K

[
n2−1∑
n=n1

g (k(n), k(n+ 1)) +

n2∑
n=n1

h(ρ(n, k(n)))

]
︸ ︷︷ ︸

:= p(k(n);n1,n2), penalty function

, (1.32)

where ρ is the considered TFD, n1, n2 are two ending points, g(x, y) = g(|x−y|)
is a non-increasing function with respect to the absolute difference between

variables x and y and h(·) is inversely related to the amplitude of the signal

energy. In [71], without loss of generality, WVD is considered as underlying
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TFD. A linear form for the function g is assumed, i.e.

g(x, y) =

0, |x− y| ≤ ∆

c(|x− y| −∆), |x− y| > ∆
, c,∆ > 0

and the function h is implemented, for a given time instant n, by sorting the

WVD coefficients with respect to the available M frequencies {ωj}j=1,...,M , i.e.

WVD(n, ω1) ≥ WVD(n, ω2) ≥ ... ≥ WVD(n, ωM),

and by setting h(WVD(n, ωj)) = j − 1, ∀ j.
If the TF domain is discretized into T = {(ni, ωj), i ∈ [1, N ], j ∈ [1,M ]},

the total number of path between two ending points is MN , making the direct

computation of the optimal curve minimizing functional in eq.(1.32) computa-

tionally infeasible. The problem can be recursively solved by using the Viterbi

Algorithm, as follows.

(a) Let the optimal paths connecting a given time instant n1 to ni are de-

termined and denote them with π(n;ωj), n ∈ [n1, ni] for j ∈ [1,M ]. By

defining with Kij the set of all paths between the instant n1 and the point

(ni, ωj), we have

π(n;ωj) = arg min
k(n)∈Kij

p(k(n);n1, (ni, ωj)), j ∈ [1,M ]. (1.33)

According to Viterbi algorithm terminology, paths in eq.(1.33) are referred

as partial best paths. IF estimation within the interval [n1, ni] is then

ω̂(i)(n) = arg min
π(n;ωj),j∈[1,M ]

p(π(n;ωj);n1, (ni, ωj)).

(b) The partial best paths referred to the next instant ni+1 are represented

as concatenation of paths in eq.(1.33) with the points at the new instant

πi+1(n;ωl), (ni+1, ωj), j ∈ [1,M ] that minimize

p(πi(n, ωl);n1, (ni, ωl)) + g(ωl, ωj) + h(WVD(ni+1, ωj)) (1.34)

for each ωj. The function h is constant for considered partial best path.

Taking advantage of the increasing monotonicity of g, it is possible to
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further reduce the searching space for minimizing the function in eq.(1.34).

Peaks detection and tracking algorithms pros. Their formulation is very simple.

Peaks detection and tracking algorithms cons. They are essentially interpolation

and searching techniques, thus generally computationally expensive. Even if

Viterbi algorithm heavily reduces the computation effort, method effectiveness

strongly depends on the predetermined set of candidate parameters. Finally,

the presented methods are not able to correctly track intersecting components.

1.4 Decomposition of overlapping components

The separation of components whose domains overlap both in time and fre-

quency is a very challenging task in MCS analysis. Most of the TF tools are

limited to well separated components. Many IF estimators based on the TFDs

peaks extraction and tracking have been extended to overlapping components.

The latter have the main advantage to be non-parametric, but on the other

hand, they present a high computational cost. The other existing procedures

are mostly signal-dependent. Indeed, they either assume a specific class for the

phase/IF function or they consist of adaptive, parametric and local refinements

of already existing approaches and/or transforms. Unfortunately, parametric

methods are likely to only adapt to specific situations.

A brief presentation of the state of the art techniques is given below.

1.4.1 Non-parametric methods

1.4.1.1 Peaks detection and tracking algorithm

Modified Viterbi algorithms

In order to avoid the so-called ”switch problem”, that is the assignment of a

ridge point to the wrong component, extensions of the Viterbi algorithm to

MCS having non-separable components have been recently proposed. In par-

ticular, in [72] the penalty function is modified in order to promote the local

direction of the estimated ridge, while the local monotonicity is considered in

[73]. A similar peak-detection and tracking procedure promoting the direction

of the estimated IF is proposed in [74]. As illustrative example, let us focus on

the method in [72]. It relies on two fundamental steps: (i) ADTFD is adopted

to enhance TF resolution; (ii) a variant of the Viterbi algorithm taking into
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account the direction of the ridge is introduced. The latter is exploited to track

signal modes and correctly estimate IF curves, even when they intersect with

each other in the TF plane. The number of signal modes is assumed. First, the

strongest component is detected and removed from the original TFD, which is

iteratively processed until all the components are recovered. The new constraint

introduced in [72] takes into account ridge direction, by assuming IF curve has

small variation along two consecutive points. A similar iterative technique,

making use of a tracking algorithm instead of the Modified Viterbi algorithm,

has been proposed in [74]. In this work, a local version of ADTFD, denoted as

LO-ADTFD, is adopted as high-resolution TF distribution. IF of the strongest

signal component is estimated by a peak detection algorithm, that takes into

account both the amplitude and the direction of peaks in the TF domain. The

procedure is then repeated until all the components are recovered.

Ridge path regrouping method

Ridge path regrouping method (RPRM) is a peak tracking method aimed at

identifying overlapped components from a TFD. RPRM consists of two main

steps [75]: (i) detection of the peaks/ridges from the considered TFD; (ii) re-

grouping of the detected ridge points according to their variation rates at the

intersection point.

RPRM can be summarized as follows:

1. compute the signal TFD and detect all its peaks;

2. find all the intersection intervals, according to a thresholding operation

implementing Def.9;

3. merge intersection intervals which are close to each other;

4. regroup ridge in each intersection interval. Specifically, the detected ridge

curve as a whole is broken first and then reconnected according to the

slopes of the ridges at the boundary of the intersection interval, by linear

interpolation. (The slope of the ridge is also considered in [73] to define

a new penalty function to be minimized by means of Viterbi algorithm).

RPRM is computationally efficient, but on the other hand it has proved to be

sensitive to noise. Furthermore, the basic assumption in RPRM is that the set
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of the detected peaks from a TFD (ridge estimation) as a whole can reflect

the global TF patterns of a MCS. This is exploited for assigning the detected

peaks to the correct IF curve. It is worth observing that the above assumption

immediately fails to be satisfied if two modes interfere in a destructive way. In

this critical case, TFD can present much lower energy at the interference region

and then the detected ridge curve can appear so deviated to not correlate at all

with the global TF pattern.

Image processing techniques

An IF detector which combines TF analysis and image processing technique

is proposed in [76] in order to deal with MCS having mixed continuous and

stepped FM components overlapping components. The traditional IF estima-

tion problem is here rephrased as a line detection problem from the image

processing point of view, under the assumption that realistic IF curves have

certain specific geometric properties. In particular, the algorithm exploits the

property that for each TF point, the direction of the ridge (IF) is orthonormal

to the gradient of the TFD. The line detector algorithm is defined as follows:

1. compute the B-distribution (BD) of the signal [15];

2. compute the gradient image of BD (a local least-squared fitting method

is adopted);

3. modify the gradient image to adjust the gradient direction of each pixel

point along IFs trajectory. Specifically, the pixel gradient vectors belong-

ing to the first or second quadrant of the 2-D Cartesian coordinates are

rotated by 90 deg clockwise around the origin, while gradient vectors is

in the third or fourth quadrant are rotated by 90 deg counterclockwise;

4. based on the two gradient images computed in the previous steps, compute

the mean gradient ratio image by using an adaptive window around each

TF point. Mean gradient images allow for the detection of discontinuities

(IF information) in the BD image, which generally appear when two modes

intersect with each other.

After the line segments are determined, IF estimation is carried out iteratively.

First, a graph by linking the detected line segments is formed by linking seg-

ments which are closely located. Then, a Markov random field is defined on
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the constructed graph by using the geometric information of IFs, and the IF

detection process is modelled as the extraction of the best graph labelling. The

regions of discontinuity between line segments are recovered via MAP minimiza-

tion and the procedure is repeated on the new gradient ratio image defined by

setting zero in the region around the detected IFs of continuous components.

The procedure is repeated until all the segments have been grouped.

Non-parametric methods pros. The presented procedures do not require any

specific assumption on IF class.

Non-parametric methods cons. They are computationally expensive, as the

optimal path determination requires an exhaustive search. It is worth pointing

out that these methods recover the missing information in the non-separability

region by interpolation and, since peaks can be highly deviated by interference,

the interpolation result may be meaningless.

1.4.2 Parametric methods

Parametric methods are usually based on a predefined model to characterize the

IF of the signal, such as polynomial [12, 77–79], piecewise polynomial [7, 80–

82] and sinusoidally models [83, 84]; otherwise they are referred as parametric

because they adopt analysis devices which are signal-dependent, i.e. whose

parameters strongly depend on the specific signal under analysis.

1.4.2.1 Intrinsic chirp component decomposition

In [85], an iterative and parametric technique for IF estimation in the overlap-

ping framework is introduced. A noisy MCS is modelled as the superposition

of Intrinsic Chirp Components (ICC), i.e.

f(t) =
N∑
k=1

fk(t) + r(t) =
N∑
k=1

ak(t) cos

(
2π

∫ t

0

ϕk(τ)dτ + θk0

)
+ r(t), (1.35)

where N is the number of components, r(t) consists of the decomposition error

and zero-mean Gaussian noise, fk is an ICC with instantaneous amplitude ak,
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phase θk0 ∈ [0, 2π) and IF ϕk, which satisfy the following conditions

ak ∈ C1(R) ∩ L∞(R), ϕk ∈ C∞(R),

inf
t∈R

ak(t), inf
t∈R

ϕk(t) > 0,

sup
t∈R

ak(t), sup
t∈R

ϕk(t), sup
t∈R
|a′k(t)|, sup

t∈R
|ϕ′k(t)| < +∞.

ICC decomposition (ICCD) first removes the non-linear dependence of the

phase in eq.(1.35), which is rewritten as

f(t) =
N∑
k=1

Ak(t) cos

(
2π

∫ t

0

ϕk(τ)dτ

)
+Bk(t) sin

(
2π

∫ t

0

ϕk(τ)dτ

)
+ r(t),

(1.36)

where Ak(t) = ak(t) cos(θk0) and Bk(t) = −ak(t) sin θk0. Instantaneous ampli-

tudes Ak(t) (IA) and IF ϕk(t) are then modelled as redundant Fourier series,

i.e.

Ak(t) = Ak0 +
L∑
j=1

(Akj cos(2πjF0t) + Ākj sin(2πjF0t)),

Bk(t) = Bk0 +
L∑
j=1

(Bkj cos(2πjF0t) + B̄kj sin(2πjF0t)),

ϕk(t) = ϕk0 +
M∑
j=1

(ϕkj cos(2πjF0t) + ϕ̄kj sin(2πjF0t)),

where L and M respectively stand for the Fourier order of the amplitude and

frequency, F0 = fs/N , with fs the sampling frequency. The Fourier coefficients

{Ak0, ..., AkL, Āk0, ..., ĀkL}, {Bk0, ..., BkL, B̄k0, ..., B̄kL}, {ϕk0, ..., ϕkM , ϕ̄k0, ..., ϕ̄kM}
are the parameters to be determined.

Let us focus on a monocomponent signal f , whose analytic form can be

obtained by the Hilbert transform [15] and expressed as

z(t) = a(t)ei(2πθ(t)+θ0),

with

θ(t) = ϕ0 t+
M∑
j=1

(
ϕj

2πjF0

sin(2πjF0t)−
ϕ̄j

2πjF0

cos(2πjF0t)

)
, (1.37)
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IF estimation can be performed by means of the General Parametrized TF

transform (GPTFT) whose kernel is adapted to the phase model in eq.(1.37).

More precisely, GPTFT is defined as

GP (u, ξ, α;σ) =

∫
R
z(t)ΦD

α (t)ΦC
u,αgσ(t− u)e−i2πξt dt,

with

ΦD
α (t) = e

−i2π
∑M
j=1

(
αj

2πjF0
sin(2πjF0t)−

ᾱj
2πjF0

cos(2πjF0t)
)
,

ΦC
u,α = ei2π

∑M
j=1(αj cos(2πjF0t)+ᾱj sin(2πjF0t)),

gσ(t) =
1√
2πσ

e−
t2

2σ2 .

Note that the above transform reduces to STFT if the multi-parameter

α = (α1, ..., αM , ᾱ1, ..., ᾱM)

is the null vector. Basically, ΦD
α is a demodulation operator which reduces IF

variation degree. If α is close to the Fourier coefficients of ϕ, then the demod-

ulation operator applied to the analyzed signal will output a nearly stationary

chirp, with constant frequency ϕ0. ΦC
u,α is compensator operator for the error

introduced by Φα.

The discrete counterpart of eq.(1.36) is

f =
N∑
k=1

Hkyk + r, (1.38)

where f = [f(t0), ...f(tl−1)], r = [r(t0), ...r(tl−1)], l is the signal length, yk =[
yTkAyTkB

]T
, with ykA = [Ak0, ..., AkM , Āk0, ..., ĀkM ] and

ykB = [Bk0, ..., BkM , B̄k0, ..., B̄kM ].

The kernel matrix Hk is given by Hk = [ck,Sk] with

ck = diag[cos θk(t0), ..., cos θk(tl−1))]K,

Sk = diag[sin θk(t0), ..., sin θk(tl−1))]K,

where θk =
∫ t

0
ϕk(τ)dτ and K is a N × (2l + 1) matrix containing the model
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information of IA, defined for i ∈ [1, N ] as

Ki,j =

cos(2π(i− 1)F0tj−1), i ∈ [1, l + 1]

sin(2π(i− l − 1)F0ti−1), i ∈ [l + 2, 2l + 1]
.

According to eq.(1.38), the estimation of the Fourier coefficient of the IA and

IF requires to solve a linear system. Since this inverse problem is ill-posed,

Tikhonov regularization is adopted to get a stable solution, by solving

min
y

(
||f −Hkyk||22 + λ1||yk||22

)
,

where λ1 is a regularization parameter which controls a trade-off between the

data fidelity and the perturbation sensitivity. Matrix H is constructed based

on the detected ridge points from the TFD.

For MCS, the strongest component IF is estimated first and then the pro-

cedure is iterated on the residual. The residual energy is examined to define a

stopping criterion. A joint-refinement step consisting in an additional but dif-

ferent Tikhonov regularization is considered to get high-resolution component

recovery also for overlapping/crossing modes. It is conducted by the minimiza-

tion of

min
y

(
||f −Hyk||22 + λ2||yk||22

)
,

where H is the assembled kernel matrix, i.e. H = [H1, ..., HN ].

ICCD pros. Linearity is one of the main advantages. In addition, ICCD allows

for the characterization of signal having highly oscillating IF and IA.

ICCD cons. A theoretical analysis is not available yet.

ICCD modifications. An extension of ICCD suitable for complex valued signals

has been proposed in [51] and applied to overlapped MCS.

1.4.2.2 Dechirping-based methods

The principle of de-chirping is to remove the “non-stationary term” of a chirp

signal so that a narrowband filter can be used for extracting the target compo-

nent [78, 86, 87]. Given a MCS f(t) =
∑N

j=1 aj(t)e
iφj(t), de-chirping algorithm

consists of the following steps:
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1. determine the strongest component IF ξ̂(u), ∀u and estimate the corre-

sponding instantaneous phase φk(t) =
∫ t

0
ξ̂(τ)dτ ;

2. compute the de-chirped signal

fC(t) = f(t)e−iφk(t) = ak(t) +
∑
j 6=k

aj(t)e
i(φj(t)−φk(t));

3. extract the amplitude ak(t) by applying a low-pass filter;

4. recover the component fk(t) = ak(t)e
iφk(t);

5. remove the synthesized signal from the mixture, that is set f(t) = f(t)−
fk(t) and repeat the procedure on the residual.

Generally, de-chirping is not suitable for overlapping components. To deal

with the problem, the method proposed in [79] combines parametrized de-

chirping and band-pass filter, avoiding the analysis of the considered signal

through TF transform. It is worth observing that in [78] authors state that

the estimation of the number of modes, needed in [79], requires TF analysis,

since a processing in the time domain generally does not allow for it. Thus, the

procedure in [79] is not TF analysis-free. Coming back to the description of

the method, discrete-time polynomial model for the signal phases is adopted.

The parameters describing the target component are estimated by maximizing a

concentration measure. Then, the original signal is de-chirped, that is the target

mode is reduced to a stationary signal with constant frequency corresponding

to its initial frequency. This results in a straight line in the TF plane, while

the noise is dispersed across the entire domain. The de-chirped signal is then

band-pass filtered and its center frequency is detected as the peak amplitude.

Finally, the target component is recovered by the knowledge of its parameters

and the entire procedure is repeated iteratively on the residual signal.

De-chirping pros. All methods dealing with WVD and its modifications share

the necessity to balance resolution and cross-terms reduction. On the contrary,

de-chirping approach simply removes the non-stationary part of a signal.

De-chirping cons. It is based on specific assumptions on IF class.
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1.4.2.3 Locally adaptive directional TFDs

In [74] an iterative method for IF estimation of overlapping components with

time varying amplitudes has been proposed. As a starting point, the locally

ADTFD (LO-ADTFD) introduced in [67] is adopted to promote energy con-

centration for MCS having time varying amplitudes. Then, the strongest com-

ponent is detected by tracking the TFD peaks and removed from the mixture

signal. The switch problem is avoided by taking into account both the ampli-

tude and the direction of the detected peaks. Instead of assuming the number

of components, the above procedure is repeated until the energy falls below a

preselected threshold.

The following peak detection and tracking algorithm is used to estimate the

strongest component IF:

1. compute LO-ADTFD ρ(u, ξ) of the input signal;

2. detect a point (u0, ξ0) of larger energy in TF domain and estimate the IF

at u0 as ξ0;

3. set u = u0 + 1;

4. detect the peak in the neighborhood of u0 as ξ̂ = arg maxu |ρ(u, ξ)|, where

f ∈ [ξ0 −∆, ξ0 + ∆] and ∆ is a prefixed threshold based on bandwidth;

5. compare the detected peaks direction with the principal direction of the

peak detected at the previous iteration. If |θ(u, ξ̂) − θ(u, ξ0))| < T, then

the directions of the peaks are close and the detected peak is assigned to

IF curve of the strongest component. Otherwise, the IF is estimated by

extrapolation as

ξ̂ = ξ0 + tan (θ(u0, ξ0)) ;

6. set u0 = u and ξ0 = ξ̂ and repeat the whole procedure until u0 belongs to

the domain.

Once the strongest component is detected, it is removed from the mixture signal

by de-chirping.

LO-ADTFD pros. Resolution is significantly enhanced.

LO-ADTFD cons. It is parametric and its definition implicitly relies on IF local

estimate.
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1.4.2.4 Quasi maximum likelihood random sample consensus-based

IF estimators

The quasi maximum likelihood (QML) algorithm has been originally introduced

for monocomponent signals as a powerful polynomial phase estimator [88] and

then generalized to MCS with generic non-linear polynomial FM [89]. In order

to extend it to MCS having overlapped components, it is assumed that modes

present similar amplitudes in the TF plane, as in most existing methods. In ad-

dition, amplitudes are assumed to be constant. Higher anti-noise performances

have been obtained by adopting the QML random sample consensus (QML-

RANSAC) [90]. It performs multiple random selections of the IF estimates

samples and reconstructs IF by interpolation. For each overlapped component,

the final IF estimate is based on a maximum likelihood-based criterion. QML-

RAMSAC algorithm is performed iteratively until all the modes are recovered,

according to the following steps:

1. given a MCS f(t), compute its STFT;

2. estimate IF from the spectrogram local maxima;

3. select random samples of IF estimate;

4. estimate the signal parameters from the IF, for each random selection, by

maximum likelihood;

5. remove the estimated component from the signal mixture;

6. iterate the procedure on the STFT of the residual signal.

The main drawback of the above procedure is the large number of required

STFTs that is proportional to ΛQ, where Q is number of components and Λ is

number of random selections. For large Λ, complexity becomes unacceptable.

That is why, the elements that are close to the estimated component are removed

and random sampling is applied only to remaining IF samples. In this way,

STFT is computed only once, but the application of the method is limited

to signals with a small number of components and simple signatures, i.e. IF

depending on a small number of parameters. The work in [91] overcomes some

these drawbacks, only requiring Q STFTs evaluations.
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QML-RANSAC pros. The method is simple, as based on random sampling and

maximum likelihood estimation.

QML-RANSAC cons. It is parametric and IF is essentially recovered by inter-

polation.

1.4.2.5 Signal reconstruction from two RW projections

In [92], Prop.1.3 is exploited in order to recover signal overlapped modes, up to

a constant phase shift. Let us recall the relation between RW angular derivative

and the IF of a monocomponent signal f(t) = a(t) cosφ(t), i.e.,

φ′(t) =
1

2RW (r, θ)

∫ +∞

−∞

∂RW (r, β)

∂β

∣∣∣∣
β=θ

sgn(τ − t) dτ. (1.39)

The method proposed in [92] is based on the observation that RW angular

derivative satisfies

∂RW (r, β)

∂β

∣∣∣∣
β=θ

≈ lim
β→0

RW (r, θ + β)−RW (r, θ − β)

2β
;

therefore, the discrete version of the above relation is considered to approxi-

mate RW angular derivative. Precisely, a ”small” angle β ≈ 1◦ and the two

close projections RW (r, θ+ β) and R(r, θ− β) are considered for implementing

eq.(1.39). Phase retrieval can be achieved up to a constant and thus the signal

can be recovered.

Method pros. Close components’ resolution is enhanced.

Method cons. The procedure works for MCS with overlapped modes only for

specific cases. Some a priori knowledge concerning the signal behaviour has

to be assumed, such as constant amplitude and polynomial modulation for the

phase.

1.4.2.6 Detection of LFM signals

The literature concerning LFM is essentially boundless. LFM are actually of

great importance in radar and micro-doppler analysis. In many applications,

LFM are also assumed to have constant amplitude [93, 94]. The most efficient

LFM detectors dealing with overlapping components are based on RT [48, 95]
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as well as FrFT [49]. These latter map the signal into a domain where the

problem of signal detection reduces to peak detection.

As an alternative representation of LFM signals, Lv’s distribution (LVD)

has been proposed in [96]. Differently from FrFT, LVD is free of searching

and does not introduce any non-physical attribute such as the order of rota-

tion angles in FrFT. It introduces a time delay into the time-lag instantaneous

autocorrelation function and rescales the time axis to eliminate the so-called

linearly frequency migration, i.e. each LFM signal is turned into horizontal line

in the TF plane, reducing to a constant chirp in the scaled domain (de-chirping).

Given a multicomponent LFM signal

f(t) =
K−1∑
k=0

fk(t) =
K−1∑
k=0

Ake
i2πωkt+iπγkt

2

,

where ωk and γk respectively denote the centroid frequency and the chirp rate

(CFCR), the continuous-time parametric symmetric instantaneous autocorrela-

tion function (PSIAF) is defined as

Rf (t, τ) = f

(
t+

τ + a

2

)
f ∗
(
t− τ + a

2

)
.

LVD is defined as the 2D FT of the PSIAF after removing the couple of variable

t and τ in the exponential phase — which allows for integration. Indeed, by

direct computation, it follows

Rf (t, τ) =
K−1∑
k=0

A2
k exp [i2πωk(τ + a) + i2πγk (τ + a)t]︸ ︷︷ ︸

t and τ coupled

+
K−2∑
k=0

K−1∑
j=k+1

Rfkfj(t, τ) +Rfjfk(t, τ),

with

Rfkfj(t, τ) = fk

(
t+

τ + a

2

)
f ∗j

(
t− τ + a

2

)
.

The couple is removed by rescaling time axis for each time-lag τ . Formally, a

scaling operator Γ is defined for a generic phase function G as

G(t, τ)
Γ−→ G

(
tn

h(τ + a)
, τ

)
,
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with ah = 1 to guarantee tn = t if τ = 0.

Geometrically, the scaling operation corresponds to a change of variables

which maps lines in the plane Π1(t, τ) into constant lines into Π2(tn, τ). As an

example, if a = h = 1, the change of variable is

t =
tn

τ + 1
,

and a line in Π1 can be parametrized as

τ1(t) = mt+ q;

then, in Π2

τ(tn) = m
tn

τ1(t) + 1
+ q =

m

τ1(t) + 1︸ ︷︷ ︸
m′

tn + q

τ1(tn) = m′tn + q = m
t

τ + 1
+ q.

The application of the scaling to the PSIAF then gives

Γ(Rf (t, τ)) =
K−1∑
k=0

A2
ke
i2πωk(τ+a)+i2πγktn +

K−2∑
k=0

K−1∑
j=k+1

Γ(Rfkfj(t, τ) +Rfjfk(t, τ)).

Finally, LVD is obtained by computing 2D FT, i.e.

Lf (ω, γ) = Fτ (FtnΓ(Rf (t, τ))) =
K−1∑
k=0

Lfk(ω, γ)︸ ︷︷ ︸
auto terms

+
K−2∑
k=0

K−1∑
j=k+1

Lfkfj︸ ︷︷ ︸
cross terms

(ω, γ).

LVD can also be interpreted as the FT of the scaled WV with respect to time-

lag τ or the FT of the scaled ambiguity function with respect to the scaled time

tn.

By direct computation, it is possible to prove that the auto terms can be

written as

Lfk(ω, γ) = A2
ke
i2πωkaδ

(
γ − γk

h

)
δ(ω − ωk),

thus they peak in CFCR if h = 1. In addition, it is possible to prove that

Lf →
∑K−1

k=0 δ
(
γ − γk

h

)
δ(ω − ωk) while the signal time duration T goes to

infinity.
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Explicit expressions of the cross terms are also provided in [96]. As expected,

cross terms present cosine oscillations depending on CFCRs. LVD allows for

relative suppression of cross-terms, in the sense that it greatly strengthens the

energy of auto terms, so that the energy of cross-terms becomes negligible.

Parameters a and h are both set equal to 1 if Nall ≥ + 1
Ts

, where Nall is

the signal length, Ts is the sampling interval and N is the given number if

time sampling points of PSIAF. In the case of a short-time signal, i.e. the

total sampling time is very short or the frequency varies quickly with time,

h = 1
(Nall−N)Ts

. This results in a loss in terms of resolution of the chirp rate as

h < 1. Complexity and properties of LVD (coming from FT properties) can be

also found in [96].

LVD pros. It significantly improves WV resolution and it is based on a theo-

retical analysis.

LVD cons. LVD does not apply to non-linear frequency modulations.

1.4.2.7 Separation of sinusoidally modulated signals

A sinusoidally frequency modulated signal f(t) can be written as

f(t) = Aei
Am
ωm

sin(2πωmt+θm) (1.40)

and its IF is ω(t) = 2πAm cos(2πωmt+ θm).

These signals appear in radars and communications. In [83], sinusoidally

FM signals are detected by the inverse RT (IRT). The key idea of the paper

is that RT of a delta function is a sinusoid and then the IRT of a sinusoid

is a delta function. Therefore, a sinusoidally FM signal can be detected by

simply applying the IRT to a TF representation of the signal. In other words,

a sinusoidally FM signal is mapped by IRT into a single point whose expression

in polar coordinates gives exactly the parameters Am and θm in eq.(1.40). The

following procedure is proposed to estimate the modulation parameters Am, θm

and ωm:

1. assume ωm ∈ [ωmin, ωmax];

2. compute a TF representation T (u, ξ) of f(t) (e.g. the spectrogram);

3. consider a set of candidate slopes α uniformly spaced in [2πωmin, 2πωmax];
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4. for each α

(a) introduce coordinate change ϕ = αt and compute the IRT of T
(
ϕ
α
, ξ
)
;

(b) calculate the concentration measure µα of the obtained IRT;

5. detect α̂ providing the higher concentration measure, i.e. α̂ = arg maxα µα;

6. estimate the modulation frequency as ω̂m = α̂/2π;

7. find (xm, ym) in the TF plane providing maxT
(
ϕ
α̂
, ξ
)
;

8. estimate the modulation amplitude as Âm =
√
x2
m + y2

m;

9. estimate the modulation phase as θ̂m = arctan ym
xm

.

The method has been successfully applied to MCS that include one or more

overlapping sinusoidal patterns as well as to non-period patterns embedded in

noise.

Method pros. Based on a theoretical analysis and robust to noise.

Method cons. The procedure involves multi-dimensional searches in the param-

eter space, which are generally time consuming. As a main drawback, it is

limited to sinusoidally modulated signals.

1.4.2.8 Multivariate concept

A new solution in overlapping modes decomposition has been recently proposed

in the context of multivariate and multichannel signals [97]. The latter are

essentially multi-measurements of a specific signal, which are now available as

a result of new developments in the sensor technology. The decomposition

procedure is based on the analysis of signal autocorrelation matrix eigenvalues

and the separation task is pursued by concentration measure minimization (Lp-

norm based measures are adopted). Given a MCS composed of P modes, the

procedure proposed in [97] requires at least S ≥ P measurements (number of

channels/sensors). A larger number of channels is needed in the noisy case. A

discrete multivariate signal can be modelled as [97]

f(n) =


f (1)(n)

...

f (p)(n)

 =


∑P

p=1 α1,pfp(n)eiφ1,p

...∑P
p=1 αS,pfp(n)eiφS,p

 ,
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or equivalently

f(n) =


a11 · · · a1P

...
. . .

...

aS1 · · · aSP



f1(n)

...

fP (n)

 , αm,pe
iφmp = amp.

In matrix form, assuming n = 1 = 1, · · · , N , we can write
f (1)(1) · · · f (1)(N)

...
...

f (S)(1) · · · f (S)(N)

 =


a11 · · · a1P

...
. . .

...

aS1 · · · aSP



f1(1) · · · f1(N)

...
. . .

...

fP (1) · · · fP (N)


and more compactly

Fsensors = A · Fcomponents,

where A = FH
sensors · Fsensors is the autocorrelation matrix of the sensed signal.

Let {qj}, j = 1, ..., P be the orthonormal eigenvectors of A (under the as-

sumption of independent measurements, rg(A) = P ), then the model for a

single component is

fp(n) = η1pq1(n) + · · · ηPpqP (n) , n = 1, · · · , N,

which can be rewritten in vectorial form as

fp = η1pq1 + · · · ηPpqP,

where the coefficients are determined by concentration measure minimization,

i.e.

[η11, · · · , ηP1] = arg min
β1,...,βP

||P g
f (u, ξ)||0,

where P g
f (u, ξ) is the spectrogram of the signal y = β1q1 + · · ·+ βPqP.

Method pros. It is able to separate overlapping components in high noise envi-

ronment, provided a sufficient number of measurements.

Method cons. The procedure requires a large amount of information. In ad-

dition, it is computationally expensive, as it requires the computation of the

spectrogram with respect to (β0, ...βP ) for each step in the minimization.
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Chapter 2

Improving the resolution of

overlapping modes in TF

domain: an iterative approach

Reassignment method (RM) is an effective non-linear technique providing a

sparse TF representation of a FM signal. The resolution limit established by

Heisenberg uncertainty principle is overcome in reassigned representations of a

monocomponent signal as they allow for the localization of IF curve both in

time and frequency. In addition, RM is completely automatic and suitable for

amplitude modulated signals. On the other hand, its applicability is limited

to MCS having separable components. Indeed, the reassigned distribution gen-

erally presents a poor resolution in those regions where the signal components

do overlap, especially in the critical case of crossing modes. Actually, the main

advantage of RM is also its main drawback: the procedure is automatically

and blindly applied to all points of the distribution support, regardless of their

location. On the contrary, RM—as well as all methods designed for separable

modes—could be reasonably adapted to the non-separable case if additional

information is available, for instance if the partition of TF plane into regions of

separability and non-separability would be known in advance. Unfortunately,

the automatic detection of the interference/non-separability region is an open

problem—the latter will be addressed in Chapter 2. However, we will prove

that the information in TF domain can be properly selected so that the in-

terference effects are somehow attenuated. To this aim, a general spectrogram

evolution law will be introduced and discussed and, based on this result, TF
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points weakly separated will be characterized and involved in order to improve

resolution at the interference region. As a result, robust iterative reallocation

techniques are introduced and their convergence is studied and used for guiding

reassignment in the non-separability region. As a result, IFs curves are better

localized in the TF domain and the readability of the reassigned spectrogram is

improved. Being non-parametric, the proposed methods also lead to significant

gain from the computational point of view. The presented results have been

partly published in [98–100].

This chapter consists of three parts: Section 2.1 illustrates the motivations

of the study; Section 2.2 contains some original theoretical results, it introduces

the concept of weak separability, and it presents some practical applications.

Finally, Section 2.3 draws the conclusions of the chapter.

2.1 Motivations

Let us consider a monocomponent FM signal f(t) = a(t) cosφ(t) , t ∈ R and let

Sgf (u, ξ) be its STFT as defined in eq.(1.1). STFT squared modulus is referred

as spectrogram and denoted by P (u, ξ), whose reassigned version as is defined

in eq.(1.24). The latter is obtained by reallocating each point on its local cen-

troid as defined in eq.(1.25), according to the map (u, ξ) 7→ (ûf (u, ξ), ω̂f (u, ξ)),

resulting in a TF representation well concentrated on the ridge curve.

RM effectiveness is guaranteed also for a MCS f(t) =
∑N

k=1 ak(t)e
iφk(t) hav-

ing well separated modes, i.e. signal IFs satisfy the strong separability condition

in Def. 6, i.e.

|φ′k(t)− φ′j(t)| ≥ ∆ω, ∀ k 6= j ∈ {1, ..., N},∀ t ∈ supp{f}.

In this case, it is always possible to select a proper analysis window such

that the local centroids are correctly estimated and then the signal modes are

globally well discriminated in the reassigned spectrogram, as shown in Fig.1.19.

On the contrary, two overlapping modes in TF domain can not be disentangled

by RM, as shown in Fig.2.1(b), that clearly shows the resolution loss at the

non-separability region.

The main reason explaining the non-applicability of RM to overlapping

modes is that ridge points can be highly deviated by the interference between

modes. Precisely, at the non-separability region, the observed position of spec-
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(a) (b)

(c) (d)

Figure 2.1: Two-components signal whose IFs do not satisfy the separability
condition. (a) Spectrogram; (b) Reassigned spectrogram: the non-separability
region is emphasized by the ellipse; (c)-(d) Spectrogram sections at u belong-
ing to the non-separability region. As it can be observed, there are several
frequency points that satisfy the separability condition —i.e., points where sig-
nal spectrogram (solid line) coincides with the spectrogram of one single mode
(dotted line) [98].

trogram maxima points does not coincide with the position of single components

maxima, in general. To better understand this point, let us consider the spec-

trogram of a constant amplitude two-components signal f(t) = f1(t) + f2(t),

i.e.

P (u, ξ) = |Sgf1
(u, ξ)+Sgf2

(u, ξ)|2 = P1(u, ξ)+P2(u, ξ)+2
√
P1P2 cos(φ2(u)−φ1(u)),

(2.1)

where Pi(u, ξ) = |Sgfi(u, ξ)|
2 = s ai(u)2

4
ĝ2(s(ξ − φ′i(u))) i = 1, 2, according to

eq.(1.6). For a fixed u, the single profiles Pi, i = 1, 2 have overlapping sup-
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ports if |φ′1(u) − φ′2(u)| < ∆ω. It means that they interfere with each other.

In addition, their interaction also depends on the cosine term and, in partic-

ular, on its argument φ2(u) − φ1(u). As a consequence, spectrogram is in-

terested by a loss (destructive interference) or an increase (constructive en-

ergy) of energy, with respect to the energy observed at the separability re-

gion — this point will be further discussed later. It follows that, in general

maxξ P (u, ξ) 6= P (u, φ′i(u)), i = 1, 2. As a result, IF curves (u, φ′i(u)) can not

be detected by simply computing spectrogram maxima. The local centroids

definition in RM relies on the assumption that the center of gravity of the dis-

tribution reflects the local IF, i.e. the local maximum, which is certainly true for

monocomponent signals. If the observed maxima are deviated, local centroids

computation is incorrect and TF points belonging to the non-separability are

misallocated. Ridge points deviation also explains why the methods described

in Chapter 1, that derive IF from the knowledge of TFDs peaks, are unreliable

in case of non-separable modes.

Actually, there exist some points lying on the external sides of spectrogram

sections which are considerably less affected by interference and, at the same

time, keep IF information [101], see Fig.2.1(c)-(d). Therefore, it is convenient to

take advantage from those points in order to define a more robust reallocation

technique. As it will be shown in the next section, this goal can be reached

by the introduction of a spectrogram evolution law that allows us to relax the

definition of separability.

2.2 Weak separability

The following proposition provides a model for the spectrogram of a generic

AM-FM signal.

Proposition 2.1. Let f(t) be a MCS as defined in eq.(1.17) and let Sgf (u, ξ) be

its STFT. Then, the spectrogram P (u, ξ) satisfies the following evolution laws

(i) : s2∆u
∂P

∂u
−∆ξ

∂P

∂ξ
= −2sP ·Re

(
Sg
′

f

Sgf

Stgf
Sgf

)
, (2.2)
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where s > 0 is the window length and

∆u(u, ξ) =
Re(Stgf (Sgf )∗)

P (u, ξ)
,

∆ξ(u, ξ) =
Im(Sg

′

f (Sgf )∗)

P (u, ξ)
;

(ii) : s2Im(Stgf (Sgf )∗)
∂

∂u
P (u, ξ) +Re(Sg

′

f (Sgf )∗)
∂

∂ξ
P (u, ξ) = 0. (2.3)

Proof. Proof can be found in Appendix A.

Remark 3. The quantities ∆u and ∆ξ coincide with the shifts applied in RM,

indeed in reference to eq.(1.25)

|ûf (u, ξ)− u| =
∣∣∣<(Stgf

Sgf

)∣∣∣ =
∣∣∣<(Stgf (Sgf )∗

Sgf (Sgf )∗

)∣∣∣ = ∆u,

and similarly |ξ̂f (u, ξ)− ξ| = ∆ξ.

Eq.(2.2) is composed of two diffusion terms and a source term and, because

of its generality, it could result in a powerful tool in MCS analysis. In the special

case of a two-components signal, it is possible to explicit the pde coefficients in

eq.(2.3), as stated below.

Proposition 2.2. Let f(t) = a1(t) cosφ1(t)+a2(t) cosφ2(t) be a two-components

signal and let set ĝi = ĝ(s(ξ−φ′i(u))), where g is the analysis window with length

s > 0, ai = ai(u) and φi = φi(u), i = 1, 2. Then, the spectrogram P (u, ξ) satis-

fies the following evolution law

∂P (u, ξ)

∂u
+ φ′′1

∂P (u, ξ)

∂ξ
− s

2

[
a1a

′
1ĝ

2
1 + a2a

′
2ĝ

2
2 + ĝ1ĝ2 cos ∆φ(a′1a2 + a′2a1)

]
+
s

2
a1a2ĝ1ĝ2 sin ∆φ∆φ′ +

s2

2
∆φ′′ĝ′2

[
a2ĝ

2
2 − a1a2 cos ∆φĝ1

]
= 0 (2.4)

Proof. Proof is in Appendix A.

Remark 4. The evolution law in eq.(2.4) formalizes ridge points deviation de-

scribed in Section 2.1 proving that the curve (u, φ′1(u)) is not the curve of max-

ima, as the spectrogram total differential is non zero.
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Figure 2.2: Spectrogram of a linear chirp; (b) Spectrogram section for increasing
values of time u. The window profile is translated in the direction indicated by
the arrow [100].

Eq.(2.4) consists of two diffusion terms, a source term depending on the

amplitudes’ variation and an interference term due to the interaction between

modes. If a2 = 0, it reduces to the transport equation

Corollary 1. The spectrogram P (u, ξ) of a monocomponent signal f(t) =

a(t) cosφ(t) satisfies

∂P (u, ξ)

∂u
+ φ′′(u)

∂P (u, ξ)

∂ξ
− 2a′(u)

a(u)
P (u, ξ) = 0. (2.5)

Proof. The proof follows by setting a2(u) = 0 in eq.(2.4) and by observing

that s
2
a1a

′
1ĝ

2
1 =

2a′1
a1

s
4
a2

1ĝ
2
1 =

2a′1
a1
P (u, ξ). Finally, set a1(u) = a(u) and φ1(u) =

φ(u), ∀u ∈ supp{f}.

In addition, in case of constant amplitude monocomponent signals the ho-

mogeneous transport equation holds true.

Corollary 2. The spectrogram P (u, ξ) of f(t) = a cosφ(t) satisfies the following

evolution law

∂P (u, ξ)

∂u
+ φ′′(u)

∂P (u, ξ)

∂ξ
= 0. (2.6)

Proof. The proof trivially follows by eq.(2.5) observing that a′(u) = 0.

According to eq.(2.6), the spectrogram of a monocomponent signal having

constant amplitude consists of shifted copies of the window profile, as shown
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in Fig. 2.2. Furthermore, eq.(2.6) allows for a further characterization of ridge

points, as stated in the following

Proposition 2.3. Let f(t) = a cosφ(t) and let assume φ′′(u) 6= 0 ∀u, then the

ridge points (u, φ′(u)) are the solutions of the equation ∂P (u,ξ)
∂ξ

= 0.

Proof. By eq.(2.6), ∂P (u,ξ)
∂u

= −φ′′(u)∂P (u,ξ)
∂ξ

. Since

∂2P (u, ξ)

∂2ξ
|ξ=φ′(u) =

s3

4
a2ĝ′′(0) < 0,

and φ′′(u) 6= 0 ∀u, it follows that ridge points are the maxima points along the

frequency direction.

The following proposition shows the fundamental relation between eq.(2.6)

and IF.

Proposition 2.4. The characteristic curves Cc,φ of the partial differential equa-

tion in eq.(2.6) are

ξ(u) = φ′(u) + c, (2.7)

with c = ξ0 − φ′(u0) and (u0, ξ0) is a point in the TF plane.

Proof. Proof can be found in Appendix A.

As a consequence, the following proposition holds true.

Proposition 2.5. The spectrogram is a constant function along each charac-

teristic curve.

Proof. By eq,(2.6), the total differential of the spectrogram, evaluated at each

characteristic curve, is zero and then the thesis holds true— See eq.(3.52) in

Appendix A.

Prop.2.5 implies that, in the monocomponent case, a simple threshold of

spectrogram provides the characteristic curves, as shown in Fig.2.3. In addi-

tion, Propositions 2.4-2.5 give a new characterization of IF curve as a specific

characteristic curve of eq.(2.6) and state that IF information is available at spe-

cial TF points different from the maxima, i.e. the characteristic curves. Even if

Propositions 2.4-2.5 are formulated for monocomponent signals, they are cru-

cial for MCS analysis. As discussed in Section 2.1, it is not always convenient
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(a) (b)

Figure 2.3: (a) Spectrogram of a linear chirp and (b) its isolevel curves that
coincide with the characteristic curves in eq.(2.7).

to involve spectrogram maxima points for estimating IF, as they can be highly

deviated. Fortunately, Propositions 2.4-2.5 provide the ”good” points to be in-

volved. More precisely, the current study can be generalized to MCS as follows.

The evolution law in eq.(2.4) reduces to eq.(2.6) also if ĝ(s(ξ − φ′2(u))) << 1,

or equivalently ĝ(s(ξ − φ′2(u))) ≈ 0. This happens if the two components are

separated, in the sense specified by the following

Definition 11 (Weakened separability condition (WSC)). Two modes with

IFs φ′1(u) and φ′2(u) are separated at time location u if there exists at least one

curve in Cc1,φ1, i.e., ξ1(u) = φ′1(u) + c1, such that |ξ1(u) − φ′2(u)| ≥ ∆ω; or

viceversa.

Remark 5. It is worth observing that, for example, if ξ < φ′1(u) < φ′2(u),

|φ′1(u) − φ′2(u)| = ε ≤ ∆ω, and ξ ∈ ξ1(u) ∈ Cc1,φ1, then ∃ c1 ∈ R, c1 <

0 such that ξ = φ′1(u) + c1. As a consequence, |ξ − φ′2(u)| = |φ′1(u) + c1 −
φ′2(u)| = | − ε+ c1| ≥ ∆ω ⇔ −c1 ≥ ∆ω − ε.

Definition 11 formally defines those points lying on the external sides of the

spectrogram which are less influenced by interference effects. The latter can be

operatively selected by means of the following proposition.

Proposition 2.6. Let consider f(t) = a1 cosφ1(t) + a2 cosφ2(t) and let P (u, ξ)

be the corresponding spectrogram. Then, TF points (u, ξ) such that the ratio

P (u, ξ)

maxξP (u, ξ)
<<

1

2
, (2.8)
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with high probability satisfy the WSC, as in Definition 11.

Proof. Proof can be found in Appendix A.

Remark 6. Prop.2.6 also implies that for MCS having constant amplitudes, a

proper threshold of the spectrogram provides TF points which are less affected

by interference effects, as depicted in Fig.2.4. For this reason, the definition

of an effective reallocation technique should involve those points, instead of the

maxima, which are deviated with high probability.

(a) (b)

(c) (d)

Figure 2.4: Isolevel curves of the spectrogram in Fig.2.1(a). (a) Characteristic
curves closer to the ridge are highly deviated at the interference region; (b) Lev-
els in [0.0004, 0.0012] identify those characteristic curves less affected by inter-
ference and then better preserving IFs information; (c) Levels in [0.0025, 0.01];
(d) Levels in [0.01, 0.25].

Furthermore, the following proposition holds true.

Proposition 2.7. If ξ1(u) ∈ Cc1,φ1 and if it satisfies the separability condition

with respect to φ′2, as in Definition 11, then ĝ(|ξ1 − φ′2(u)|) << 1.
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Proof. By setting ω = ξ1 − φ′2(u), the proof directly derives from the definition

of window bandwidth, i.e., ĝ(ω) << 1 for |ω| ≥ ∆ω, when applied to the

mode with φ′2(u) as IF.

As a result, the evolution law in eq.(2.4) evaluated on the characteristic

curves satisfying the WSC reduces to eq.(2.6). Actually, as it can be observed

in Fig.2.4(a), not all the characteristic curves are deviated in the same way. In

particular, the very external sides in Fig.2.4(a) correctly reveal IFs curves, i.e.

each TF point detected by thresholding satisfies the WSC. Unfortunately, too

low thresholds are unreliable in case of real signals due to the presence of noise.

However, higher threshold levels also provide characteristic curves sufficiently

weakly separated, as depicted in Fig.2.4(c)-(d).

In case of constant amplitude signals, it is convenient to consider a nor-

malization of the spectrogram instead of the spectrogram, according to the

following

Definition 12. The normalized spectrogram of f(t) =
∑N

k=1 ake
iφk(t) with re-

spect to the i-th mode is defined as

p(u, ξ) =

√
P (u, ξ)

√
s

2
aiĝ(0)

, ∀(u, ξ) ∈ R× R+. (2.9)

Remark 7. It is worth observing that if f(t) = a cosφ(t), then from eq.(1.6) it

follows

p(u, ξ) =

√
P (u, ξ)

P (u, φ′(u))
=
ĝ(s(ξ − φ′(u)))

ĝ(0)
. (2.10)

It is straightforward to prove that the normalized spectrogram p(u, ξ) as in

eq.(2.10) satisfies the evolution law in eq.(2.6) and Prop.2.3, Prop.2.4 and Prop.2.5

also remain true. In addition, p(u, ξ) as in eq.(2.9) satisfies a special case of

eq.(2.4), i.e.

φ′′1
∂p(u, ξ)

∂ξ
+
∂p(u, ξ)

∂u
+

a2

a1ĝ2(0) p(u, ξ)
ĝ1ĝ2 sin(φ2 − φ1) (φ′1 − φ′2)

+
s (φ′′1 − φ′′2) ĝ′2
a2

1ĝ
2(0) p(u, ξ)

[
a2

2ĝ2 + a1a2 cos(φ2 − φ1)ĝ1

]
= 0. (2.11)

As a consequence, Prop.2.6 can be rephrased in terms of normalized spectrogram,

by replacing the condition in eq.(2.8) with p(u, ξ) << 1√
2
. It is worth noticing
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that thresholding p(u, ξ) at level Θ corresponds to select the characteristic curves

at the rate Θ with respect the ridge.

The discussion in Remark 6 can be extended to the normalized spectrogram,

as well. For these reasons, without loss of generality, in the sequel we will

equivalently refer to spectrogram or normalized spectrogram.

The proof of eq.(2.11) can be found in Appendix A.

2.3 Iterative spectrogram reassignment

Some of the theoretical results presented in the previous section have been ap-

plied to define efficient iterative reassignment techniques. The basic idea is to

concentrate spectrogram distribution on the ridge curve iteratively and point-

wise, that is by moving each selected TF point step by step and independently

of the others. Contrary to classical RM, that computes both time and frequency

shifts, the proposed approach considers fixed u and reassigns only in the fre-

quency direction, resulting in a frequency reallocation technique, see Fig.2.5.

This is mainly justified by the characterization of ridge points as maxima along

the frequency direction, provided by Prop.2.3. Furthermore, the procedure is

iterative so that we are able to adapt it to regions of non-separability, as it

will better explained later. The outline of the proposed iterative methods for a

monocomponent signal f(t) = a cosφ(t) can be drawn as follows.

Let us consider a fixed u and ξR = φ′(u) ∈ C0,φ the corresponding ridge

point. A threshold of the spectrogram at level Θ provides two characteristic

curves of eq.(2.6). Since u is fixed, two frequency point ξ+
0 , ξ

−
0 are intercepted,

as shown in Fig.2.6(b). According to a fixed-point scheme M , each point is

then moved as follows

M : ξn+1 = ξn + µ∆n, n ≥ 0, (2.12)

where µ = sign(ξR − ξ0), ∆n = ∆n(g, p(u, ξn)) is a positive frequency shift

only depending on the analysis window and the value of the spectrogram at ξn.

The latter is estimated by the observed data, at each iteration. The sequence

converges to the ridge, i.e. ξn → ξR ∈ C0,φ. For instance, if we consider the

frequency point ξ+
0 in Fig.2.6(c), then µ = −1. As depicted in Fig.2.6(d), at the

first iteration ξ0 moves to ξ1 = ξ0 −∆0, which is closer to the ridge. Then, the
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(a) (b)

Figure 2.5: (a) Spectrogram of a FM signal and ridge curve (dashed line). The
arrows indicate reassignment operators direction. Classic RM is a TF realloca-
tion method, while the proposed one is a frequency reassignment; (b) Classical
RM shifts a point (u, ξ) to its local centroid (û, ξ̂), according to eq.(1.25) (gray
arrow), while the proposed approach moves points only in the frequency direc-
tion (black arrow).

new shift ∆1 is computed and applied to obtain ξ2 = ξ1 −∆1, as in Fig.2.6(e).

The scheme is iterated until ξn approaches C0,φ, i.e. the distance to the ridge is

less than a prefixed tolerance, as shown in Fig.2.6(f).

The reallocation is completed by assigning the value of the spectrogram at

the starting point, i.e. P (u, ξ+
0 ), to the frequency point ξn. Formally, we set

P̂ (u, ξn) = P (u, ξ+
0 ), where P̂ denotes the reassigned spectrogram.

The procedure is repeated on the symmetric point ξ−0 and on each character-

istic curve obtained by a different spectrogram threshold, at the same fixed u.

The value of reassigned spectrogram at frequency ξ is the result of the overall

contributions P (u, ξ′) such that ξ′ has been moved to ξ. More formally,

P̂M(u, ξ) =

∫
R2

P (u, ξ′) δ(ξ′ − ξM(ξ′) dξ′ , (2.13)

where ξM(∗) denotes the point obtained by applying method M using ∗ as

initial point. Finally, the whole algorithm has to be repeated on each u in

the spectrogram support. The result of the method restricted to a specific

characteristic curve is sketched in Fig.2.7.

In the ideal case, the application of the procedure to all TF points, i.e. to

all characteristics, is expected to provide a TF representation perfectly located
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Sketch of the iterative procedure at fixed u . (a) Spectrogram; (b)
Ridge curve C0,φ (dashed line) and characteristic curves obtained by threshold-
ing the spectrogram at level Θ, i.e. the set {(u, ξ) : P (u, ξ) = Θ} (solid line). ξ+

0

belongs to the characteristic curve located above the ridge C0,φ, then it has to
be shifted downwards. (c) ξ0 = ξ+

0 is the starting point that is moved towards
the ridge (d)-(e). The convergence is met (f).
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(a) (b)

(c) (d)

Figure 2.7: Iterative procedure applied to characteristics. (a) Ridge curve C0,φ

(dashed line) and characteristic curves obtained by thresholding the spectro-
gram at level Θ, that is by selecting the set {(u, ξ) : P (u, ξ) = Θ} (solid line).
At each iteration, the characteristic curves are moved towards the ridge (b)-(c).
The convergence is met (d).

on the ridge curve, i.e.

P̂ (u, ξ) = K δ(ξ − φ′(u)),

where K is the energy of the spectrogram profile. It is worth observing that

K = π
2
s a2||g||L2(R) by eq.(1.6).

The methods we are going to present in details in the next section are

all fixed-point procedures, that formally differ accordingly to how the shift

is calculated. The latter also determines the type of convergence and global

effectiveness. In particular, FIRST and Method I are essentially Newton-

like methods with fixed tangent. In the first case, the iterations depend on
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spectrogram value, while the second method depends on spectrogram frequency

derivative. As main advantage, FIRST convergence interval is large, but the

convergence is linear. On the contrary, Method I is a third order method, but

on the other hand it requires functional evaluations, that are computationally

expensive. However, Method II is a predictor-corrector procedure representing

a good trade-off: it is fast, as the convergence is at least quadratic and a large

convergence interval can be achieved by its combination with FIRST.

It is worth pointing out that not all TF points in spectrogram support will

be involved in the procedure. Indeed, according to the discussion provided in

Section 2.2, the characteristic curves satisfying the WSC are less influenced by

interference and then they better preserve original IFs information. Finally, the

convergence properties will be exploited to define a more advanced realloca-

tion technique, namely Improved Method II, which attempts to distinguish

between separable and non-separable TF points. In the latter case a relaxed

scheme is used in order to prevent misallocations. As a result, IFs curves are

better localized also at the interference region.

2.3.1 Fast Iterative and Robust Spectrogram Thinning

(FIRST)

From now on and without loss of generality we set s = 1 in eq.(1.6).

The window function can be used for a direct estimation of the reassignment

shift as in eq.(2.12). By considering the regularity of the window function, for a

fixed u, we can compute the Taylor expansion around the ridge point, i.e.,

P (u, ξ) = P (u, φ′(u)) +
P ′′(u, φ′(u))

2
(ξ − φ′(u))2 + o((ξ − φ′(u))4). (2.14)

By neglecting the error term, we get

(ξ − φ′(u))2 ≈ 2
P (u, ξ)− P (u, φ′(u))

P ′′(u, φ′(u))
(2.15)

and, by multiplying the second member by P (u,φ′(u))
P (u,φ′(u))

, we have

(ξ − φ′(u))2 ≈ 2

(
P (u, ξ)

P (u, φ′(u))
− 1

)
P (u, φ′(u))

P ′′(u, φ′(u))
, (2.16)
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and recalling eq.(2.10), we obtain

|ξ − φ′(u)| ≈

√
2 (p(u, ξ)− 1)

ĝ′′(0)
. (2.17)

It is worth noting that ĝ′′(0) < 0, because the window ĝ is commonly a concave

function and p(u, ξ) =
√

P (u,ξ)
P (u,φ′(u))

≤ 1, so that the square root is well defined.

Based on Taylor approximation, the previous estimation is almost acceptable

whenever ξ approaches φ′(u), while for points far from φ′(u), i.e., P (u,ξ)
P (u,φ′(u))

<< 1,

it does not provide a good approximation of the distance from the ridge.

By setting τn = ξn − φ′(u) we can define the following sequence

τn+1 = τn − sign(τn)∆τn, with (2.18)

∆τn =

√
α [p(u, τn + φ′(u))− 1]

p′′(u, φ′(u))
=

√
α (1− p(u, τn + φ′(u)))

|ĝ′′(0)|
(2.19)

that directly derives from eqs.(2.16)–(2.17), where α ≤ 2 is a positive real

parameter.

As stated in the following proposition, the sequence τn monotonically con-

verges to 0, i.e., ξn → φ′(u), and then it provides a reassignment method.

Proposition 2.8 (FIRST). Let ĝ(ω) denote the modulus of the FT of a real,

positive and symmetric analysis window and let p(u, ξ) =
√

P (u,ξ)
P (u,φ′(u))

the nor-

malized spectrogram of a monocomponent signal; then, for fixed u the sequence

τn+1 = ϕ(τn), n ≥ 0

where ϕ(τ) = τ − sign(τ)∆τ , with ∆τ =
√

α (1−p(u,τn+φ′(u)))
|ĝ′′(0)| , α ∈ (0, 2] mono-

tonically converges to 0.

Proof. Proof can be found in Appendix A.

Eq.(2.18) defines an iterative spectrogram reassignment, referred as FIRST

[98], whose corresponding reassigned spectrogram is defined as in eq.(2.13),

where ξM(∗) denotes the point obtained by applying FIRST method using ∗ as

initial point. The whole procedure is sketched in Fig.2.8.

Remark 8. The computation of the shift in eq.(2.19) does not require any func-

tional evaluations, as the quantity |ĝ′′(0)| is a priori known and the value of the
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spectrogram is estimated by the data, at each iteration.

For monocomponent signals, FIRST provides comparable results to classical

RM, with a computational gain and a fast convergence, as it will be proved

in the sequel. On the contrary, in case of MCS, it actually overcomes RM

effectiveness because it contributes to reduce the region of incorrectly reassigned

points thanks to the use of the WSC. Only a limited set of points is involved

in the reallocation and each of them is forced to converge to the ridge point

of the mode it belongs to, i.e., the one with a dominant contribution at the

considered location. As a result, reassigned spectrogram resolution is improved

at the non-separability region, as it will be shown in the experimental results.

Input: MCS f(t), α ∈ (0, 2], niter
Output: Reassigned spectrogram p̂(u, ξ)

1 compute the STFT of f and its normalized spectrogram p(u, ξ) as in eq.(2.9)
2 initialize p̂
3 select all (u, ξ) such that p(u, ξ) ∈ [0.1, 0.5]
4 for all selected u do
5 for all selected ξ do
6 set count = 1 and ξ0 = ξ
7 while count ≤ niter do
8 let µ = sign(pξ(u, ξ0))
9 let p = p(u, ξ0)

10 compute the frequency shift ∆τ0 =
√

α(1−p)
|ĝ′′(0) | as in eq.(2.18)

11 set ξ1 = ξ0 − µ∆τ0

12 set ξ0 = ξ1

13 increment count

14 end
15 let ξM (ξ) = ξ1

16 for all selected ξ do
17 reassign contribution, i.e. set p̂(u, ξM (ξ)) = p̂(u, ξM (ξ)) + p(u, ξ)
18 end

19 end

20 end

Figure 2.8: Algorithm implementing reassignment with FIRST.

Even if FIRST is more robust to lack of separability, in the critical case

of crossing modes there exists a region where the WSC in Definition 11 is not

satisfied, either — close to the crossing point— resulting in possible wrong real-

locations. Indeed, at each iteration, the spectrogram value at ξn, P (u, ξn), is not
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computed by using the spectrogram functional model. The value is estimated

by the observed data, instead. As a consequence, the estimated P (u, ξn) does

not correspond to the value of the spectrogram of the single mode—the latter is

unknown whenever the point ξn does not satisfy the WSC. The corresponding

shift is then incorrect. However, the lower P (u, ξn) the higher the shift and

the higher the probability to be far from the interference region. Hence, for

MCS, in correspondence to the non-separability region, a correct reallocation

is expected for the very first iterations while convergence is not assured as n

increases. In order to prevent wrong reallocations and to force the convergence

to the ridge point of each component, we should avoid spectrogram evaluations

at the non-separability region. More precisely, the following argument can be

adopted. The contraction property implies

|τn+1−τn| = |ξn+1−ξn| = |ϕ′(θn)||ξn−ξn−1| = |ϕ′(θn)||τn−τn−1|, θn ∈ [τn−1, τn],

By denoting with K = maxτ |ϕ′(τ)| = max
{

1−
√

αĝ′′(τ̄)
2|ĝ′′(0)| , 1−

√
α
2

}
the

contraction constant of ϕ, we have

|ξn+1 − ξn| ≤ K|ξn − ξn−1|, ∀ n ≥ 1.

As a result, in case of MCS, ∀ n ≥ 1 we can modify eq.(2.18) as follows{
τ1 = τ0 − sign(τ0)∆τ0 n = 0

τn+1 = τn +K(τn − τn−1) n > 0
(2.20)

with τ0 the initial point. The use of K instead of the spectrogram value for

determining the elements of the sequence, except for the first one, can be seen

as a regularization. The shift is corrected so that each point is forced to move

as if it is a point satisfying the separability condition with respect to another

mode, resulting in a more accurate reallocation on the ridge curve—as it will

be shown in the experimental results. The reallocation method as in eq.(2.20)

is referred as FIRST K [98].

Even if K characterizes the analysis window (τ̄ satisfies eq.(3.59)), its com-

putation could be not trivial, as non-linear iterative methods should be required.

Since the closer τn to 0 the more |ϕ′(θn)| ≈ |ϕ′(0)| = 1 −
√

α
2
, a more simple
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reassignment scheme can be performed by simply setting K = 1−
√

α
2
, i.e.{

τ1 = τ0 − sign(τ0)∆τ0, n = 0

τn+1 = τn +
(
1−

√
α
2

)
· (τn − τn−1), n > 0

(2.21)

with τ0 the initial point, and applying the first few iterations.

2.3.2 Improved iterative reassignment

FIRST can be combined with a faster method, resulting in a more robust real-

location technique, as discussed in details in the sequel.

According to Prop.2.3, for each fixed u, the ridge point is the solution of

the non-linear equation ∂p(u,ξ)
∂ξ

= 0, that can be numerically solved by Newton

method, as stated in the following

Proposition 2.9 (Method I). Let f(t) = a cosφ(t) and let p(u, ξ) be its nor-

malized spectrogram as in eq.(2.9). Assuming φ′′(u) 6= 0 ∀u, let us define

pξ(ξ) := ∂p(u,ξ)
∂ξ

, with u fixed. Then, the iterative method

ξk+1 = ξk −
pξ(ξk)

ĝ′′ (0)
, k ≥ 0 (2.22)

(i) converges to ξR = φ′(u) for all ξ0 s.t.

0 <
ĝ′′(ξ0 − ξR)

ĝ′′(0)
< 2; (2.23)

(ii) is a third order method, with convergence constant equal to 1
6

∣∣∣ ĝ(4)(0)

ĝ(2)(0)

∣∣∣.
Proof. Proof is in Appendix A.

The method in Prop.2.9 will be denoted as Method I in the sequel.

As a corollary, in the gaussian case, it holds the following

Proposition 2.10. Let g(t) = 1√
2πσ2

e−
1
2
t2

σ2 be the analysis window, then Method

I monotonically converges to the ridge point ξR = φ′(u) ∀ξ0 : |ξ0 − ξR| < 1/σ.

Proof. If g is a gaussian window, ξ̄ ∈ arg maxξ |ĝ′′(ξ − ξR)| ⇔ ξ̄ = ξR and

ĝ′′(ξ − ξR) < 0⇔ |ξ − ξR| < 1/σ. Hence, 0 < ĝ′′(ξ−ξR)
ĝ′′(0)

< 1∀ ξ : |ξ − ξR| < 1/σ,

i.e. the convergence is monotone.
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Method I is a third order method but the convergence is guaranteed only

for an initial point ξ0 satisfying condition in eq.(2.23), i.e. ”close” to the ridge.

Once again, even if the proposed method is defined for monocomponent signals,

the final goal is to apply it to MCS satisfying the WSC. For this reason, in

order to involve points in spectrogram support less affected by interference, few

iterations of a slower but convergent method having a larger convergence region

can be applied, so that the constraint in eq.(2.23) is satisfied. For instance,

the linear method FIRST in Prop.2.8 can be adopted. For a gaussian analysis

window g(t) = 1√
2πσ2

e−
1
2
t2

σ2 and setting α = 1 in eq.(2.19), it holds

Proposition 2.11. The sequence

ξk+1 = ξk + sign(pξ(ξk))
1

σ

√
1− p(ξk), k ≥ 0 (2.24)

linearly and monotonically converges to the ridge point ξR = φ′(u), with u fixed,

∀ξ0 : |ξ0− ξR| ≤ 2
σ

. Moreover, ξ1 belongs to the convergence region of Method I.

Proof. Proof is in Appendix A.

Method I implementation is sketched in Fig.2.9.

Even though Method I is fast, it requires the evaluation of spectrogram

derivatives, that is unreliable in case of non-separable modes, as it depends on

the unknown IFs. As expected, the experimental results will show that a direct

estimation of the derivatives in the interfering case leads to significant numeri-

cal instabilities and wrong reallocations. This happens because the value of the

spectrogram at the non-separability region does not correspond to the spectro-

gram of a single mode and the same holds true for its derivatives. A method

not requiring functional evaluations is considerably convenient in order to both

promote accuracy and to gain from the computational point of view. For this

reason, by neglecting the error introduced by Taylor approximation, the forward

finite differences is considered for pξ(ξ) estimation, i.e. pξ(ξ) = p(ξ+h)−p(ξ)
h

and

the following iterative procedure, referred as Method II, is proposed.

Proposition 2.12 (Method II). Let us consider f(t) = a cosφ(t) and its nor-

malized spectrogram p(u, ξ), as in eq.(2.9). In addition, let us consider ξ0 s.t.

ĝ′′(ξ0 − ξR) < 0, with ξR := φ′(u), and let define ϕ(ξ) = ξ + sign(pξ(ξ))
√

1−p(ξ)
|ĝ′′(0)|
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and the sequence

ξk+1 = ξk + α sign(pξ(ξk))

√
p(ϕ(ξk))− p(ξk)

|ĝ′′(0)|
, k ≥ 0, (2.25)

with α ∈ (0, 2
√

1− ϕ′2(τ)), τ ∈ (ξ0, ϕ(ξ0)). Then the sequence {ξk}k converges

to the ridge point ξR.

Moreover, if α =
(

1√
2
− 1

4

)− 1
2

the convergence is at least quadratic.

Proof. Proof can be found in Appendix A.

Method II is a predictor-corrector method only involving the function p while

preserving fast convergence to ξR. Since Method I and II share the same con-

vergence interval, even in this case, it is convenient to first apply few iterations

of the linear method FIRST in eq.(2.24).

Method I and II consist of reassignment methods as, for each fixed u, they

converge to the ridge point ξR = φ′(u). The reassigned spectrogram is formally

given by eq.(2.13), where M is the adopted iterative method and ξM(∗) denotes

the point obtained applying M using ∗ as initial point. It is worth observing

that FIRST , Method I and II have the advantage to be pointwise, i.e. each point

is moved independently of the others. Furthermore, Method II does not require

any functional evaluation, resulting computationally advantageous and effective

also in the non-separability region, as it will be shown in the experimental

results.

2.3.2.1 Sensitivity to initial point in the non-separable case

Because of the lack of separability in the sense of Definition 11, the frequency

shift given by Method II will be not accurate. More in details, given an initial

point ξ0, Method II consists of first computing ω1 = ϕ(ξ0) and then ξ1 = ξ0 +
αsign(pξ(ξ0))√

|ĝ′′(0)|

√
p(ω1)− p(ξ0). If the initial data is corrupted by interference, i.e.

the observed spectrogram value is p̃(ξ0) = p(ξ0) + ε0, then, the method will pro-

duce the perturbed points ω̃1 = ω1 +δ1 and ξ̃1 = ξ0 +
αsign(pξ(ξ0))√

|ĝ′′(0)|

√
p̃(ω̃1)− p̃(ξ0).

Let set ε1 = p̃(ω̃1)− p(ω̃1), then the following proposition provides a bound for

the global error |ξ̃1 − ξ1|.

Proposition 2.13. Let consider a fixed u and let define p(ξ) := p(u, ξ) the nor-

malized spectrogram of the two-components signal f(t) = a1 cosφ1(t)+a2 cosφ2(t),
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as in eq.(2.9). The error in the first iteration of Method II satisfies

|ξ̃1 − ξ1| ≤
α2

|ĝ′′(0)|
|δ1p

′(τ1) + ε1 − ε0|
2|ξ1 − ξ0|

, (2.26)

where ξ0 is the initial point, ε0 denotes the initial error on the data, τ1 ∈
(ϕ(ξ0), ϕ(ξ0) + δ1), |δ1| < ε0

∆ω
and |ε1| ≤ a2

a1
(1 + |φ′2(u)− φ′1(u)| ·maxξ |ĝ′(ξ)|).

Proof. Proof can be found in Appendix A.

It is important to notice that the error |ξ̃1− ξ1| in eq.(2.26) can be zero even

if ε0, ε1, and δ1 are non zero, since the quantity δ1p
′(τ1) + ε1− ε0 can sum up to

zero. It means that, in principle, it is possible to achieve a compensation of the

single errors and then a reduction of interference effects.

Convergence properties can be exploited in order to make Method II more

stable in the non-separability region. More precisely, FIRST method in eq.(2.24)

applied to points belonging to the separability region is expected to converge

linearly and provide a growing sequence p(ξk). In other words, if ξ0, ξ1 and ξ2

respectively denote the initial point and the first two elements of the sequence in

eq.(2.24), we expect p(ξ2) > p(ξ1) > p(ξ0) and |ξ2−ξ1||ξ1−ξ0| < C, where C is a constant

depending on the convergence constant of the linear method in Prop.2.11. A

different behaviour proves that the initial point belongs to the non-separability

region. In this case, spectrogram values can be highly affected by interference

and one iteration of Method II could result less precise. Hence, for the same

reason leading to eq.(2.21), the adoption of a relaxed version of eq.(2.24) can

be more efficient, i.e.

ξk+1 = ξk + sign(pξ(ξk))

(
1− 1√

2

)
1

σ

√
1− p(ξk), k ≥ 0. (2.27)

The procedure described above will be referred as Improved Method II, whose

implementation is sketched in Fig.2.10. As it will be shown in the experimental

results, even in this case one iteration is sufficient to accurately recover IFs

curves.

2.3.3 Computational Complexity

This section provides the number of operations per pixel required by the reas-

signment methods FIRST K and Method II, presented in the previous sections.
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Input: MCS f(t)
Output: Reassigned spectrogram p̂(u, ξ)

1 compute the STFT and the normalized spectrogram p as in eq.(2.9)
2 initialize p̂
3 select all (u, ξ) such that p(u, ξ) ∈ [0.2, 0.5]
4 set niter = 9;
5 for all selected u do
6 for all selected ξ do
7 compute 1 iteration of the method in eq.(2.24)→ ξ0 ;
8 compute niter iterations according to eq.(2.22) and using ξ0 as initial

point→ ξ̄ ;
9 end

10 let ξM (ξ) = ξ̄
11 for all selected ξ do
12 reallocate ξ to ξM (ξ), i.e. set p̂(u, ξM (ξ)) = p̂(u, ξM (ξ)) + p(u, ξ)
13 end

14 end

Figure 2.9: Pseudocode of the algorithm implementing Method I.

Only multiplications, divisions, and comparisons will be considered. The esti-

mated complexity is then compared with the one required by the standard RM

in [59]. To this aim we will focus on the number of operations required by the

computation of the centroid for each TF point in eq.(1.25), as it represents the

actual difference with respect to the standard method. Let us consider eq.(2.20)

(FIRST K).

L denotes the signal length, L × F is the TF dimension of the STFT, N

is the number of adopted iterations, p(u, ξ) the normalized spectrogram as in

eq.(2.9) and we consider the sets

Ω =
⋃

0.1≤Θ≤0.5

ΩΘ, with ΩΘ = {(u, ξ) : ξ = argminξ (p(u, ξ) = Θ)} (2.28)

and

Ω′ =
⋃

0.2≤Θ≤0.5

ΩΘ, with ΩΘ = {(u, ξ) : ξ = argminξ (p(u, ξ) = Θ)} ⊂ Ω.

(2.29)

According to this notation, the following proposition holds true.

Proposition 2.14. FIRST K and Improved Method II are computationally
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Input: MCS f(t)
Output: Reassigned spectrogram p̂(u, ξ)

1 compute the STFT and the normalized spectrogram p as in eq.(2.9)
2 initialize p̂
3 select all (u, ξ) such that p(u, ξ) ∈ [0.2, 0.5]
4 for all selected u do
5 for all selected ξ do
6 set µ = sign(pξ(ξ));
7 set ξ0 = ξ;
8 compute 2 iterations of the method in eq.(2.24) → ξ1, ξ2;
9 set ∆ξ = |ξ1 − ξ| and ∆ξ2 = |ξ2 − ξ1|;

10 if NOT((p(ξ1) > p(ξ)) & ((p(ξ2) > p(ξ1)) & (∆ξ2/∆ξ < C))
11 compute 2 iterations of eq.(2.27) using ξ0 as initial point → ξ̄;
12 else
13 compute 1 iteration of the method in eq.(2.25) using ξ1 as inital

point → ξ̄;
14 end

15 end
16 let ξM (ξ) = ξ̄
17 for all selected ξ do
18 reallocate ξ to ξM (ξ), i.e. set p̂(u, ξM (ξ)) = p̂(u, ξM (ξ)) + p(u, ξ)
19 end

20 end

Figure 2.10: Pseudocode of the algorithm implementing improved Method II.

more convenient than RM if

|Ω|
F

<
5 + 3log2(F )

N + β
L. (2.30)

Proof. The estimation of the frequency shifts using FIRST K requires:

• the computation of one STFT, i.e., (2F log2(F )+F ) for each signal sample;

• F log2(F ) comparisons of each u for the construction of the set Ω;

• 1 multiplication for each iteration and each point in the TF domain be-

longing to the set Ω and 1 square root for the first iteration.

Hence, FIRST K requires Cproposed = |Ω|N + |Ω|β + (2 F log2(F ) + F )L +

L F log2(F ) operations, where β is the number of operations required for the

computation of the square root.

In RM, the estimation of the centroids requires:
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• 2 multiplications and 1 division for each equation in eq.(1.25) each point

in the TF domain;

• the computation of three STFTs, i.e., 3(2 F log2(F ) + F ) for each signal

sample.

Hence, the standard reassignment requires Cstdreass = 3LF +3(2F log2(F )+

F )L operations.

As a result, FIRST K is computationally advantageous with respect to RM

if

|Ω|N + |Ω|β + (2Flog2(F ) + F )L+ LFlog2(F ) < 3LF + 3(2Flog2(F ) + F )L.

By dividing both members by LF , we get the relation in terms of operations

per pixel (spectrogram image), i.e.,

(N + β)|Ω|
LF

+ (3log2(F ) + 1) < 3 + 3(2log2(F ) + 1),

and then eq.(2.30) holds true.

With regard to Improved Method II, the computation of the frequency shift

requires

• the computation of one STFT, i.e., (2F log2(F )+F ) for each signal sample;

• F log2(F ) comparisons of each u for the construction of the set Ω′;

• two iterations of FIRST in eq.(2.24), i.e. 2 multiplications for each point

in the TF domain belonging to the set Ω′ and 2 square roots

• 1 division and three comparisons to check the sequence behaviour for each

point in Ω′

• two iterations of FIRST in eq.(2.27) or 1 iteration according to eq.(2.25),

that in both cases require 2 multiplications and 2 square roots for each TF

point in Ω′

Therefore, the improved Method II requires

Cimproved = 5|Ω′|+ 4|Ω′|β + (2 F log2(F ) + F )L+ L F log2(F )
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operations, where β is the number of operations required for the computation of

the square root. By observing |Ω′| ≤ |Ω|, the same argument used for FIRST K

implies that Improved Method II is computationally advantageous with respect

to RM.

It is worth observing that |Ω| ≤ |∆ω| ≤ F , where |∆ω| is the support of the

analysis window in the frequency domain. By replacing in eq(2.30), it turns out

that FIRST K and Improved Method II are computationally convenient if

5 + 3log2(F )

N + β
L > 1⇔ (N + β) < (5 + 3log2(F ))L. (2.31)

Remark 9. By considering that F ≤ L, β = 16 and N ≤ 4, eq.(2.31) always

holds for non-trivial signal lengths. In addition, (N + β) << (5 + 3log2(F ))L,

for L ≥ 512, which represents a standard signal length.

2.3.4 Experimental results

The iterative reassignment methods presented in this chapter have been tested

on several synthetic MCS signals having different IF functions. In particular,

chirp signals having polynomial phases have been considered, as they well model

many real-life signals, such as radar signals with Doppler modulation that are

used to reveal information concerning human motion in video surveillance. For

instance, the problem of human gait classification is addressed in [11], where

the motion of a single target (human or object to detect/track) is captured by

a Doppler radar. The received signal is modelled as

r(t) = A cos

(
2πf

(
t− 2R(t)

c

))
,

where A and f respectively denote a reflection and a frequency coefficient, c is

the speed of light and R(t) is the position of the moving target with respect to

the receiver. In this context, IF represents the velocity of the moving target. In

a more realistic scenario, multiple targets can be present in a scene, i.e. a MCS

has to be analyzed, and separation of the signal components is necessary, as in

[10].
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Linear combinations of the following modes have been considered

g1(t) = cos
(
n
π

3
(t− 1)2 + 300(t− 1)

)
, g2(t) = cos

(
n
π

3
0.49(t− 1)3 + 500(t− 1)

)
,

t ∈ [0, 2],

g3(t) = cos
(
n
π

3
t2 + πt+ 5

)
, g4(t) = cos

(
n

0.7π

3
(1− t)3

)
, t ∈ [0, 1]

f1(t) = sin (nπ0.6808t) , f2(t) = sin
(
nπ

π

4
(1− t)2

)
, t ∈ [0, 1]

f3(t) = cos
(
n
π

3
(1− t)3

)
, f4(t) = sin

(
n
π

3
(1− t)2

)
, t ∈ [0, 1], (2.32)

where n = 512 and 1
n

is the sampling frequency.

A gaussian window function with length s = 44 and σ = s−1
10π

has been

used for STFT computation in all tests. The results have been directly com-

pared to standard RM to appreciate and evaluate the step forward provided

by the proposed approach in terms of improved spectrogram readability and

computational gain.

FIRST. In all tests, TF points belonging to the set Ω defined in eq.(2.28)

and depicted in Fig.2.4(d) have been considered—the left bound is aimed at

preventing eventual distortions due to numerical approximations in the compu-

tation of the spectrogram; the right bound has been fixed to meet the condition

in eq.(2.8).

The first test is oriented to evaluate the reassignment result in the case of a

two components signal g3 + g4 defined in eq.(2.32) and shown in Fig.2.1, where

only points satisfying condition in eq.(2.8) are considered. Results are shown

in Fig.2.11. As it can be observed, the two results are the same whenever the

two modes satisfy the separability condition; on the contrary, in the interference

region, the selection of a reduced number of points, i.e., the ones satisfying the

WSC in Definition 11, allows for a considerable reduction of the region where

RM fails in the separation of the two modes.

The second test aims at evaluating the reassigned distribution obtained us-

ing FIRST. Figs.2.12 and 2.13 depict the results for the signals g1 + g2 and

g3 + g4 defined in eq.(2.32). Reassignment results using an increasing number

of iterations have been shown using α = 2. As it can be observed, the method

approaches the solution after very few iterations. The same figures show reas-

signed distributions obtained by applying two iterations of FIRST, where the

value of the normalized spectrogram p is used at each iteration. As it can be
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(a) (b)

Figure 2.11: (a) Reassigned spectrogram of the two-components signal in
Fig.2.1(a) using the standard RM, i.e. the algorithm computing TF shifts ac-
cording to eq.(1.25); (b) Reassigned spectrogram of the same signal: only TF
points in Ω, as in eq.(2.28) have been considered—the not reassigned region
reduces of nearly 30% [98].

observed, FIRST has a fast convergence to the ridge curve in correspondence to

separable regions; in addition, the method is able to reassign correctly even in

the interference region, except for a small region close to the intersection point,

i.e., the one where the weak separability condition is not satisfied. The same

considerations are valid whenever FIRST K is used. In this case, one iteration

allows us to reach the final solution and to provide better results in the inter-

ference region and for points very close to modes intersection. Even though

reassignment is not correct for these points, estimated reassignment locations

are closer to the correct ones with respect to the ones provided by FIRST.

The main reason is the fact that FIRST K is not influenced by incorrect spec-

trogram values since it does not employ those values except for the initial point.

It is also worth observing that FIRST K is less accurate than FIRST in corre-

spondence to interference region since the sequence in eq.(2.20) converges but

its limit is not the ridge point of the signal mode. Results do not change if

FIRST K is used by setting K = 1− 1√
2
, independently of the adopted analysis

window. However, in this case the sequence converges to a point which can be

closer to the ridge point.

Fig.2.14 shows reassignment results provided by the proposed iterative pro-

cedure for the spectrogram in Fig.2.12(a) and 2.13(a) where the number of

iterations N has been adaptively estimated for value of p(u, ξ) and requiring
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: Well separated components. (a) Spectrogram; (b) Standard reas-
signed spectrogram; (c) Reassigned spectrogram using 4 iterations of FIRST;
(d) Reassigned spectrogram using two iterations of FIRST; (e) Reassigned spec-
trogram using one iteration of FIRST K; (f) Reassigned spectrogram using two
iterations of FIRST K with K = 1 − 1√

2
. Reassignment results provided by

the proposed method are equivalent to the standard reassignment one since the
separability condition is satisfied [98].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Non-separable components. (a) Spectrogram; (b) Standard reas-
signed spectrogram; (c) Reassigned spectrogram using 4 iterations of FIRST—
the region of incorrect or missing reassignment is smaller than the one of
standard reassignment (about 50%); (d) Reassigned spectrogram using two it-
erations of FIRST—reassignment result does not change within the adopted
frequency sampling step; (e) Reassigned spectrogram using one iteration of
FIRST K—reassignment result is comparable to the one in (c,d); (f) Reassigned
spectrogram using two iterations of FIRST K with K = 1− 1√

2
—reassignment

result is comparable to the one in (d,e) [98].
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(a) (b)

(c) (d)

Figure 2.14: (a) Reassigned spectrogram referred to Fig.2.12(a) using FIRST,
where the number of iterations depends on the value of the spectrogram at the
initial point; (b) Reassigned spectrogram of the same signal using FIRST K;
(c) Reassigned spectrogram referred to Fig.2.13(a) using FIRST, where the
number of iterations depends on the value of the spectrogram at the initial
point; (d) Reassigned spectrogram of the same signal using FIRST K. As it can
be observed, except for the central part, points in the interference regions are
correctly reassigned even by FIRST K, which is a less refined iterative method
[98].
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(a) (b)

(c) (d)

Figure 2.15: (a) Convergence of the sequence τn for the spectrogram in
Fig.2.12(a): τ0: Θ = 0.10; (b) Convergence of the sequence τn for the spec-
trogram in Fig.2.13(a): τ0: Θ = 0.10. For fixed u, all points satisfy WSC
as in Definition 11—FIRST K converges to a point close to the ridge; FIRST
correctly converges to the ridge; (c) Convergence of the sequence τn for the
spectrogram in Fig.2.12(a): τ0: Θ = 0.50; (d) Convergence of the sequence τn
for the signal in Fig.2.13(a): τ0: Θ = 0.50. For a fixed u, not all points satisfy
the separability condition as in Definition 11. In this case, FIRST does not
converge to the ridge since Q(u, ξn) values are not correct in the interference
region; on the contrary, FIRST K still converges close to the ridge as it does
not depend on values in the interference region, except for the initial point [98].
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a tolerance ε corresponding to the discretization step of the frequency axis

adopted in the numerical computation of the STFT, i.e., N =

⌈
log
(

(1−K)ε
∆τ1

)
log(K)

⌉
. As

it can be observed, the use of a different number of iterations for points with a

different spectrogram value, allows us to correctly reassign points outside and

inside the interference region. The same figure shows the reassignment result

which has been obtained using one iteration of the sequence in eq.(2.20); re-

sults are almost equivalent, making FIRST K a robust and computable version

of FIRST in the case of lack of both weak and strong separability condition.

Fig.2.15 depicts the convergence rate for two different points in the spectro-

gram (Θ = 0.10 and Θ = 0.50—see eq. (2.28)). As it can be observed, for the

signal with two separated modes, the proposed method is able to correctly reas-

sign each point since the value of the spectrogram at τ0 is exact. For the signal

with two non-separated modes, the convergence is slightly altered (especially

for points closer to the ridge, i.e., the ones for which the separability condition

does not hold). It is due to the error on the spectrogram value caused by the

interference of the two modes. In this case, FIRST K provides a more robust

solution since it only depends on the analysis window while it does not depend

on the value of the spectrogram except for the initial point.

Finally, it is worth underlying that FIRST K is more computationally effi-

cient than the standard reassignment as it just requires the computation of one

spectrogram; in addition, for points with the same spectrogram value, the se-

quence τn in eq.(2.20) is the same—this allows us to drastically reduce the

number of operations and the computing time.

Improved iterative reassignment. TF points belonging to the set Ω′

defined in eq.(2.28), with Θ ∈ [0.2, 0.5], have been employed for Method I

and II application. The lower bound of Ω′ is chosen to meet the convergence

condition of the methods. It is worth observing that, for a gaussian analysis

window with variance σ2, eq.(2.23) holds true ∀ ξ : |ξ − ξR| < 1/σ, i.e. p > 0.6.

The latter represents a criterion for the selection of the initial point ξ0 and it

also allows us to determine the number of iterations that guarantees a prefixed

accuracy ε > 0 [102], i.e.

j =

⌈
log(2(1−Q)ε

σ
)

log(Q)

⌉
, where Q = 1− p(ξ).

In the numerical tests ε has been fixed equal to the discretization frequency
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step, i.e. 0.041, so that j = 9. Results are compared to the standard reassigned

spectrogram given by RM in [59].

Figs. 2.16–2.18 show that standard RM and Method I give equivalent results

if applied to monocomponent signal, as well as to MCS in regions where the

separability condition holds.

For MCS, (Figs.2.17–2.18), TF points at the interference region are misallo-

cated by both methods: RM is subjected to the limitation of window sensitivity,

while Method I strongly depends on spectrogram values, which can be highly

deviated due to interference. Nevertheless, Method I is able to separate the

single components for a larger set of points, as proven in Figs.2.17(e)-(f). The

eventual oscillations at the beginning (or at the end) of TF representation are

due to boundary effects in STFT numerical computation.

Figs.2.19–2.25 refer to Method II. We further stress that it does not require

any functional evaluations, expect for the sign of spectrogram derivative. In

order to prevent numerical instabilities, the latter is assumed to be constant and

equal to the one of the point to be reassigned. The initial point ξ0 is selected as

for Method I. As Fig.2.19 shows, whenever the separability condition is satisfied,

convergence to the ridge points is guaranteed after very few iterations. As

expected, results of Method II are comparable to standard RM whenever the

separability condition is satisfied — see Figs.2.20–2.24. Conversely, as depicted

in Fig.2.21(b), Method II successfully reallocates TF points on the two ridge

curves in the non-separability region, although some numerical and negligible

instabilities. Furthermore, it is important to notice that Method II greatly

improves and corrects the result given by the linear method FIRST K, as shown

in Fig.2.22.

It is worth observing that in case of constructive interference, as in Fig.2.23(b),

reassignment is less accurate, even though better than RM. In fact, in this case

the assumption of derivative with constant sign should be weakened. Finally,

results provided by Method II do not change in case of higher number of signal

components (see Fig.2.24), while Fig.2.25 gives evidence of the robustness to

the analysis window size.

2.3.4.1 Quantitative performance evaluation

The accuracy of Method I and II and the quality of the corresponding reassigned

spectrograms in terms of concentration property are evaluated by means of
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Figure 2.16: (a) Quadratic chirp f3 in eq.(2.32) and spectrogram; (b) Ideal TF
representation perfectly localized on the ridge curve; (c) Standard reassigned
spectrogram; (d) Reassigned spectrogram using Method I; (e) Normalized sec-
tion of the standard reassigned spectrogram in (c) at time u = 150; (f) Nor-
malized section of the reassigned spectrogram in (d) at time u = 150 [100]
.
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Figure 2.17: (a) Sum of the quadratic and the linear chirps in eq.(2.32), f = f3+
f2 and spectrogram; (b) Ideal TF representation perfectly localized on the ridge
curves; (c) Standard reassigned spectrogram. Ridge curves are not disclosed in
the region emphasized by the dashed rectangle; (d) Reassigned spectrogram
using Method I. Ridge curves are separated in the region emphasized by the
dashed rectangle; (e) Normalized section of the standard reassigned spectrogram
in (c) at time u = 210; (f) Normalized section of the reassigned spectrogram in
(d) at time u = 210 [100].
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Figure 2.18: (a) Sum of the quadratic and the linear chirps in eq.(2.32), f =
f3 + f4 and spectrogram; (b) Ideal TF representation perfectly localized on the
ridge curves; (c) Standard reassigned spectrogram; (d) Reassigned spectrogram
using Method I; (e) Normalized section of the standard reassigned spectrogram
in (c) at time u = 260; (f) Normalized section of the reassigned spectrogram in
(d) at time u = 260 [100].
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Figure 2.19: Convergence of Method II in regions where the separability con-
dition, as in Def.6, holds. Characteristic curves at rate p = 0.2, p = 0.5 and
p = 0.6 have been selected. (a) Error; (b) Sequence of rates p(ξn). The error
rapidly goes to zero and the rate of points given by eq.(2.25) reaches one [100].

Normalized Energy (NE) and Earth mover’s distance [4, 103]. NE measures

the sharpness of the representation, while Earth mover’s distance enables to

deliver the accuracy of the localization of the ridges of each single mode. More

precisely, NE is computed as the cumulative sum of the sorted coefficients of the

representation. The faster its growth towards 1, the sharper the representation

[4]. Fig.2.26 depicts NE for the presented experimental results. In all cases,

Method I provides very concentrated representations, while NE of Method II

presents a slower growth with respect to RM in the first part but it reaches the

global energy earlier, especially in case of MCS.

Earth mover’s distance enables to compare two probability measures defined

on the same set, providing the amount of ”work” needed to ”deform” one into

the other [103]. In mathematics, Earth mover’s distance is referred as the

Wasserstein distance (WD) [104] and it is formally defined as follows.

Definition 13. Given a complete and separable metric space (X ,D), the WD

between two probability distributions q1, q2 over X is defined as

W (q1, q2) = inf
γ∈Γ(q1,q2)

∫
Ω

D(x, y)dγ(x, y),

where Γ(q1, q2) is the set of all joint distributions having marginals q1 and q2.

An explicit formula for WD can be derived if X = R with the euclidean
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Figure 2.20: (a) Standard reassigned spectrogram of the quadratic chirp in
Fig.2.16(a); (b) Reassigned spectrogram using Method II; (c) Normalized sec-
tion of the reassigned spectrogram in (a) at time u = 150; (d) Normalized
section of the reassigned spectrogram in (b) at time u = 150 [100].
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Figure 2.21: (a) Standard reassigned spectrogram of the signal f = f3 + f2 in
Fig.2.17(a); (b) Reassigned spectrogram using Improved Method II; (c)-(e) Nor-
malized section of the standard reassigned spectrogram in (a) at time u = 210
(c) and u = 234 (e); (d)-(f) Normalized section of the reassigned spectrogram
in (b) at time u = 210 (d) and u = 234 (f) [100].
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(a) (b)

Figure 2.22: (a) Reassigned spectrogram of the signal f = f3 +f2 in Fig.2.17(a)
given by FIRST; (b) Reassigned spectrogram using Method II.

distance D(x, y) = |x− y|, so that

W (q1, q2) =

∫
R
|Fq1(y)− Fq2(y)|dy, (2.33)

where F∗ denotes the cumulative distribution function of ∗. A comprehensive

discussion concerning WD can be found in [104, 105].

Following the same approach adopted in [103], Earth mover’s distance is

computed by first considering the WD between the considered TF representa-

tion and the ideal one—i.e. the one perfectly localized on the ridge curves—

for each fixed u ∈ [0, U ] and then by taking the mean value over u. Without

loss of generality, let us consider the ideal TF representation of a single mode,

i.e. ρ1 = δ(ξ − φ′(u)) and let denote by ρ2 the reassigned distribution. Then,

the corresponding probability densities are given by

qi(u, ξ) =
ρi(u, ξ)∫ +∞

0
ρi(u, ξ) dξ

, i = 1, 2,

whose cumulative distributions are

Fqi(u, ξ) =

∫ ξ

0

qi(u, ω) dω, i = 1, 2,

so that Earth mover’s distance is computed as

EMD(q1, q2) =
1

U

∫ U

0

∫ +∞

0

|Fq1(u, ξ)− Fq2(u, ξ)| dξ du.
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Figure 2.23: (a) Standard reassigned spectrogram of the signal f = f4 + f3 in
Fig.2.18(a); (b) Reassigned spectrogram using Improved Method II; (c)-(e) Nor-
malized section of the standard reassigned spectrogram in (a) at time u = 234
(c) and u = 260 (e); (d)-(f) Normalized section of the reassigned spectrogram
in (b) at time u = 234 (d) and u = 260 (f) [100].
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Figure 2.24: (a) Superposition of the quadratic, linear and constant chirps
in eq.(2.32), f = f1 + f2 + f3 and spectrogram; (b) Ideal TF representation
perfectly localized on the ridge curves; (c) Standard reassigned spectrogram;
(d) Reassigned spectrogram using Improved Method II [100].
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(a) (b) (c)

Figure 2.25: Results for the signal f = f3 +f2 for different values of the analysis
window dimension s. From top to bottom: s = 38, 42, 46, 50, 58. (a) Spectro-
gram; (b) Standard reassigned spectrogram; (c) Reassigned spectrogram using
Improved Method II [100].
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Both standard [59] and proposed reassigned spectrograms have been considered—

i.e. the ones given by Method I and Improved Method II. Table 2.1 contains

Earth mover’s distance mean values referred to presented reassignment results,

where boundary points are excluded in the computation. In absence of inter-

ference (line 1) or in case of moderate interference (line 2,3), RM gives a TF

representation which is very close to the ideal one. Actually, our goal is to

enhance spectrogram readability whenever the separability condition does not

hold true. That is why Table 2.2 provides Earth mover’s distance mean values

restricted to the non-separability region Ωint. In this case, both Method I and

Improved Method II greatly outperform standard RM. Finally, Table 2.3 refers

to Fig.2.25 and quantifies the robustness to the size of the analysis window.

MCS RM Method I Method II
f3 1.70 1.69 1.94
f3 + f2 5.28 9.02 7.79
f3 + f4 4.90 10.52 6.84
f1 + f2 + f3 38.49 18.29 17.58

Table 2.1: Earth mover’s distance mean values computed with respect to the
ideal reassigned spectrogram.

MCS RM (Ωint) Method I (Ωint) Method II (Ωint)
f3 + f2 10.06 9.51 5.52
f3 + f4 5.68 4.24 4.68
f1 + f2 + f3

(1st region)
66.79 27.03 25.45

f1 + f2 + f3

(2nd region)
74.71 31.05 27.53

Table 2.2: Earth mover’s distance mean values restricted to the non-separability
region Ωint.

2.4 Conclusions

This chapter introduced a TF spectrogram evolution law that applies to generic

AM-FM MCS signals. In the special case of constant amplitude MCS, the latter

allows to formalize the concept of weakened separability between modes. As

a result, we formally characterized TF points which are less affected by inter-

ference with respect to spectrogram maxima and, at the same time, keeping
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Figure 2.26: Normalized energy (NE) as a function of the percentage of coeffi-
cients. Comparison between the TF representations: spectrogram p, standard
reassigned spectrogram p̂, result given by Method I p̂methodI , result given by
Improved Method II p̂methodII . (a) Signal f3 in Fig.2.16(a); (b) Signal f3 + f2 in
Fig.2.17(a); (c) Signal f3 +f4 in Fig.2.18(a); (d) Signal f3 +f2 +f1 in Fig.2.24(a)
[100].

MCS: f3 + f2 RM Method II RM (Ωint) Method II (Ωint)
s=38 6.59 7.76 10.67 6.87
s=42 5.34 7.49 10.30 5.71
s=46 4.99 7.86 9.98 5.04
s=50 4.85 8.89 9.86 5.00
s=58 4.79 11.38 9.14 7.04

Table 2.3: Earth mover’s distance mean values for the standard reassigned
spectrogram and the result given by the proposed method with respect to the
ideal representation, for different values of the analysis window length s. Ωint

denotes the non-separability region.
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IF information. Based on these theoretical results, robust iterative reallocation

techniques have been introduced and extensively discussed, including methods’

convergence, conditioning and complexity. Numerical studies showed that the

proposed approach is convenient with respect to standard RM, as more robust-

ness and sparsity is achieved in the case of MCS with non-separable modes,

especially in regions of the TF plane where the modes strongly interfere. In

addition, the proposed methods proved to be computationally advantageous.

As future perspectives, the presented study could be extended to noisy data

as well as non-constant amplitude modes and, finally, to scalogram reassign-

ment.
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Chapter 3

An energy-based approach for

the separation of overlapping

components

In the literature, methods dealing with overlapping components generally at-

tempt to compensate for the missing information at the non-separability region

essentially by interpolation. Actually, peaks detection and tracking procedures,

such as Viterbi algorithm and ridge path regrouping, recover IF curve by the

optimization of a proper cost function. Adaptive TF distribution-based ap-

proaches also extrapolate the local IF by optimization. On the contrary, the

iterative approach introduced in Chapter 2 is based on the selection of some

”good points” preserving IF information and thus it contributes to reduce the

non-separability region and to improve IF curves readability. Nevertheless, the

effectiveness is limited to the region of weakened separability, in the sense spec-

ified by Definition 11. For crossing modes, the latter can not be satisfied in the

neighborhood of the intersection point. As a result, the reassigned distribution

does not accurately localize IF curve globally. The loss of resolution can be

addressed by changing the usual perspective: instead of recovering the missing

information by the knowledge of the observed peaks (interpolation) or iter-

atively concentrating distribution, the information available should be further

analysed. Actually, this is possible by studying the behaviour of MCS energy, as

it will shown in this chapter. In particular, in Section 3.1 the lack of separability

is addressed by introducing an energy-based approach for MCS analysis. We

will prove that the energy of a constant amplitude MCS is also a MCS, whose
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IFs are differences in pairs of the original IFs. As a result, the STFT of the

energy signal can be used for extracting the original IFs in the non-separability

region. In addition, the introduction of a two-dimensional spectrogram energy

function allows us to define a procedure for the automatic interference region

detection, as it will be discussed in Section 3.2.

Since TF representations alone are not sufficient to fully address the problem

of MCS decomposition, Section 3.3 introduces the combination of spectrogram

and Radon Transform (RT), namely Radon Spectrogram Distribution. The

latter provides a spectrogram multi-level energy and it maps crossing modes

into a domain where components look separated, as it will be explained in

details. Some results presented in this chapter have been published in [106–

108]. Finally, Section 3.4 draws the conclusions of the chapter.

3.1 Energy-based analysis of interference

As extensively discussed in Section 2.1, non-separability between components

could cause a significant deviation of ridge points, resulting in non accurate

reassigned distributions. It is possible to measure the interaction between sig-

nal modes by analysing spectrogram energy in a specific direction, which is

introduced in the following

Definition 14. Given f ∈ L2(R), let Sgf (u, ξ) be its STFT. The spectrogram

integral along frequency is defined as the energy function, i.e.

Eg(u) =

∫ +∞

−∞
|Sgf (u, ξ)|2 dξ. (3.1)

The energy function in Definition 14 is the L2-norm of the STFT profile,

with u varying in time. From now on, we will consider MCS satisfying the

condition specified in the following Definition.

Definition 15. Let f a AM-FM MCS as in eq.(1.17). Let Ωk1k2 ,Ωk3k4 ⊂
R+ × R+ be two non-separability regions, respectively between modes fk1 , fk2

and fk3 , fk4, composing f(t), i.e.

|φ′k1
(u)− φ′k2

(u)| < ∆ω, ∀u ∈ Ωk1k2 and |φ′k3
(u)− φ′k4

(u)| < ∆ω, ∀u ∈ Ωk3k4 .

Then, Ωk1k2 and Ωk3k4 are solvable if Ωk1k2 ∩ Ωk3k4 = ∅.
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(a) (b)

(c) (d)

Figure 3.1: IF curves of non-separable MCS. The interference regions are em-
phasized by dashed rectangles. Solvable case: (a) and (b); Non solvable case:
(c) regions overlap in time, (d) regions overlap in time and frequency.

In other words, interference regions are solvable if they do not have the

same time supports—Fig.3.1 shows some illustrative examples. Under this as-

sumption, the energy function of a MCS has a nice representation, as stated

below.

Proposition 3.1. The energy function Eg(u) of a constant amplitude MCS can

be expressed as

Eg(u) = K(u) +
∑
k 6=j

Ak,j(u) cos θk,j(u), (3.2)

with Ak,j(u) =
ak(u)aj(u)

2

+∞∫
−∞

ĝ(ξ − φ′k(u))ĝ(ξ − φ′j(u)) dξ, (3.3)
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θk,j(u) = φk(u)− φj(u) and K(u) =
π

2

∑
k

a2
k(u)

+∞∫
−∞

g2(t) dt. (3.4)

Proof. Proof can be found in Appendix B.

Figure 3.2: A three-components signal having constant amplitudes and solvable
separability regions. Top): Spectrogram; Bottom) Energy function as defined
in eq.(3.1).

Remark 10. Prop.3.1 states that the shifted energy function fint(u) := Eg(u)−
K(u) is a MCS. Furthermore, its IFs are differences in pairs of the original IFs

and its amplitudes vanish for well separated components. Indeed, according to

Definition 6, let suppose |φ′k1
(u)− φ′k2

(u)| ≥ ∆ω, ∀u, k1, k2 ∈ {1, ..., N}. As a

consequence, ĝ(ξ − φ′k1
(u)) � 1, ∀ ξ : |ξ − φ′k2

(u)| < ∆ω/2, that is the integral
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(a) (b)

Figure 3.3: Dependence of the energy function on the analysis window. (a)
Spectrogram obtained by considering different window sizes; (b) Energy func-
tion as defined in eq.(3.1).
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functions in eq.(3.3) have disjoint supports, resulting in Ak1,k2 ≈ 0. On the

contrary, if the separability condition is not satisfied, then Ak1,k2(u) 6= 0 as the

supports of ĝ(ξ − φ′ki(u)), i = 1, 2 do overlap and then the integral in eq.(3.3)

is non zero. It follows that Eg(u) − K(u) oscillates where modes interfere, as

shown in Fig.3.2, measuring the interaction between modes.

The amplitudes in eq.(3.3) can be expressed in terms of the ambiguity func-

tion of the analysis window.

Proposition 3.2. For each k, j ∈ {1, ...N} let consider the amplitude Ak,j(u)

in eq.(3.3) and let Ag(τ, γ) =
∫ +∞
−∞ ĝ

(
ω + γ

2

)
ĝ
(
ω − γ

2

)
eiτω dω be the ambiguity

function of the analysis window g. Then, it holds

Ak,j(u) =
ak(u)aj(u)

2
Ag
(
0, φ′k(u)− φ′j(u)

)
. (3.5)

Proof. For each fixed u, let consider the change of variable ω = ξ − φ′k(u)+φ′j(u)

2
,

then eq.(3.3) can be rewritten as

Ak,j(u) =
akaj

2

∫ +∞

−∞
ĝ

(
ω +

φ′k(u)− φ′j(u)

2

)
ĝ

(
ω −

φ′k(u)− φ′j(u)

2

)
dω

=
akaj

2
Ag
(
0, φ′k(u)− φ′j(u)

)
.

It is worth observing that, even if Eg(u) depends on the adopted analysis win-

dow, its localization property only depends on the window support. Fig.3.3 de-

picts the energy function of a two-components signal having overlapped modes.

As it can be observed, the non-separability region is identified by Eg(u) oscilla-

tions, while the window length is varying.

The proposition below gives the expression of the amplitude Ak,j in the

gaussian case.

Proposition 3.3. If the STFT is computed with a gaussian window g(t) =
1√

2πσ2
e−

t2

2σ2 , then for each k, j ∈ {1, ...N}, Ak,j(u) in eq.(3.3) can be expressed

as

Ak,j(u) =

√
πak(u)aj(u)

2σ
e−

σ2

4
(φ′k(u)−φ′j(u))2

. (3.6)

Proof. Proof is in Appendix B.
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If f(t) in eq.(1.17) is a constant amplitude MCS, then special properties can

be derived.

Corollary 3. If the amplitudes ak and aj in eq.(1.17) are constant, then Ak,j(u)

is still gaussian.

Proof. The proof straightforwardly follows from eq.(3.6).

Furthermore, if modes have constant amplitudes and they are well separated,

Prop.3.1 implies that spectrogram energy is constant along u and equal to K as

in eq.(3.4), while if two components do interfere, the energy function oscillates

exactly in correspondence to the TF region interested by the overlapping, with

specific IF depending on the original IFs. Locally around the crossing point,

Eg(u) can be larger than K, as in the Fig.3.4(b), or significantly smaller, as it

happens in Fig.3.4(d). Since the cosine sign in eq.(3.2) distinguishes between

the two cases, we consider the following

Definition 16. Let fk and fj be crossing modes at u0, i.e. φ′k(u0) = φ′j(u0) and

let define ∆φk,j = φk(u)−φj(u). Then, the interference is said to be constructive

if cos ∆φk,j(u0) ≥ 0, otherwise it is said to be destructive.

It is important to notice that the destructive case corresponds to the most

critical scenario in existing methods dealing with overlapped modes as the more

the loss of energy, the more the missing information.

Remark 11. The computation of STFT can be avoided and Eg(u) can be un-

derstood as the a localized signal energy, as stated in the following proposition.

Proposition 3.4. The energy function Eg(u) of the signal f as defined in

eq.(1.17) is equivalent to

Eg(u) = 2π

∫ +∞

−∞
|f(t)|2 |g(t− u)|2 dt. (3.7)

Proof. By definition,

Eg(u) =

∫ +∞

−∞
Sf (u, ξ)S

∗
f (u, ξ) dξ =

∫ +∞

−∞
F (f(t)g(t− u)) F∗ (f(t)g(t− u)) dξ,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Example of non-separable MCS. Left) Spectrogram; Right) Energy
function as defined in eq.(3.1). The energy is constructive in (b) and destructive
in (d), while a critical limit case is observed in (f), according to Definition 16.
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Figure 3.5: Example of non-separable MCS. Left) Spectrogram; Right) Energy
function as defined in eq.(3.1).

where F(·) stands for the Fourier transform of (·) and ∗ denotes the conjugate

operator. By applying Parseval theorem [35], it follows

Eg(u) = 2π

∫ +∞

−∞
f(t)g(t− u) f ∗(t)g∗(t− u) dt,

and then eq.(3.7) holds true.
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3.1.1 STFT-based method for the recovery of IFs curves

The signal Eg can be analysed to estimate |∆φ′k,j(u)| = |φ′k(u) − φ′j(u)|, under

the hypothesis of separated interference regions with respect to ξ—see Fig.3.1.

As a preliminary study, the simple case of a FM signal having two components,

f1 and f2, with constant amplitude a = 1 is considered in this section. The

following proposition provides an estimate of the difference between IFs.

Proposition 3.5. Let Sgf (u, ξ) be the STFT of f(t) = cosφ1(t)+cosφ2(t) com-

puted by a gaussian unitary window g(t) = 1√
2πσ2

e−
t2

2σ2 . Set fint(u) = Eg(u)−K
according to eq.(3.2) and let Sgfint(u, ξ) be the corresponding STFT computed

using the same window g. By denoting ∆φ′(u) = φ′2(u)− φ′1(u), it holds

|∆φ′(u)| =

√√√√ln

[(
2<(Sgfint(u, 0))

fint(u)

)− 2
σ2
]
,∀u ∈ supp{fint} :

2<(Sgfint(u, 0))

fint(u)
≤ 1.

(3.8)

Proof. Proof can be found in Appendix B.

The estimate in eq.(3.8) can be used to partially reconstruct IF curves at

the non-separability region. To this aim, let us denote by G the center of mass

of the spectrogram distribution, along the frequency direction, i.e.

G(u) =
1

Eg(u)

+∞∫
−∞

ξ · P (u, ξ) dξ. (3.9)

Intuition suggests that for separable components having comparable ampli-

tudes, spectrogram center of mass lies on the ridge curves center of gravity.

Actually, the latter holds true also for overlapping components, even if ridge

curves can be highly deviated due to interference, as stated in the following

Proposition 3.6. Let us consider a two-components signal f(t) = a1 cosφ1(t)+

a2 cosφ2(t) with a1 = a2. Then the spectrogram center of mass in eq.(3.9) is the

mean of its IFs, i.e.

G(u) =
φ′1(u) + φ′2(u)

2
, ∀u.

Proof. Proof is in Appendix B.
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Remark 12. The combination of Prop.3.5 and Prop.3.6 allows for ridge esti-

mation in the interference region as follows

ξ̄(u) = G(u)± |∆φ
′(u)|
2

. (3.10)

3.1.1.1 Algorithm and some results

Eq.(3.10) can be exploited to partially correct the reassigned spectrogram ob-

tained by the standard procedure in [59]. Given f(t) = cosφ1(t) + cosφ2(t),

the algorithm is described below, taking advantage of the illustrative example

in Figs.3.6-3.7.

Step 1. Compute the STFT with a gaussian window g and the corresponding

spectrogram P (u, ξ)—Fig.3.6(a).

Step 2. Estimate the energy function Eg(u) in eq.(3.1) as the sum along fre-

quencies of the spectrogram.

Step 3. Estimate K in eq.(3.2) as a multiple of the window energy and set

fint(u) = Eg(u)−K—Fig.3.6(c).

Step 4. Estimate the compact interference region Ωint by retaining those points

such that Eg(u) over-exceeds the 10% of its maximum value.

Step 5. Compute the STFT of fint(u)—Fig.3.6(d-e).

Step 6. Compute the ratio in eq.(3.69) and —Fig.3.6(f) and estimate the fre-

quencies ∆φ′(u) according to (3.8)—Fig.3.7(a-b)

Step 7. Compute the center of mass G(u) as in eq.(3.9) and its spline interpo-

lation G̃(u) —Fig.3.7(c-d)

Step 8. Reassign the estimated frequencies according to eq.(3.10) , ∀ u ∈
Ωint—Fig.3.7(f).

Figs.3.6-3.7 show that the energy function Eg(u) localizes the interference be-

tween two crossing modes, as well as its translated version fint. Its analysis

allows to estimate the non-separability region Ωint as in step 4. It is impor-

tant to notice that the spectrogram of fint is very concentrated, as shown in

Figs.3.6(d). Only a section of the real part of the STFT of fint(u) is involved in
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: STFT-based method applied to a two-components signals having
crossing modes. (a) Spectrogram; (b) Reassigned spectrogram; (c) Energy func-
tion in eq.(3.1) and its translated version fint(u) = E(u) − K, according to
eq.(3.2); (d) fint(u) spectrogram; (e) <(Sfint(u, 0)) as in eq.(3.68); (f) Ratio
between the section in (e) and fint in (c) restricted to the detected interference
region Ωint.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: STFT-based method applied to a two-components signals having
crossing modes. (a) Logarithm argument in eq.(3.71); (b) Estimated mean
between φ′1(u) and φ′2(u); (c) True IFs laws and spectrogram center of mass
estimated from the distribution in Fig.3.6(a); (d) Spline approximation of G(u)
at the interference region; (e) Reassigned spectrogram in Fig.3.6(b) zoomed at
the interference region; (f) Result given by the proposed method.
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the procedure (Fig.3.6(e)). As shown in Fig.3.6(f), the ratio between the sec-

tion and fint presents a gaussian profile, according to eq.(3.70). The difference

between IFs is computed according to Prop.3.5, by computing the logarithm of

the quantity depicted in Fig.3.7(a). Then, the spectrogram center of mass is

computed and its spline interpolation is considered to prevent instabilities, as

shown in Fig.3.7(c)-(d). Finally, TF points belonging to the detected interfer-

ence region Ωint are reassigned according to eq.(3.10). The comparison between

Figs.3.7(e) and (d) shows that the presented method significantly improves re-

assigned spectrogram readability at the non-separability region.

Remark 13. It is worth pointing out that the presented procedure is designed

for MCS having quite comparable amplitudes and it has been preliminary applied

only to two-components signals. Further in-depth studies are needed to make the

method suitable for more general signals. Nevertheless, the proposed approach is

a first attempt to recover the ridge curves in the most critical TF region, i.e. the

one close to the intersection point, where the resolution of TF representations

is commonly very poor.

3.1.2 Gaussian interpolation for IFs recovery

Eq.(3) can be exploited to directly estimate IFs in the case of a gaussian analysis

window, without computing the additional STFT required by the method pro-

posed in the previous section. In this section, we only present the idea behind

the approach.

Given two interfering modes fk, fj,

fint(u) = Eg(u)−K = Aj,k(u) cos ∆φk,j(u),

and then

fint(u) = A(u), ∀ u : cos ∆φk,j(u) = 1.

In particular, f ′int(u) = A′k,j(u) cos ∆φk,j(u)−Ak,j(u)[φ′k(u)−φ′j(u)] sin ∆φk,j(u);

hence, if cos ∆φk,j(u) = 1 and |A′k,j(u)| < ε, then |f ′int(u)| < ε. In other words,

some stationary points of fint adjacent to the boundary of the support are ap-

proximately points belonging to the gaussian amplitude Ak,j, as depicted is

Fig.3.8. As a result, Ak,j can be interpolated over some extrema points in or-

der to estimate ∆φ′k,j according to eq.(3). An illustrative and very preliminary
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(a) (b)

(c) (d)

Figure 3.8: A three-components signal having solvable separability regions. (a)
Spectrogram; (b) Energy function as in eq.(3.1); (c) A non-separable region Ωint

regarding the j-th and k-th modes; (d) Absolute value of the signal Eg(u)−K
(solid line). The latter coincides to |Ak,j(u) cos(φk(u)−φj(u))| and the envelope
of its maxima is close to the amplitude Ak,j(u) (dashed line). As stated in
Prop.3.3, since the STFT in (a) is computed by using a gaussian window, Ak,j(u)
still is gaussian.

example is shown in Fig.3.9, where the gaussian amplitude Ak,j has been in-

terpolated after a proper correction of the location of its center. As stated in

Prop.3.6, if a1 = a2 the spectrogram center of mass provides the sum of the

IFs, so that the ridge curve can be completely recovered. Fig.3.9(d) depicts

the corrected reassigned spectrogram at the non-separability region following

the procedure described above. The latter will be better formalized in future

studies.
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(a) (b)

(c) (d)

Figure 3.9: IFs estimation by gaussian interpolation. (a) Spectrogram; (b)
Reassigned spectrogram; (c) Absolute value of the translated energy function
E(u) − K at the non-separability region. The envelope of local maxima (as-
terisks) approximately fit the gaussian amplitude Ak,j(u). In order to correctly
interpolate it, the center should be relocated (o marker); (d) Reassigned spec-
trogram in (b) corrected at the non-separability region.

3.2 Two-dimensional energy for MCS analysis

The prior knowledge of TF regions interested by non-separability is very ad-

vantageous for methods dealing with overlapping MCS. Unfortunately, the au-

tomatic detection of interference region is nowadays an open problem. Another

topic of great interest in FM signal processing is the detection of modes num-

ber, which is an unknown in practical applications as well. The latter problem

is addressed, for instance, by Rényi entropy-based methods [109]. Interference

region detection and modes countability are closely related and not trivially

solvable without specific assumptions. By the analysis presented in Section 3.1,
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it turns out that the spectrogram energy gives major information concerning the

interaction between modes. In particular, in case of a constant amplitude sig-

nal, the energy function Eg(u) is constant in those regions where modes satisfy

the separability condition, while significant oscillations occur at the interfer-

ence region. This observation led to the STFT-based procedure presented in

the previous section for IFs recovering. The goal becomes more complicated

in case of MCS having more than two modes. In order to apply the presented

method, it is necessary to first separate the non-separability regions. In other

words, a new decomposition problem has to be solved, as the modes composing

the energy function Eg(u) have to be separated too.

The knowledge of the energy evolution over time alone is not sufficient to

deal with the problem. For this reason, a generalization of the energy function

is considered.

Definition 17. Given f(t) =
∑N

k=1 ak cosφk(t), let Sgf (u, ξ) be its STFT, with

(u, ξ) ∈ R× R+, and for each fixed u let us consider

S̄gf (u, ξ) =

S
g
f (u, ξ) if ∃ i : |ξ − φ′i(u)| ≤ ∆ω

2

0 otherwise.
(3.11)

The windowed energy function (WEF) of f is then defined as

WEg(u, ξ) =

∫ ξ

0

|S̄gf (u, ξ′)|2 dξ′. (3.12)

Fig.3.10 depicts some examples of spectrogram and corresponding WEF.

The latter is a sort of cumulative distribution of the spectrogram, as shown

in Fig.3.11. Furthermore, by definition, WEF derivative presents points of

discontinuity—a1 and b1 in Fig.3.11(c) and (d)— that localize signal energy in

the TF plane. As it will be explained in details, those points will be involved

for detecting the non-separability region between two overlapped modes. For a

deeper understanding, we will first analyze the WEF of a single mode and then

we will address the MCS case.

3.2.1 Monocomponent signals

It is interesting to notice that, in case of a single mode, WEF satisfies the

evolution law in eq.(2.6), as stated below.
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(a) (b)

(c) (d)

Figure 3.10: (a) Spectrogram of a linear chirp; (b) WEF of (a); (c) Spectrogram
of a two-components signal with non-separable modes; (d) WEF of (c).

Proposition 3.7. The WEF of a constant amplitude monocomponent FM sig-

nal f(t) = a cosφ(t) satisfies the following evolution law

∂WEg(u, ξ)
∂u

+ φ′′(u)
∂WEg(u, ξ)

∂ξ
= 0. (3.13)

In addition, the characteristic curves Cφ,c of eq.(3.13) are ξ(u) = φ′(u) + c, with

c = ξ0 − φ′(u0) and (u0, ξ0) is a point in the TF plane.

Proof. The thesis follows from eq.(2.6), indeed ∀(u, ξ) ∈ supp{WEg},

∂WEg(u, ξ)
∂u

=

∫ +∞

0

Pu(u, ξ) dξ =

∫ +∞

0

−φ′′(u)Pξ(u, ξ) dξ = −φ′′(u)
∂WEg(u, ξ)

∂ξ
.

For the characteristic curves computation, we refer to the proof Prop.2.4.

As a result, the following proposition holds true.
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(a) (b)

(c) (d)

Figure 3.11: A monocomponent signal. (a) Spectrogram section; (b) Spectro-
gram cumulative function; (c) |S̄gf (u, ξ)|2 according to eq.(3.11); (d) WEF as
defined in eq.(3.12).

(a) (b)

Figure 3.12: Section of the WEF in Fig.3.10(b). (a) u = 100: round markers
denote the boundaries points of the interval where WEF is strictly increasing,
i.e. I(u) = [a1(u), b1(u)] and the rectangular marker denotes its middle point

m(u) = a1(u)+b1(u)
2

; (b) Sections at u = 100, 250, 400. As it can be observed,
they are shifted copies of (a) and, in particular, at the middle point (rectangular
marker) it holds WEg(u,m(u)) = constant.

Proposition 3.8. The WEF of a constant amplitude monocomponent signal is

constant along the characteristic curves of eq.(3.13), i.e.

WEg(u, ξ(u)) = constant, ξ(u) ∈ Cφ,c, ∀u, (3.14)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Sections of WEF in Fig.3.10(d) for different time instants u. (a)
u = 10: modes are well separated in the TF plane, then WEF section presents
three flat regions Iflat i, i = 1, 2, 3 and it strictly increases in [a1, b1] ∪ [a2, b2];
(b)-(c) u = 50, 100: modes are separated but the internal flat region is reduced;
(d) u = 168: u belongs to the non-separability region and only two flat regions
are observed; (e) u = 182; (f) u = 400: modes are separated again.
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Proof. The proof immediately follows from eq.(3.13).

Fig.3.12 shows the transport phenomenon referred to the linear chirp in

Fig.3.10(a). As it can be observed, for each fixed u, WEg(u, ξ) increases over a

compact interval I1 whose boundary points depend on u, i.e. I1(u) = [a1(u), b1(u)],

with

a1(u) = φ′(u)− ∆ω

2
and b1(u) = φ′(u) +

∆ω

2
, (3.15)

by definition. Formally, the following proposition holds true

Proposition 3.9. For each fixed u, the WEF of a single mode is strictly in-

creasing on the interval I1(u) = [a1(u), b1(u)], otherwise it is constant.

Proof. S̄gf (u, ξ) ∈ L1(R) with respect to ξ, then WEg(u, ξ) is absolutely continu-

ous and differentiable. By the Fundamental Theorem of Calculus for Lebesgue

Integral it follows ∂WEg(u,ξ)

∂ξ
= |S̄gf (u, ξ)|2. Taking into account eq.(3.15), if

ξ : |ξ − φ′(u)| > ∆ω
2

, then ∂WEg(u,ξ)

∂ξ
= 0 by definition. On the contrary,

ξ : |ξ − φ′(u)| ≤ ∆ω
2
⇒ |S̄gf (u, ξ)| > 0, i.e. ∂WEg(u,ξ)

∂ξ
> 0.

Based on the theoretical results presented, we can list some important prop-

erties that apply to a monocomponent signal:

Property 1 For each fixed u,WEg(u, ξ) striclty increases on I1(u) = [a1(u), b1(u)],

with a1 and b1 such that

lim
ξ→a1(u)−

∂WEg(u, ξ)
∂ξ

= 0 and lim
ξ→a1(u)+

∂WEg(u, ξ)
∂ξ

6= 0 (3.16)

lim
ξ→b1(u)−

∂WEg(u, ξ)
∂ξ

6= 0 and lim
ξ→b1(u)+

∂WEg(u, ξ)
∂ξ

= 0. (3.17)

Proof. It follows from Prop.3.9, observing that a1(u), b1(u) are disconti-

nuity points for ∂WEg(u,ξ)

∂ξ
.

Property 2 I1(u) has constant length.

Proof. Trivially, b1(u)− a1(u) = ∆ω, ∀u.

Property 3 For each fixed u, the WEF of a single mode is constant over two

disjoint compact intervals.
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Proof. By Prop.(3.9), WEg(u, ξ) is constant over each compact interval

IK : IK ⊂ (−∞, a1)∪̇(b1,+∞).

Property 4

WEg(u, ξ(u)) = constant, ∀ ξ(u) = (1−λ) a1(u)+λ b1(u),with fixed λ ∈ [0, 1].

(3.18)

Proof. By replacing eq.(3.15) in eq.(3.18), it follows ξ(u) = φ′(u) + λ∆ω
2

.

It thus belongs to the characteristic curve Cφ,c, with c = λ∆ω
2

and the

thesis follows from Prop.3.8.

Property 1 characterizes the boundary points of the interval I1. The latter

has constant dimension, by Property 2. Property 3 tells us that the difference

between the number of modes N = 1 and the number of disjoint flat regions

in WEF section is always equal to 1—we will prove that this is true also for

N > 1 well separated components. Finally, Property 4 can be visualized in

Fig.3.12, showing that WEF is constant, for instance, at the middle point of I1,

i.e. m1(u) = a1(u)+b1(u)
2

.

Similarly to the discussion given in Chapter 2 concerning eq.(2.6), eq.(3.13)

holds true also for MCS with well separated components. As a result, Properties

1–4 can be extended as well.

3.2.2 MCS

From now on, we will consider a MCS f(t) =
∑N

k=1 fk such that supp{fk} =

[0, T ], T > 0, ∀ k = 1, ..., N .

In case of composite signals, WEF flat regions allow us to check if modes

overlap with each other. For a comprehensive understanding, let us consider

Fig.3.13 that depicts WEF sections of the two-components signal in Fig.3.10(c).

(a)-(b)-(c) refer to increasing u in the separability region and, in this case,

WEF is constant on N + 1 = 3 compact intervals, namely Iflat i, i = 1, 2, 3.

Furthermore, WEF strictly increases over two compact disjoint intervals, with

time-dependent boundary points a1, b1, a2, b2, as denoted in (a). The more the

modes approach each other in the TF plane, the more Iflat 2 reduces (c). At ū

belonging to the non-separability region (d), the window supports do overlap,
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as |φ′1(ū) − φ′2(ū)| < ∆ω, i.e. [a1(ū), b1(ū)] ∩ [a2(ū), b2(ū)] 6= ∅. As a result,

WEF presents only two flat disjoint regions and one interval where it strictly

increases, i.e. [a1(ū), b2(ū)]. While u increases, we exit the non-separability

region (e)-(f) and we observe again N + 1 = 3 flat disjoint regions. The above

discussion can be generalized to N ≥ 2 components, by means of the following

proposition.

Proposition 3.10. Let f(t) be a MCS as defined in eq.(1.17) and letWEg(u, ξ)
be its WEF. Let us consider the set I(u) = ∪Nk=1[ak(u), bk(u)], where N denotes

the number of modes and

ak(u) = φ′k(u)− ∆ω

2
, and bk(u) = φ′k(u) +

∆ω

2
, ∀ k = 1, ..., N, ∀u ∈ supp{f}.

(3.19)

Then, the following properties hold true.

Property 1∗ For each fixed u, WEg(u, ξ) strictly increases over I(u), whose

boundary points are discontinuities of WEF derivative.

Property 2∗ I(u) has constant length iff modes are well separated.

Property 3∗ If modes are well separated at time location u then WEg(u, ξ)
presents N + 1 disjoint flat regions.

Property 4∗ If fk is an isolated component, then

WEg(u, ξ(u)) = constant,∀ ξ(u) = (1− λ) ak(u) + λ bk(u),

with fixed λ ∈ [0, 1], ∀u. (3.20)

Proof. Property 1∗: S̄gf (u, ξ) ∈ L1(R) with respect to ξ, then WEg(u, ξ) is

absolutely continuous and differentiable. By the Fundamental Theorem of Cal-

culus for Lebesgue Integral it follows ∂WEg(u,ξ)

∂ξ
= |S̄gf (u, ξ)|2. Taking into account

eq.(3.19), if ξ : |ξ−φ′k(u)| > ∆ω
2
, ∀ k = 1, ..., N , then ∂WEg(u,ξ)

∂ξ
= 0 by definition.

On the contrary, if |ξ − φ′k(u)| ≤ ∆ω
2

for some k ∈ 1, ...N then |S̄gf (u, ξ)| > 0,

i.e. ∂WEg(u,ξ)

∂ξ
> 0, ∀u ∈ [ak(u), bk(u)].

Property 2∗: Modes are separable if |φ′k(u) − φ′j(u)| > ∆ω, ∀ k 6= j, ∀u ∈
supp{f}, then [ak(u), bk(u)] are disjoint intervals. It follows |I(u)| =

∑N
k=1[bk(u)−

ak(u)] = N∆ω. Conversely, if fj and fi are separable at u but do overlap at ū,

then [aj(ū), bj(ū)] ∩ [ai(ū), bi(ū)] 6= ∅ and |I(ū)| < |I(u)|.
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Property 3∗: Let F : φ′k(u) + ∆ω
2
< F, ∀ k = 1, ..., N, ∀u ∈ supp{f}. Since

∂WEg(u,ξ)

∂ξ
= 0, ∀u ∈ [0, F ] − ∪Nk=1[ak(u), bk(u)], and [ak, bk] are disjointed, then

WEg(u, ξ) is constant over the disjoint intervals [0, a1], [bk, ak+1], k = 1, ..., N−1

and [bN , F ].

Property 4∗: fk is well separated from the other modes, ∀u ∈ supp{f},
then eq.(3.13) is satisfied ∀ ξ : |ξ − φ′k(u)| < ∆ω

2
and Property 4∗ holds true in

[ak(u), bk(u)], ∀u.

3.2.2.1 Non-separability region localization

Based on Property 3∗, the non-separability region with respect to time can be

defined as

Ωint = {u : max
u

Nflat(u) < N + 1}, (3.21)

whereNflat(u) is the number of compact and disjoint intervals such thatWEg(u, ξ)
is constant and N is the number of modes. It is worth observing that if N is

unknown, it can be operatively computed as maxuNflat(u)− 1.

If two modes are non-separable, then Property 2∗ is not satisfied and the

following proposition holds true.

Proposition 3.11. Let L(u) = |I(u)| denote the length of I(u) = ∪Nk=1[ak(u), bk(u)]

as in eq.(3.19). Then, for each couple of non-separable modes (fk, fj) there exists

uk,j ∈ arg minL(u). If modes do intersect with each other, then (uk,j, φ
′
j(uk,j))

is the crossing point between IFs curves.

Proof. If fk and fj do overlap, then [ak(u), bk(u)] ∩ [aj(u), bj(u)] = Ik,j 6= ∅,
with Ik,j = [ak(u), bj(u)] or Ik,j = [aj(u), bk(u)]. In addition, L is continuous

and, since the non-separability regions of f are assumed separable, according

to Def.15, there exists a compact interval K ⊂ supp{f}, such that

L(u) =
∑
i 6=k,j

(bi(u)− ai(u)) + |Ik,j(u)| = (N − 2)∆ω + |φ′j(u)− φ′k(u)|, ∀u ∈ K.

The thesis thus follows from Weierstrass Theorem, with uk,j := minu∈K L(u) =

minu∈K |φ′j(u) − φ′k(u)|. If modes cross each other at u0, i.e. φ′k(u0) = φ′j(u0)

then uk,j = u0.

As a result, Ωint can always be partitioned into disjoint subregions, i.e.

Ωint = ∪(k,j)Ωk,j, with Ωk,j 3 uk,j, (3.22)
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assuming Ωi,j = ∅ if modes fi and fj are well separated.

Eq.(3.21) characterizes the non-separability region in time, but it does not

provide any information concerning localization in frequency. Taking into ac-

count eq.(3.22), for each u ∈ Ωk,j, the discontinuity points of WEF deriva-

tive provide the region where WEF strictly increases, according to Property

1∗. As an example, let u = 170 belongs to the central non-separability re-

gion of the spectrogram in Fig.3.14(a). The corresponding WEF section, shown

in Fig.3.14(c), increases over the disjoint intervals I1 and I2, whose boundary

points are WEF derivative discontinuities. The first interval refers to the non-

separability region—the one we are interested in— while the second is due to

the contribution of the isolated constant chirp component, which has to be ex-

cluded, as depicted in Fig.3.14(d). Property 4∗ offers a criterion for detecting

(and then discarding) the isolated contribution. More precisely, the condition

in eq.(3.14) can be checked both on I1 and I2, at the middle points m1 and m2,

as denoted in Fig.3.14(e)-(f). The interval where the condition in eq.(3.20) is

met is recognized as the isolated mode support and then discarded. As a result,

the strip corresponding to interference is Ωu = {u}× Iī(u), with ī = 1. The TF

non-separability region is then defined as the union of the detected strips, i.e.

Ω =
⋃

u∈Ωint

Ωu.

The presented study can be applied to automatically detect the non-separability

region of a MCS. The next section summarizes the whole procedure and provides

some experimental results.

3.2.2.2 Algorithm and some results

WEF definition requires IFs knowledge, which is the unknown. A practical im-

plementation of eq.(3.11) is possible by considering a spectrogram thresholding

at level Θ > 0, i.e.

P̄ (u, ξ) =

|S
g
f (u, ξ)|2 if |Sgf (u, ξ)|2 ≥ Θ

0 otherwise;
(3.23)

that provides a subset of characteristic curves of eq.(2.6), i.e. Cφ,c, with c ≤ ∆ω
2

.

The threshold Θ can be set equal to the 10% of spectrogram maximum value.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Three-components signal with non-separable modes and different
constant amplitudes. (a) Spectrogram; (b) WEF; (c) WEF section at u = 170
belonging to a non-separability region; (d) The support of the linear chirp has to
be excluded in non-separability region detection; (e)-(f) Section in (c) restricted
to I1 and I2. Interval middle points are denoted by mi, i = 1, 2.
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WEF can be then computed as

WEg(u, ξ) =

∫ ξ

0

P̄ (u, ξ′)dξ′. (3.24)

Figure 3.15: Practical WEF implementation, two-components signal: |S̄gf (u, ξ)|2
according to eq.(3.11) (top) and the thresholded spectrogram P̄ (u, ξ) at level
Θ, as in eq.(3.24) (bottom).

It is worth observing that using eqs.(3.23) and (3.24) is conceptually equiva-

lent to set a smaller frequency bandwidth in WEF definition (see Fig.3.15) and

then the results presented in the previous section remain valid. In particular,

the boundary of the intervals where WEF strictly increases still characterizes

the non-separability region in frequency, in fact they are discontinuity points of

WEF derivative, i.e.

lim
ξ→α−i

∂WEg(u, ξ)
∂ξ

= 0 and lim
ξ→α+

i

∂WEg(u, ξ)
∂ξ

6= 0 (3.25)

lim
ξ→β−i

∂WEg(u, ξ)
∂ξ

6= 0 and lim
ξ→β+

i

∂WEg(u, ξ)
∂ξ

= 0. (3.26)
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Figure 3.16: Non-separability region localization in time. WEF is analyzed
section by section. For each fixed u, the number of flat regions Nflat(u), the
intervals [αi(u), βi(u)] where WEg stricly increases and L(u) =

∑
i(βi(u) −

αi(u)) are computed. Ωint can be thus determined according to eq.(3.21) and
partitioned by means of L(u) minima.
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Figure 3.17: Non-separability region localization in frequency. The subregion
Ω2,3 is considered. For each u ∈ Ω2,3,WEg is analyzed for selecting the frequency
interval corresponding to non-separable modes’ support. Condition in eq.(3.20),
with λ = 0.5, is checked both on I1 and I2. The latter is met on I2— the constant
chirp support— so that I2 is discarded. The procedure has to be repeated on
Ω1,2 and Ω1,3.
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(a) (b)

Figure 3.18: (a) Number of detected components by the analysis of WEF in
Fig.3.10(d) as a function of time u; (b) The non-separability region Ωint is the
time interval where the number of detected modes in (a) is less than 2, i.e. the
maximum of observed components.

(a) (b)

Figure 3.19: Non-separability region detection. (a) Function L(u). The non-
separability region in time Ωint belongs to the intervals delimited by the dashed
lines. The smoothed version of L(u) is minimum at u1,2, that corresponds to
the crossing point between modes; (b) Detected non-separability region Ω.

The step required by the proposed procedure are listed below. Fig.3.16 and

Fig.3.17 provide a chart of the algorithm when applied to the three-components

signal in Fig.3.14(a).

Detection in time (Fig.3.16)

1. Threshold the spectrogram and compute WEg according to eq.(3.24);

2. ∀u, compute the number of plateaux Nflat(u) of WEg and set N =
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(a) (b)

Figure 3.20: (a) Number of detected components by the analysis of WEF in
Fig.3.14(b) as a function of time u; (b) The non-separability region Ωint is
the time interval where the number of detected modes in (a) is less than the
maximum of observed components. The latter is partitioned into the subregions
Ω1,2,Ω2,3,Ω1,3.

maxuNflat(u)− 1 as the number of modes;

3. determine the non-separability region in time Ωint and its partition {Ωk,j}(k,j),

according to eq.(3.21) and eq.(3.22);

4. ∀u, select {[αi(u), βi(u)]}i according to eqs.(3.25)-(3.26), set L(u) =
∑

i(βi(u)−
αi(u)) and compute its smoothing;

5. compute the minima {uk,j}(k,j) of the smoothed L(u) and localize them

in Ωk,j, determined in step 3.

Detection in frequency (Fig.3.17)

For each (k, j) : Ωk,j 6= ∅ in step 3

6. ∀u ∈ Ωk,j ⊂ Ωint,

6.1 for each interval [αi(u), βi(u)], i = 1, 2, ..., N − 1, detected in step 4,

compute the middle point mi = αi(u)+βi(u)
2

;

6.2 retain only the ī-th interval s.t. WEg(t,mī) 6= constant, with t ∈
Ωk,j;

6.3 set Ωu = {u} × [αī, βī].

7. Set Ω =
⋃
u Ωu.
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(a) (b)

(c)

Figure 3.21: Non-separability region detection. (a) Smoothed L(u) whose min-
ima identify crossing points between modes; (b) WEg(u, ξ), with u ∈ Ω2,3.
WEF strictly increases over the two intervals I1 and I2, as in Fig.3.14(c). Since
the constant chirp is well separated from the other modes at Ω2,3, it holds
WEg(u, ξ)ξ∈|I2 = constant, while it significantly oscillates for ξ ∈ I1; (c) De-
tected TF non-separability region Ω.

As first numerical example, let us consider the spectrogram of the two-components

signal in Fig.3.10(c). WEF analysis allows to determine the number of modes

and to localize the non-separability region in time, as shown in Fig.3.18. Fig.3.19(a)

shows that L(u) realizes its minimum at the crossing point between modes, ac-

cording to Prop.3.11. Finally, the region is localized in frequency by selecting

only the interval where WEF stricly increases, as shown in Fig.3.19(b).

Fig.3.20 refers to the three-components signal in Fig.3.14(a). As it can be

observed, Ωint is partitioned into three subregions. Each of them corresponds to

a minimum of the smoothed L(u), as shown in Fig.3.21(a). By processing each

subregion separately, frequency localization is done by checking Property 4∗ at
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the middle point of each interval where WEF strictly increases, namely I1(u)

and I2(u) in this example. As shown in Fig.3.21(b), WEF is almost constant

on the interval I2, while it significantly oscillates on I1. For this reason, only I1

is retained. Fig.3.21(c) shows the final result. At this point, a reconstruction

technique, as the one reviewed in Section 3.1.1, could be applied on each non-

separability subregion to recover IFs curves.

3.2.2.3 Some remarks and conclusions

The presented method is a spectrogram-based technique which allows to au-

tomatically detect the eventual non-separability regions of a MCS. Actually,

similar results are expected if a different TF density is used, provided it is

smooth and concentrates the distribution along the ridge curve—for instance,

the scalogram. As main advantage, the proposed method is able to deal with

interfering modes having different frequency modulations and constant ampli-

tudes, resulting in a powerful tool for IFs curves’ reconstruction techniques. The

application of the method to AM-FM MCS will be one of the main objectives

of future studies.

3.3 Multidirectional energy analysis: Radon Spec-

trogram Distribution

Given a function F defined on the plane, its RT at (r, θ) is the integral of F

along the line which is orthogonal to the direction identified by θ and located

at distance r (with sign) to the origin. The energy function Eg(u) in eq.(3.1)

can be thus understood as the RT of the spectrogram at points (u, 0), with u

varying in the signal support. In order to extend the energy-based approach

presented in Section 3.1, we now consider the combination of spectrogram and

RT, namely Radon Spectrogram Distribution (RSD), as depicted in Fig.3.22.

First, Section 3.3.1 deepens the motivation for adopting RSD in crossing MCS’

analysis; then Sections 3.3.2 and 3.3.3 contain some original theoretical results

concerning the topic and, finally, Section 3.3.4 is devoted to an application of

the presented study.
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Figure 3.22: The RT of the spectrogram P (u, ξ) results in the Radon Spectro-
gram Distribution RP (r, θ) (RSD).

3.3.1 Separability in Radon domain

Fig.3.23 depicts the RT of the spectrogram of a constant amplitude LFM signal

and the RT of a TF representation perfectly concentrated on the ridge curve. As

it can be observed, both the distributions peak at the same point, that is (r0, θ0)

identifying the ridge curve. Indeed, according to Prop.2.5, the spectrogram is

constant along the characteristic curves of eq.(2.6). For linearly modulated

signals, the latter are lines and since RT integrates along lines, it is the suitable

tool to reveal the direction of the transport. If the number of components N is

known in advance, the detection task turns into simply finding N peaks, that is

why RT (as well as RW) is widely used as LFM signals detector in MCS analysis.

On the contrary, non-linearly FM MCSs have more spread representations in

Radon domain, as shown in Fig.3.24, making the detection task less trivial.

It is worth noticing that two well separated components in the TF plane are

not guaranteed to be separable in Radon domain. For instance, the two parallel

LFM signals in Fig.3.25(a) can not be easily disclosed in Radon domain as the

RT in Fig.3.25(e) is influenced by artefacts. Although better concentrated, RW

in Fig.3.25(f) is also ambiguous, as it still shows four peaks, instead of two. On

the other hand, two modes that cross in TF plane, and thus do not satisfy the

separability condition in Def.6, can appear separated in Radon domain, as in

the case depicted in Fig.3.26. By summarizing, there exists a sort of duality

between separability in TF and Radon domain; in addition the ability of RT

in revealing crossing components makes it suitable for MCS analysis. As a

matter of fact, Fig.3.27(b) better shows that there exist several isolevel curves
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(a)

(b)

(c)

(d)

(e)

Figure 3.23: LFM signal. (a) Spectrogram; (b) Ideal TF representation located
at the ridge curve; (c) RT of the spectrogram in (a), view from above; (d) 3d
view of (c); (e) RT of (b), 3d view.

of separation and then, in this case, it is possible to disclose the two modes

by choosing a proper threshold level. The latter observation can be exploited

for defining a method for IFs discrimination, quite independent of the specific

frequency modulation, as it will be explained in Section 3.3.4.

3.3.2 Ridge points representation

This section aims at investigating the relation between IF and RSD. As a start-

ing point, the representation of ridge points in Radon domain is derived and a

law with respect to r and θ describing IF curve is proposed.

To this aim, let us consider the ridge curve parametrization (t, φ′(t)), t ≥ 0
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(a) (b)

(c) (d)

Figure 3.24: Non-linearly FM signal. (a) Spectrogram; (b) RT of the spectro-
gram in (a); (c) Ideal TF representation located at the ridge curve; (d) RT of
(c).

and a TF representation perfectly localized on the ridge curve, i.e.

ρ(u, ξ) =

∫ +∞

0

δ(u− t)δ(ξ − φ′(t)) dt, (u, ξ) ∈ R2,

then the following proposition provides the representation of the ridge curve in

Radon domain.

Proposition 3.12. The RT of ρ(u, ξ) is

Rρ(r, θ) =

∫ +∞

0

δ(r − t cos θ − φ′(t) sin θ) dt. (3.27)

Proof. The proof follows by first computing the RT of the delta function cen-

tered at the origin and then exploiting the shifting property, as follows. Let R
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Separable components. (a) Spectrogram; (b) Reassigned spec-
trogram; (c) WVD; (d) Ideal TF representation perfectly concentrated on IF
curves; (e) RT of the spectrogram in (a); (f) RT of the WVD in (c) [108].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.26: Overlapping components. (a) Spectrogram; (b) Reassigned spec-
trogram. The non-separability region is emphasized by the dashed box; (c)
WVD; (d) Ideal TF representation perfectly concentrated on IF curves; (e) RT
of the spectrogram in (a); (f) RT of the WVD in (c) [108].
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(a) (b)

Figure 3.27: (a) 3d view of RT in Fig.3.26(e) and its isolevel curves (b). As it
can be observed, there exist several level sets in (b) that define two separated
connected components.

be the Radon operator, then

R[δ(u, ξ)] =

∫
R
δ(u, ξ)δ(r − u cos θ − ξ sin θ) du dξ

=
1

2π

∫
R
δ(u, ξ)

∫
R
e−ik(r−u cos θ−ξ sin θ) dk du dξ

=
1

2π

∫
R
e−ikr

∫
R
eik(u cos θ+ξ sin θ)δ(u, ξ) du dξ dk =

1

2π

∫
R
e−ikr dk = δ(r).

The shifting property gives us the RT of a single ridge point (t, φ′(t)), i.e.

R[δ(u− t, ξ − φ′(t))] = δ(r − t cos θ − φ′(t) sin θ).

Eq.(3.27) straightforward follows by integrating with respect to t.

Definition 18. The mapped ridge curve M is defined as the support of

Rρ(r, θ), i.e.

{(r, θ) : r(t) = t cos θ + φ′(t) sin θ, t ≥ 0} ⊆ R×
(
−π

2
,
π

2

]
. (3.28)

It is worth noticing that a single TF point is then mapped by RT to a

curve in the Radon domain; therefore, the ridge curve is mapped into a set of

curves, which is referred asM, as depicted in Fig.3.28. For this reason, it is not
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possible to directly define a curve r(θ) representing the ridge points in Radon

domain. However, the goal is achieved by considering the envelope of the family

of curves in the Radon domain. Indeed, as shown in Fig.3.29, curves belonging

to M ”accumulate” on a curve which appears to be tangent to M. The latter

is recognized as the envelope of M, according to the following

Proposition 3.13. Let f(t) = a(t) cosφ(t). If φ′′(t) is strictly monotone,

the envelope of the mapped ridge curve M is the curve (θ0, r(θ0)), with θ0 =

− arctan 1
φ′′(t)

and

r(θ0) = φ′′−1(cot θ0) cos θ0 + φ′(φ′′−1(cot θ0)) sin θ0. (3.29)

Proof. Proof is in Appendix B.

Prop.3.13 provides the desired ridge point representation in Radon domain

only depending on θ0 and also a parametric representation, i.e.r(θ0) = t cos θ0 + φ′(t) sin θ0

θ0(t) = − arctan 1
φ′′(t)

.
(3.30)

The knowledge of points belonging to the envelope in eq.(3.29) is sufficient to

recover the ridge curve in the TF plane. Indeed, each fixed θ0 defines the point

(r(θ0), θ0) representing the line r(θ0) = u cos θ0 + ξ sin θ0, i.e. the line passing

through (t0, φ
′(t0)), with slope θ0(t0). By considering Lebesgue measure L,

we can say that the inverse RT should map a single point into a line—more

precisely, a delta located in a single point should be mapped to a representation

whose support is a line, i.e.

R−1
L (δ(r − r(θ0), θ − θ0)) = δ (t0 cos θ0 + φ′(t0) sin θ0 − u cos θ0 − ξ sin θ0) ,

(3.31)

whose support is the line

ξ(u) = t0
cos θ0

sin θ0

+ φ′(t0)− ucos θ0

sin θ0

,

such that dξ
du

= − cot θ0 = φ′′(u). For this reason, by associating each distribu-

tion R−1
L (r(θ0)) to the corresponding support, we come up with a lines family

whose envelope is the ridge curve. The procedure is sketched in Fig.3.30.
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Figure 3.28: Top : RT of a delta function located at the ridge point (t, φ′(t)).
Bottom: RT of the ridge curve (linear case).

3.3.2.1 RW and RSD as mapped ridge curve detectors

It is well known that the Wigner Ville Transform of a monocomponent signal

f(t) = a cosφ(t) is concentrated on the IF curve of the signal. For this reason,

we expect that the RT of WVD (i.e. the RW) provides a representation which is

somehow close to the RT of the ridge curve Rρ. Indeed, experimentally it turns

out that the envelope of Rρ is close to RW maxima along the radial direction,
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(a) (b)

Figure 3.29: Representation of the ridge curve in Radon domain. (a) TF repre-
sentation perfectly localized on a non-linear ridge curve; (b) Support of the RT
of (a), i.e. M : the envelope of M consists in those points where the curves
”accumulate”.

i.e. the points realizing

max
r
RW (r, θ),

as shown in Fig.3.31. Thanks to its high resolution properties, RW seems to be

more suitable for ridge curve identification in Radon domain. Unfortunately,

RW is very sharp, making the detection task unreliable for non-linearly modu-

lated signals. On the contrary, RSD is smooth and its adoption allows to frame

the detection problem in the context of the study proposed in Chapter 2. For

this reason, RSD is preferable for our purpose.

Unfortunately, the maxima of the RSD, i.e. maxr RP (r, θ), appear shifted

with respect to the ones observed in Rρ, as depicted in Fig.3.32. In a first

approximation, the latter is explained by the RT convolution property. Indeed,

according to eq.(1.7), the spectrogram can be expressed as a smoothing of the

WVD, i.e.

P (u, ξ) =
1

2π
WVf (u, ξ) ∗ ∗WVg(u, ξ),

then

R[P ] =
1

2π
R[WVf ] ∗ R[WVg]. (3.32)

A similar relation occurs by considering P (u, ξ) = a2

2
ĝ(ξ−φ′(u)), as in Prop.1.1.
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(a) (b)

(a) (b)

Figure 3.30: Each point of the envelope in eq.(3.30) is sequentially mapped
according to eq.(3.31). (a) Points in Radon domain; (b) Superposition of the
corresponding recovered lines (grey) in TF domain and IF curve (black).
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(a) (b)

(c) (d)

Figure 3.31: Non-linearly modulated signal referred to Fig.3.29. (a) Absolute
value of WVD; (b) RW; (c) Positions of RW maxima (dashed line) compared
to the envelope in Fig.3.29 (dotted line); (d) Normalized sections at θ = 40◦,
RW (black line) and Rρ (gray line).

By setting ĝ(u, ξ) = ĝ(ξ − φ′(u)), it can be expressed as

P (u, ξ) =
a2

4

∫∫
ĝ(t, ω)δ(u− t, ω − φ′(u)) dt dω =

a2

4
ĝ(u, ξ) ∗ ∗δ(u, φ′(u)),

and then

R[P ] =
a2

4
R[ĝ] ∗ R[ρ] =

a2

4
R[ĝ] ∗Rρ. (3.33)

Both eqs.(3.32) and (3.33) show a concentrated distribution in Radon which is

blurred by the RT of the analysis window. Indeed, R[WVf ] is convolved with

R[WVg] in eq.(3.32) and Rρ is convolved with R[ĝ] in eq.(3.33) and the above

convolutions imply a shift in maxima positions. In this case, the reconstruction

procedure based on eq.(3.31) results in the recovery of a characteristic curve
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(a) (b)

(c) (d)

(e) (f)

Figure 3.32: Non-linearly modulated signal referred to Fig.3.29. (a) Spectro-
gram; (b) RSD; (c) RSD evaluated on its maxima; (d) Positions of RSD maxima
(solid line) compared to the ones of Radon ridge in Fig.3.30, (e) Normalized
sections at θ = 40◦, RSD (black line) and Rρ (gray line); (f) Lines family recon-
structed by the radon spectrogram maxima. The shift observed in (d) causes
the shifting on a different characteristic Cc : (u, φ′(u) + c).
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Figure 3.33: Non-linear chirp in Fig.3.32(a). Positions of RSD maxima in de-
pendence on the analysis window size s, used in STFT computation, compared
to the envelope of Rρ (dotted line). As it can be observed, the smaller s, the
closer the curves.

different from the ridge one, but still preserving IF information, according to

Prop.2.4, as shown in Fig.3.32(f). In addition, the window size can be selected

so that the radial shift becomes more negligible, as depicted in Fig.3.33. This

topic will be better addressed in the next section.

3.3.3 A model for RSD

This section is aimed at defining a model for RSD that highlights its depen-

dence on signal IF. Without loss of generality, in the sequel STFT modulus

p(u, ξ) := |Sgf (u, ξ)| is referred as spectrogram and the corrective term in eq.(1.3)

is assumed negligible, with s = 1.

Proposition 3.14. The RT of the spectrogram p(u, ξ) of a monocomponent

signal f(t) = a cosφ(t) is

R(r, θ) =
a

4π sin θ

∫
ĝ

(
r − u cos θ − φ′(u) sin θ

sin θ

)
du. (3.34)

Proof. Proof is in Appendix B.

Although general, eq.(3.34) does not directly provide information concerning

IF. For getting a more meaningful expression of RSD, a special spectrogram
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Figure 3.34: Spectrogram section p̃(u, ξ) as defined in eq.(3.35) in the direc-

tion identified by θ = θ0 = − arctan
(

1
φ′′(t)

)
, which corresponds to the normal

direction to the ridge. If Pridge = (t, φ′(t)) lies on the ridge curve C0, then
Pcar = (t+ c cos θ0, φ

′(t) + c sin θ0) belongs to the characteristic curve Cc. p̃(t, c)
is then obtained by considering c ∈

[
−∆ω

2
, ∆ω

2

]
.

decomposition that is based on the following model for a generic spectrogram

section has to be considered, i.e.

p̃(t, c) = p(u(t), ξ(t)) = p(t+ c cos θ(t), φ′(t) + c sin θ(t)), c ∈
[
−∆ω

2
,
∆ω

2

]
.

(3.35)

The latter is centered at the ridge point (t, φ′(t)) and its orientation is identified

by the angle θ. Fig.3.34 depicts p̃(t, c), with θ0 identifying the normal direction

to the ridge, i.e. cot θ0(t) = −φ′′(t).

3.3.3.1 Spectrogram representation

Taking into account eq.(3.35), the evolution law in eq.(2.6) tells us that spec-

trogram is constant along the direction identified by θ = π
2
, so that it can be

modelled as the ensemble of its sections at θ = π
2
, that are shifted copies of

the analysis window. Actually, the same result holds true if we move along
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Figure 3.35: Sections of the spectrogram in the frequency direction, i.e., θ = π
2
,

and in the normal direction to the ridge, i.e., θ = θ0. In the first case (top), the
spectrogram profile is a function of variable ξ (i.e. p(u, ξ) = ĝ(ξ − φ′(u)), with
fixed u). The second case (bottom) yields to a parametrization in the rotated
system, depending on c, the same parameter describing the characteristic curves.
For linear chirps, transport holds in both directions θ = π

2
and θ = θ0.

(a) (b)

Figure 3.36: Sections transported along the ridge direction. (a) linear case; (b)
non linear case.

sections differently oriented, as shown in this section. The result is first proved

for LFM signals and then extended to non-linearly FM signals, under specific

assumptions.
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(a) (b)

Figure 3.37: Geometry of characteristic curves. (a) Characteristic curves of
eq.(2.6) detected in the normal direction to the ridge generally do not share
the same tangent vector at the intersection point. The closer the characteristic
is to the ridge, the more the normal direction is preserved; (b) Curves sharing
the same tangent vector along the normal direction to the ridge at a fixed ridge
point (t, φ′(t)).

Proposition 3.15. If f(t) = a cosφ(t) is linearly modulated, i.e. φ′′(t) = C =

constant, then the function p̃(t, c) in eq.(3.35) is constant along the character-

istic curves of eq.(2.6).

Proof. The time derivative of p̃ is

d

dt
p̃(t, c) = pu(u(t), ξ(t))u̇+ pξ(u(t), ξ(t))ξ̇ = pu(u(t), ξ(t)) + φ′′(t)pξ(u(t), ξ(t)),

(3.36)

which is zero by eq.(2.6), as φ′′(t) is constant.

As a consequence, in the linear case it is possible to choose a different and

more convenient orientation for sections composing the spectrogram, preserving

the total energy, as stated in the following

Proposition 3.16. Let f(t) = a cosφ(t) be a linearly FM signal and let us

consider p̃(t, c) as in eq.(3.35), with θ0 = − arctan 1
φ′′(t)

= − arctan 1
C

. Then,∫∫
p2(u, ξ) du dξ =

∫∫
p̃2(t, c) dc dt.
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Figure 3.38: Top : RT of two modulated delta functions respectively located
at the ridge point Pridge and at the point Pcar belonging to the characteristic
curve detected in the normal direction to the ridge. Bottom: RT of the analysis
window orientated in the normal direction to the ridge.

Proof. Proof can be found in Appendix B.

Prop.3.15 allows us to model the spectrogram of a LFM signal as the en-

semble of its sections in an arbitrary direction, different from the one parallel to

the frequency axis, as depicted in Fig.3.35. In addition, Prop.3.16 states that

the total energy is preserved along the normal direction to the ridge, i.e. the

one identified by θ = θ0. It is worth observing that sections in eq.(3.35) share
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the same maximum, therefore the smaller the area the higher the concentration.

The proposition below shows that θ0 also provides the direction along with the

spectrogram is more concentrated.

Proposition 3.17. Let p̃(t, c) be as in eq.(3.35) for a fixed t, with θ ∈ [0, π)−
{arctanC}. The minimum of the area of p̃(t, c) is realized at θ = θ0.

Proof. Proof can be found in Appendix B.

The preliminary study on LFM signals allows us to deal with general FM

signals. In particular, similar results obtained for LFM can be derived in the

non-linear case by involving only characteristic curves sufficiently close to the

ridge, as assumed in the sequel.

Proposition 3.18. Let f(t) = a cosφ(t) be a FM signal let p(u, ξ) be its nor-

malized spectrogram satisfying one of the following conditions:

Hp 1) f(t) is linearly or constantly modulated, i.e. φ′′′(t) = 0 or φ′′(t) = 0, ∀ t

Hp 2) 0 < |φ′′(t)| < L1, |φ′′′(t)| ≥ L2 > 0 and p(u, ξ) is computed with an

analysis window such that ∆ω ≤ 1+L2
1

L2
.

Then the function p̃(t, c) in eq.(3.35) is constant along the characteristic curves

of eq.(2.6).

Proof. Proof is in Appendix B.

Prop.3.18 states that Prop.3.15 can be generalized to non-linearly FM sig-

nals, provided that the window size is sufficiently small to guarantee a moderate

spread, so that the characteristic curves of eq.(2.6) are sufficiently close to the

ridge and Hp 2 is satisfied. Fig.3.36(a) shows that the window profile is perfectly

transported in the direction of the ridge in the linear case, while for non-linearly

frequency modulation the transport holds true for those points locally around

the ridge curve, as depicted in Fig.3.36(b). In the present approach, we consider

a different geometry for the characteristics, as a set of curves approximately par-

allel in the normal direction to the ridge, as sketched in Fig.3.37.
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3.3.3.2 RT of a spectrogram section

Prop.3.18 allows us to model the spectrogram as the ensemble of its sections

normal to the ridge direction, also in the non-linear case. Under this assumption,

by RT linearity, RSD can be formally expressed as the ensemble of spectrogram

sections’ RT. To this aim, the following proposition provides the RT of the

spectrogram section in eq.(3.35)

Proposition 3.19. Let f(t) = a cosφ(t) satisfies Hp 1 or Hp 2 as in Prop.3.18.

Let us assume ĝ is compactly supported and symmetric and let define θ0 =

θ0(t) = − arctan
(

1
φ′′(t)

)
. Then, the RT of p̃(t, c), as in eq.(3.78), is

R(r, θ, t) =
1

2π cos(θ − θ0)
ĝ

(
r − t cos θ − φ′(t) sin θ

cos(θ − θ0)

)
, (3.37)

t ≥ 0, ∀ θ : |θ − θ0| ∈
[
0,
π

2

)
.

Proof. Proof can be found in Appendix B.

An example of the RT of a spectrogram section R(r, θ, t) is provided in

Fig.3.38(Bottom).

The following proposition highlights the relation between signal IF and

R(r, θ, t). Indeed, the latter reaches its maximum on the mapped ridge curve

M.

Proposition 3.20. For each fixed θ : |θ − θ0(t)| ∈ [0, π
2
), M : r(t) = t cos θ +

φ′(t) sin θ satisfies r(t) ∈ argmaxr R(r, θ, t).

Proof. Proof is in Appendix B.

3.3.3.3 An evolution law for R(r, θ, t)

The proposition below provides a family of pdes depending on the parameter t.

Proposition 3.21. For each fixed t ≥ 0, ∀ θ : |θ−θ0(t)| ∈ [0, π
2
), Rt := R(r, θ, t)

in eq.(3.37) satisfies the following evolution law

cos(θ−θ0)·Rt
θ+[φ′(t) cos θ0−t sin θ0−r sin(θ−θ0)]·Rt

r−sin(θ−θ0)Rt = 0. (3.38)

Proof. Proof can be found in Appendix B.
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For each fixed t, the characteristic curves of eq.(3.38) are related to the

mapped ridge curve, as follows from Prop.3.22 and Prop.3.23.

Proposition 3.22. The characteristic curves of eq.(3.38) are

r(θ) = c(t) · cos(θ − θ0) + sin(θ − θ0)(φ′(t) cos θ0 − t sin θ0), (3.39)

with c(t) = k(−t sin θ0 + φ′(t) cos θ0), k ∈ R and θ ∈ [0, π)− {θ0 + π
2
}.

Proof. Proof is in Appendix B.

Proposition 3.23. The mapped ridge curve lies on the characteristic curves of

eq.(3.38).

Proof. Proof can be found in Appendix B.

Prop.3.20 and Prop.3.23 clarify the role of the IF curve in Radon domain:

each ridge point Pridge is mapped to a curve in Radon domain passing through

the maximum of the spectrogram section RT — the one centered at Pridge —

which is as well a characteristic curves of eq.(3.37). We can finally derive the

expression for RSD.

3.3.3.4 RSD model

RT linearity allows us to introduce a model for RSD, as stated in the following

Proposition 3.24. In the assumption Hp 1 or Hp 2, the Radon Spectrogram of

f(t) = a cosφ(t) is

R(r, θ) =

∫
R(r, θ, t) dt−

∫
φ′′′(t) sin2 θ0

cos(θ − θ0)
(r − t cos θ − φ′(t) sin θ)R(r, θ, t) dt.

(3.40)

Proof. Proof is in Appendix B.

It is worth observing that Prop.3.20 states that, in case of LFM signals,

maxima curve lies on the mapped ridge curve r(θ). In addition, Prop.3.24

shows that RSD peaks at the angle corresponding to the normal direction to

the ridge curve. In fact, for LFM signals, it holds φ′′′(t) = 0 and then it follows

Rr(r, θ) =

∫
Rr(r, θ, t)dt, (3.41)
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and

Rθ(r, θ) =

∫
Rθ(r, θ, t)dt, (3.42)

Both eq.(3.41) and eq.(3.42) are zero when evaluated at r(θ0). As a result, IF

can be easily detected in the linear case.

Remark 14. Unfortunately, in the non-linear case, maxima do not lay on the

mapped ridge curve M : (θ, r(θ)), as

Rr(r(θ), θ) =

∫
φ′′′(t) sin2 θ0

cos(θ − θ0(t))
ĝ (0) dt 6= 0. (3.43)

However, if the analysis window can be selected to strongly meet Hp 2, i.e.

∆ω <<
1 + L2

1

L3

, (3.44)

then the term in eq.(3.43) is negligible and the linear model better fits the non-

linear one. It turns out that R(r, θ) ≈
∫∫

R(r, θ, t) dt and θ = θ0(t) realizes the

maximum value for each t in the signal support. In this case, RSD maxima

provide the IF signature in Radon domain which can be easily extracted and

processed to disclose IF curves. This is the topic of the next section.

3.3.4 RSD-based method for modes separation

Based on the study provided in Section 3.3.3, a method for IFs curve separation

in Radon domain can be defined, as presented in the sequel.

3.3.4.1 The algorithm

Given a constant amplitude MCS f(t) as defined in eq.(1.17), with crossing

modes and comparable amplitudes, the contribution of each component can

be isolated in Radon domain by a simple thresholding. The Radon domain is

then partitioned into connected components Ri, i = 1, ..., N , where N is the

number of modes. The latter is assumed to be known or it can be estimated

by a counting procedure as the one proposed in [109] or the one described in

Section 3.1.3. For each θ belonging to the support of Ri, the maxima points

are selected as a signature of IF curve in Radon domain, according to Prop.3.20

and Remark 14. The latter are involved in RT inversion. This results in N

separated TF representations IRi, whose sparsity is promoted by selecting the
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local centers of mass (i.e. the centers of mass around the maxima points along

the vertical direction). The whole procedure is illustrated by the flow-chart in

Fig.3.39 and it can be summarized as follows:

Step 1. compute the spectrogram p of the input signal f ;

Step 2. compute RT of the spectrogram, i.e. RSD Rp;

Step 3. compute the threshold value thr = µ+2σ2, where µ and σ respectively

denote the mean and the standard deviation of Rp;

Step 4. determine the set U = {(r, θ)|Rp(r, θ) > thr} and set R̄(r, θ) =

R(r, θ), ∀ (r, θ) ∈ U and R̄ = 0 otherwise;

Step 5. identify the connected components Ri of R̄, i.e. the sets satisfying

R̄ = ∪Pi=1Ri;

Step 6. for each Ri

6.1 extract the signature: for each fixed θ, set rθ = arg maxr(Ri(r, θ))

and set Ri(r, θ) = 0 ∀ r 6= rθ;

6.2 compute IRi(u, ξ) as the inverse RT of Ri according to eq.(1.15);

6.3 for each u, select ξu = arg maxξ(IRi(u, ξ)) and the center of mass cu

around ξu;

6.4 the curve (u, cu), for all considered u, is the separated IF curve cor-

responding to the i-th mode.

3.3.4.2 Experimental results

In this section, we present some experimental results obtained by applying

the procedure sketched in Fig.3.39, concerning MCS having different frequency

modulations. The robustness with respect to noise is also investigated, as signals

embedded in white gaussian noise at SNR levels ranging from 5dB to 10dB are

considered. In all simulations, the considered signal has length N = 512 and the

STFT is computed by a gaussian window with variance equal to 1.37 and length

L = 44. The set threshold is thr = µ + 2σ, where µ and σ respectively denote

the mean and the standard deviation of the considered RSD and all points (r, θ)

satisfying Rp(r, θ) > thr are involved in the inversion. This choice corresponds
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Figure 3.39: Flow-chart of the proposed method. A two-components signal is
considered as illustrative example [107].

to selecting the points that do not belong to the confidence interval at 95%

of the Radon distribution. In Fig.3.40, the result for a single quadratic chirp

is depicted. As it can be observed, RSD maxima, for each fixed θ, provide a

compact representation whose inverse gives TF signal representation sparser

than spectrogram, as shown in Fig.3.40(e). In order to improve resolution

and to compensate the eventual shift with respect to the radial components

r (Section 3.3.2.1), the center of mass cu of points close to each maximum has

been considered, i.e.

cu =

∫ ξu−δ
ξu−δ ξ IR(u, ξ) dξ∫ ξu−δ
ξu−δ IR(u, ξ) dξ
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where ξu = arg maxξ IR(u, ξ) and δ ∈ [∆ω
2
,∆ω]. cu is then the candidate

separated ridge curve, as shown in Fig.3.40(f). In case of MCS, the processing

of RSD is done separately on each component provided by the thresholding

operation. Fig.3.41 depicts the result obtained for a two components signal

composed of an hyperbolic and a linear mode, embedded in white gaussian

noise. Each step of the algorithm is illustrated and the recovered IF curves are

provided in Fig.3.41(i)-(l). In Fig.3.42 the result for a linear combination of

polynomial chirps having constant unitary amplitudes is shown. As it can been

observed, the reconstructed curves (dashed lines) approximate IF laws (solid

lines). Although some instabilities at the boundaries, the method is able to

recover the missing information in the non separability regions and the result is

quite stable even in the presence of noise. Figs.3.43-3.44 respectively refer to the

sum of a linear and a hyperbolic chirp and a linear combination of a quadratic

and logarithmic chirp. In both cases, the proposed approach disentangles the

single modes for those TF points belonging to the non-separability region and

it is robust to noise.

3.3.4.3 Some observations

The procedure presented has been further refined by adopting the advanced

technique in [29] for the extraction of informative content from noisy distribu-

tions, as preprocessing for the modes separation algorithm. As a result, the

overall procedure in [108] is proven to be more robust to noise.

As a main drawback, the method presented in this section and the one in

[108] are essentially based on thresholding, and then suitable only for MSC hav-

ing comparable amplitudes. A more advanced technique should be able to adapt

the threshold level in dependence on the amplitudes behaviour. The theoreti-

cal results in Section 3.2.3 suggest that RSD maxima could guide thresholding.

Indeed, Prop.3.20 can be operatively used in order to detect the envelope in

eq.(3.29) and separate each mode contribution in Radon domain. As shown in

Fig.3.45, Radon sections corresponding to slopes θ0(t) have a strict maximum,

while sections apart present a plateau. In other words, the region of interest

(ROI) in θ is the overall of Radon sections showing a strict global maximum.

ROI support length thus depends on the specific IF law and it is minimum in

case of linear modulation. A similar strategy could adopted for AM-MCS. The

above-mentioned issues will be investigated in future studies.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.40: Quadratic chirp signal. (a) Spectrogram of the signal; (b) RT
of the spectrogram in (a), i.e. RSD; (c) Mask obtained by thresholding RSD
in (b); (d) Maxima points of (c) along the vertical direction (signature); (e)
Inversion of (d) according to backprojection formula in (1.15); (f) Local center
of mass (dotted line) of (e) compared to the exact IF law (solid grey line) [107].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.41: Two components signal composed of a linear and a hyperbolic chirp
embedded in AWN at SNR level equal to 5 dB. (a) Spectrogram of the signal;
(b) RT of the spectrogram in (a), i.e. RSD; (c)-(d) Components obtained by
thresholding RSD in (b); (e)-(f) Signatures given by maxima points selection
along the vertical direction respectively of (c) and (d) — Figure continued on
the next page.
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(g) (h)

(i) (l)

Figure 3.41: (g)-(h) Inverse RT respectively applied to (e) and (f); (i) Recovered
hyperbolic curve (solid line) compared to the true IF (dashed grey lines); (l)
Recovered linear curve (solid line) compared to the true IF (dashed grey lines).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.42: Three components polynomial chirp having non separable modes:
(a) Spectrogram of the signal; (b) RSD; (c) Mask obtained by thresholding
RSD in (b); (d) Signatures given by maxima points selection along the vertical
direction; (e) Result (solid line) compared to the IF laws (dashed grey lines);
(f) Result in the noisy case, SNR=9dB [107].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.43: Two components signal composed of a linear and a hyperbolic
chirp: (a) Spectrogram of the signal; (b) RSD; (c) Mask obtained by thresh-
olding RSD in (b); (d) Signatures given by maxima points selection along the
vertical direction; (e) Result (solid line) compared to the IF laws (dashed grey
lines); (f) Result in the noisy case, SNR=5dB [107].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.44: Two components signal composed of a linear and a logarithmic
chirp: (a) Spectrogram of the signal; (b) RSD; (c) Mask obtained by thresh-
olding RSD in (b); (d) Signatures given by maxima points selection along the
vertical direction; (e) Result (solid line) compared to the IF laws (dashed grey
lines); (f) Result in the noisy case, SNR=10dB [107].
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(a) (b)

Figure 3.45: RSD Rp(r, θ) for different θ ∈ [θmax, θmax + ∆θ], θmax =
arg maxRp(r, θ), ∆θ > 0. (a) Linear case in Fig.3.23(c): sections lose the
strict maximum, as the envelope in eq.(3.30) is composed of only a point; (b)
Non-linear case in Fig.3.24(b): the strict maximum is preserved as long as
t ∈ supp{f} so that θ = θ0(t).

3.4 Conclusions

This chapter presented an energy approach for MCS analysis. Contrary to

existing methods that recover IF curves by fitting procedures, the presented

study is aimed at exploiting as far as possible the available information. Indeed,

the spectrogram energy of a MCS, computed in the frequency direction, contains

much information concerning the original IFs, especially at the non-separability

region. In addition, the windowed energy function allows to monitor modes

interaction and then to detect the eventual interference region. Finally, RSD

seems to compensate for the lack of resolution at the non-separability region,

providing an advantageous tool for overlapped MCS processing. Since the joint

use of TF analysis and energy transforms has proven to be convenient for MCS

decomposition, future work will be devoted to more advanced studies in this

framework, in order to further extend the results presented in this chapter.
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Conclusions

This thesis deepened the problem of frequency modulated multicomponent sig-

nals (FM-MCS) decomposition, in the general context of interfering modes.

Both theoretical and applied aspects have been taken into account. Starting

from an exhaustive analysis of the current state of the art, the presented work

addressed the problem following two main approaches, respectively described

in Chapter 2 and 3.

The first one is aimed at enhancing signal resolution in the time-frequency

(TF) domain, and especially in the so-called non-separability regions, where

standard methods fail in disclosing components. Based on the introduction of a

spectrogram model, robust iterative reallocation procedures have been defined,

studied and applied to provide sparse signal TF representations, and it has

been shown that they are able to better disclose signal modes with respect to

standard reassignment method. As a further advantage, the methods presented

in Chapter 2 are convenient from the computational point of view.

The second approach is based on the combination of linear TF transforms

and energy-based non-linear ones, such as Radon Transform. Contrary to ex-

isting strategies that ignore regions affected by interference and approximate

the missing target by interpolation, the proposed one takes into account all the

available information in the TF distribution (TFD) and exploits it to recover

and separate instantaneous frequencies curves. Signal embedded with noise

have been also considered in the experimental tests. Furthermore, a method for

the automatic detection of the non-separability regions have been introduced.

It is worth observing that the proposed methods have the advantage of be-

ing non-parametric, as they do not require specific assumptions on the signal

class. Experimental results concerning synthetic constant-amplitude MCS have

confirmed both their effectiveness, with a consequent improvement of the state

of the art, and their potential in solving a challenging problem in TF analysis
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of FM-MCS. In particular, although MCS resolution has been improved signif-

icantly in TF non-separability regions, an additional effort is needed for apply-

ing the presented study to amplitude modulated MCS and non-monotonic IFs,

which are recurrent features in real-world signals. Furthermore, even though

the presented thesis focused on a specific TFD, namely spectrogram, study and

results are expected to adapt to different TFDs, making the applicability to

real-life signals more viable.
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Appendix A

Proof of Proposition 2.1. Let us recall P (u, ξ) = |Sgf (u, ξ)|2 = Re2(Sgf ) +

Im2(Sgf ), with

Re(Sgf ) =
1√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
cos(ξt) dt,

Im(Sgf ) = − 1√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
sin(ξt) dt.

Let us first prove the following expressions for the derivatives:

∂P

∂u
= −2

s
Re(Sg

′

f (Sgf )∗), (3.45)

∂P

∂ξ
= 2 s Im(Stgf (Sgf )∗). (3.46)

By deriving P with respect to variable u, we obtain

∂P

∂u
= 2Re(Sgf )

∂

∂u
Re(Sgf ) + 2Im(Sgf )

∂

∂u
Im(Sgf )

= 2Re(Sgf )
1√
s

∫ −∞
−∞

f(t)g′
(
t− u
s

)
·
(
−1

s

)
cos(ξt) dt

− 2Im(Sgf )
1√
s

∫ −∞
−∞

f(t)g′
(
t− u
s

)
·
(
−1

s

)
sin(ξt) dt

= −2

s
Re(Sgf )Re(Sg

′

f )− 2

s
Im(Sgf )Im(Sg

′

f ) = −2

s
Re(Sg

′

f (Sgf )∗),
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thus eq.(3.45) holds true. The derivation with respect to ξ gives

∂P

∂ξ
= 2Re(Sgf )

∂

∂ξ
Re(Sgf ) + 2Im(Sgf )

∂

∂ξ
Im(Sgf )

= 2Re(Sgf )
1√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
· (−t) sin(ξt) dt

− 2Im(Sgf )
1√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
· t cos(ξt) dt

= −2Re(Sgf )
s√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
·
(
t− u
s

)
sin(ξt) dt

− 2Re(Sgf )
s√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
·
(u
s

)
sin(ξt) dt

− 2Im(Sgf )
1√
s

∫ −∞
−∞

f(t)g

(
t− u
s

)
· t cos(ξt) dt

= 2sRe(Sgf )Im(Stgf ) + 2uRe(Sgf )Im(Sgf )− 2sIm(Sgf )Re(Stgf )

− 2uIm(Sgf )Re(Sgf ) = 2sIm((Sgf )∗Stgf ),

which proves eq.(3.46). Eq.(2.3) follows by comparing eq.(3.45) and eq.(3.46).

Taking into account eqs.(3.45) and (3.46), it follows

s2

2
Re(Stgf (Sgf )∗)

∂P

∂u
+

1

2
Im(Sg

′

f (Sgf )∗)
∂P

∂ξ
= (3.47)

= −sRe(Stgf (Sgf )∗)Re(Sg
′

f (Sgf )∗) + sIm(Sg
′

f (Sgf )∗)Im(Stgf (Sgf )∗)

= −sRe(Sg
′

f (Sgf )∗Stgf (Sgf )∗)

= −sRe(Sg
′

f

P

Sgf
Stgf

P

Sgf
)

= −sP 2Re

(
Sg
′

f

Sgf

Stgf
Sgf

)
(3.48)

= −sP 2

[
Re

(
Sg
′

f

Sgf

)
Re

(
Stgf
Sgf

)
− Im

(
Sg
′

f

Sgf

)
Im

(
Stgf
Sgf

)]

= −sP 2

(
∆uRe

(
Sg
′

f

Sgf

)
+ ∆ξIm

(
Stgf
Sgf

))
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then it follows

s2∆u
∂P

∂u
−∆ξ

∂P

∂ξ
= −2sP

(
∆uRe

(
Sg
′

f

Sgf

)
+ ∆ξIm

(
Stgf
Sgf

))
. (3.49)

or equivalently, according to eq.(3.48),

s2∆u
∂P

∂u
−∆ξ

∂P

∂ξ
= −2sP ·Re

(
Sg
′

f

Sgf

Stgf
Sgf

)
. (3.50)

Proof of Proposition 2.4 Let us consider the parametric curve{
u = u(τ)

ξ = ξ(τ), τ ∈ R.

The derivative of P (u(τ), ξ(τ)) with respect to τ is

d

dτ
P (u(τ), ξ(τ)) =

∂P

∂u
u̇+

∂P

∂ξ
ξ̇, (3.51)

where u̇ = du
dτ

and ξ̇ = dξ
dτ

. Eq.(2.6) implies

d

dτ
P (u(τ), ξ(τ)) = 0 (3.52)

if {
u̇ = 1

ξ̇ = φ′′(u).
(3.53)

Finally, the proof follows by solving the system of ordinary differential equations

in eq.(3.53).

Proof of Proposition 2.6 Let us consider the spectrogram of a two-components

signal in eq.(2.1), then for a fixed u

P (u, ξ) ≈ |Sf1(u, ξ)|2, ∀ ξ : |ξ − φ′2(u)| ≥ ∆ω.
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More in general, for fixed u the following inequality holds:

0 ≤ P (u, ξ)

maxξP (u, ξ)
=

P (u, ξ)

ĝ2(0)(a2
1 + a2

2)
≤

(
√
P1(u, ξ) +

√
P2(u, ξ))2

ĝ2(0)(a2
1 + a2

2)
=

=
(a1ĝ([ξ − φ′1(u)]) + a2ĝ([ξ − φ′2(u)]))2

ĝ2(0)(a2
1 + a2

2)
. (3.54)

Let ξ1 :
ĝ(ξ1−φ′1(u))

ĝ(0)
= 1

H
, and

ĝ(ξ1−φ′2(u))

ĝ(0)
= 1

K
, with ĝ symmetric and mono-

tonically decreasing window function; if ĝ(|ξ1 − φ′2(u)|) << 1 and ξ1 < φ′1(u) <

φ′2(u), then ĝ(|ξ1−φ′2(u)|) < ĝ(|ξ1−φ′1(u)|), i.e., H < K, and then the inequality

in eq.(3.54) becomes

0 ≤ P (u, ξ)

maxξP (u, ξ)
≤
(
a1

H
+ a2

K

)2

(a2
1 + a2

2)
<

(a1 + a2)2

H2(a2
1 + a2

2)
<

2

H2
.

Taking into account Definition 5, which defines the window bandwidth, pre-

vious inequality is not trivial for H <
√

2, i.e., for |ξ1 − φ′1(u)| < ∆ω
2

. Hence,

TF points (u, ξ) such that

P (u, ξ)

maxξP (u, ξ)
<< Θ =

1

2
,

with high probability satisfy the WSC in Definition 11.

Proof of Equation (2.11). By eq.(??), it follows

p(u, ξ) =
|Sf (u, ξ)|
a1
√
s

2
ĝ(0)

=
1

a1ĝ(0)

[
a2

1ĝ
2
1 + a2

2ĝ
2
2 + 2a1a2ĝ1ĝ2 cos ∆φ

] 1
2
.

Denoting by G = G(u, ξ) =
[
a2

1ĝ
2
1 + a2

2ĝ
2
2 + 2a1a2ĝ1ĝ2 cos ∆φ

] 1
2
, the partial

derivatives of p(u, ξ) with respect to variables ξ and u are

∂p

∂ξ
=

s

a1ĝ(0)G

(
a2

1ĝ1ĝ
′
1 + a2

2ĝ2ĝ
′
2 + a2a1 cos(φ2 − φ1)(ĝ′1ĝ2 + ĝ′2ĝ1)

)
, (3.55)

∂p

∂u
=

s

a1ĝ(0)G

(
− φ′′1a2

1ĝ1ĝ
′
1 − φ′′2a2

2ĝ2ĝ
′
2 + a2a1 cos(φ2 − φ1)(−φ′′1 ĝ′1ĝ2 − φ′′2 ĝ′2ĝ1)

− a1a2

s
ĝ1ĝ2 sin ∆φ∆φ′

)
. (3.56)
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where ĝ′i denotes the derivative of ĝi with respect to its argument. It follows

−φ′′1(u)
∂p

∂ξ
=
∂p

∂u
− s

a1ĝ(0)G

(
− φ′′2a2

2ĝ2ĝ
′
2 + a2a1 cos(φ2 − φ1)(−φ′′1 ĝ′1ĝ2 − φ′′2 ĝ′2ĝ1)

− a1a2

s
ĝ1ĝ2 sin ∆φ∆φ′

)
+

s

a1ĝ(0)G

(
− φ′′1a2

2ĝ2ĝ
′
2 − φ′′1a2a1 cos(φ2 − φ1)(ĝ′1ĝ2 + ĝ′2ĝ1)

)

=
∂p

∂u
+

a2

ĝ(0)G
ĝ1ĝ2 sin ∆φ∆φ′ +

s

a1ĝ(0)G

[
a2

2ĝ2ĝ
′
2∆φ′′ + a1a2 cos ∆φĝ′2ĝ1∆φ′′

]

=
∂p

∂u
+

a2

ĝ(0)G
ĝ1ĝ2 sin ∆φ∆φ′ +

s∆φ′′

a1ĝ(0)G

[
a2

2ĝ2ĝ
′
2 + a1a2 cos ∆φĝ′2ĝ1

]
.

Observing that p(u, ξ) =

√
s

2
G(u,ξ)

√
s

2
a1ĝ(0)

= G(u,ξ)
a1ĝ(0)

, we finally obtain

−φ′′1(u)
∂p

∂ξ
=
∂p

∂u
+

a2

a1ĝ2(0) p
ĝ1ĝ2 sin ∆φ∆φ′

+
s∆φ′′

a2
1ĝ

2(0) p

[
a2

2ĝ2ĝ
′
2 + a1a2 cos ∆φĝ′2ĝ1

]
,

and eq.(2.11) holds true.

Proof of Proposition 2.8 Let define C = α p(u,φ′(u))
|p′′(u,φ′(u))| and R(τ) = p(u,τ+φ′(u))

p(u,φ′(u))
,

so that ∆τ =
√
C(1−R(τ)). Reminding that p(u, τ + φ′(u)) = aĝ(τ), then

τ = 0 is a fixed point of the function ϕ(τ). In addition, it is unique whenever

ĝ is positive, symmetric with respect to 0 and monotonically decreasing away

from 0, as it is the case of the analysis window used for the computation of

the spectrogram. Hence, the convergence of τn to 0 can be proved using the

fixed-point convergence theorems.

ϕ(τ) is a continuous function as well as ϕ′(τ). In fact,

ϕ′(τ) = 1 +

{
d∆τ
dτ
, τ < 0

−d∆τ
dτ
, τ > 0

(3.57)

where d∆τ
dτ

= −
√
C

2
√

1−R(τ)

ĝ′(τ)
ĝ(0)

and ϕ′(0) = 1 −
√
α√
2
. In fact, reminding that
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sign(τ ĝ′(τ)) < 0 and ĝ′′(0) < 0,

lim
τ→0−

d∆τ

dτ
= lim

τ→0−
−
√
C

2ĝ(0)

√
ĝ′2(τ)

1−R(τ)
= −

√
α

2
√
|ĝ′′(0)|

√
lim
τ→0−

2ĝ′(τ)ĝ′′(τ)

−ĝ′(τ)
=

−
√
α|ĝ′′(0)|√
2|ĝ′′(0)|

= −
√
α√
2
,

and similarly, limτ→0+
d∆τ
dτ

=
√
α√
2
.

In addition, since 0 ≤ ϕ′(0) < 1, ∃ I0 = [−δ, δ], with δ > 0, such that

∀ τ0 ∈ I0, the sequence τn+1 monotonically converges to 0. The convergence

is linear for α < 2.

It is worth observing that

ϕ′′(τ) =

{
d2∆τ
dτ2 , τ < 0

−d2∆τ
dτ2 , τ > 0

(3.58)

with
d2∆τ

dτ 2
= −

√
C

2ĝ(0)

2ĝ′′(τ)(1−R(τ)) + ĝ′(τ)R′(τ)

(1−R(τ))
3
2

.

and limτ→0−
d2∆τ
dτ2 = limτ→0+

d2∆τ
dτ2 = 0.

However,

ϕ′′(τ) = 0⇔ (ĝ′(τ))2 = 2ĝ(0)ĝ′′(τ)(1−R(τ)). (3.59)

Hence, τ = τ̄ satisfies previous equation if τ̄ = 0 or ĝ′′(τ̄) > 0.

It turns out that if τ̄ is a zero for ϕ′′(τ) and τ̄ 6= 0, then ϕ′(τ̄) = 1 +

sign(τ̄)
√
C

2ĝ(0)

√
2ĝ(0)|ĝ′′(τ)| = 1 + sign(τ̄ ĝ′(τ))

√
αĝ′′(τ)
2|ĝ′′(0)| . By observing that 0 =

argmaxτ |ĝ′′(τ)| for the considered analysis windows and τ̄ 6= 0, we have

0 <

√
α
ĝ′′(τ̄)

2|ĝ′′(0)|
< 1

and then, since sign(τ ĝ′(τ)) < 0, |ϕ′(τ̄)| < 1, ∀ τ̄ 6= 0.

Finally, since τ̄ is a relative extreme point for ϕ′(τ), then

|ϕ′(τ)| ≤ maxτ̄ |ϕ′(τ̄)| < 1.
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On the other hand, for τ̄ = 0, ϕ′(τ̄) = 1−
√

α
2
< 1. Hence, the convergence

of τn is guaranteed ∀ τ0 ∈ supp{ĝ}, i.e., τ0 ∈
[
−∆ω

2
, ∆ω

2

]
.

Proof of Proposition 2.9. (i) Let us consider the fixed-point method [102]

for equation pξ(ξ) = 0 using F (ξ) = ξ − pξ(ξ)

pξξ(ξR)
as iteration function. From

eq.(1.6), F (ξ) = ξ− ĝ′(ξ−ξR)
ĝ′′(0)

. In addition, by observing ĝ′′(0) < 0, |F ′(ξ)| < 1 is

exactly eq.(2.23).

(ii) Using Taylor approximation of the function pξ around ξR and eq.(1.3), up

to o((ξk − ξR)4), we get

ξk+1 − ξR = −p
(4)(ξR)

pξξ(ξR)
· 1

6
(ξk − ξR)3 = −1

6

ĝ′′(ξk − ξR)

ĝ′′(0)
(ξk − ξR)3 .

By setting ek = ξR − ξk, ∃ k̄:
∣∣∣ ek+1

e3k

∣∣∣ ≈ 1
6

∣∣∣ ĝ(4)(0)

ĝ(2)(0)

∣∣∣ , ∀k > k̄.

Proof of Proposition 2.11. According to eq.(2.10) and assuming ĝ(0) = 1,

p(u, ξ) = ĝ(ξ − φ′(u)) = e−
1
2
σ2(ξ−φ′(u))2

and ĝ′′(0) = −σ2. Let ξ0 > ξR and set

p0 = p(ξ0). Let ξ1 be defined as in eq.(2.24), then

0 < ξ1 − ξR = ξ1 − ξ0 + ξ0 − ξR = − 1

σ

√
1− p(ξ0) + ξ0 − ξR.

By setting x = ξ0 − ξR, then ξ1 belongs to the convergence interval of Method

I if ξ1 − ξR < 1/σ, i.e. if −
√

1− e− 1
2
σ2x2

< 1 − σx. In the non trivial case

x > 1/σ, this is equivalent to require

f(x) = 1− e−
1
2
σ2x2

> (σx− 1)2 = g(x).

The latter condition is satisfied, for instance, ∀x ∈ [1/σ, 1.91/σ], since f and g

are respectively strictly concave and convex. Therefore, the thesis holds ∀p0 ≥
0.16.
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Proof of Proposition 2.12. The scheme

ξk+1 = ξk + sign(pξ(ξk))

√
p(ξk+1)− p(ξk)
|ĝ′′(0)|

, k ≥ 0

defines an implicit method having ξR as fixed point, where the value of p(ξk+1)

is predicted by the linear method according to eq.(2.24). In the sequel, (∗)′

indicates the derivative of function (∗) with respect to the frequency variable.

Set µ = sign(pξ(ξ)), ξR is a fixed point for the function ψ(ξ) = ξ +

αµ
√

p(ϕ(ξ))−p(ξ)
|ĝ′′(0)| . ψ(ξ) is continuous since p and ϕ are continuous. In order

to prove the continuity of

ψ′(ξ) = 1 +
αµ

2
√
|ĝ′′(0)|

p′(ϕ(ξ))ϕ′(ξ)− p′(ξ)√
p(ϕ(ξ))− p(ξ)

(3.60)

it is necessary to prove that it is continuous in ξ = ξR. To this aim, using Taylor

approximation of p(ξ) = ĝ(ξ − ξR) in ξR and in ϕ(ξ), we have respectively

ϕ(ξ)− ξ =
µ√
|ĝ′′(0)|

√
− ĝ
′′(0)(ξ − ξR)2

2
+ o((ξ − ξR)2) =

µ√
2
|ξ− ξR|+o(ξ− ξR)

and

p′(ϕ(ξ))ϕ′(ξ)− ϕ′(ξ) = p′(ξ)(ϕ′(ξ)− 1) + p′′(ξ)ϕ′(ξ)(ϕ(ξ)− ξ) + o(ϕ(ξ)− ξ)

= −µ|ĝ′′(0)|
(√

2− 1

2

)
|ξ − ξR|+ o(ξ − ξR),

where we used lim
ξ→ξR

ϕ′(ξ) = 1− 1√
2
; similarly

√
p(ϕ(ξ))− p(ξ) =

√
p′(ξ)(ϕ(ξ)− ξ) +

p′′(ξ)

2
(ϕ(ξ)− ξ)2 + o((ξ − ξR))2

=

√
−ĝ′′(0)

1√
2

(ξ − ξR)2 − ĝ′′(0)

2

1

2
(ξ − ξR)2 + o((ξ − ξR))2

=
√
|ĝ′′(0)|

√
1√
2
− 1

4
|ξ − ξR|+ o(ξ − ξR).
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By assuming sign(ĝ′(ξ))sign(ξ − ξR) < 0, it follows

lim
ξ→ξR

ψ′(ξ) = 1− α

√
1√
2
− 1

4

and then ψ′ is continuous.

By selecting α =
(

1√
2
− 1

4

)− 1
2
, ψ′(ξR) = 0. Hence, the convergence order is

greater than 1.

Eq.(3.60) provides the following necessary condition for convergence

sign(p′(ξ)) · sign(p′(ϕ(ξ))ϕ′(ξ)− p′(ξ)) < 0, (3.61)

which is equivalent to |p′(ϕ(ξ))ϕ′(ξ)| < |p′(ξ)|. Since ϕ′(ξ) ∈ (0, 1)∀ ξ, we can

conclude that the necessary condition in eq. (3.61) is satisfied if |p′(ϕ(ξ))| <
|p′(ξ)|, which holds if p′′(ξ) < 0 (and consequently p′′(ϕ(ξ)) < 0), i.e. ξ is

”sufficiently close” to the ridge point. Under this assumption, eq.(3.60) becomes

ψ′(ξ) = 1− α

2
√
|ĝ′′(0)|

|p′(ϕ(ξ))ϕ′(ξ)− p′(ξ)|√
p(ϕ(ξ))− p(ξ)

and the convergence is assured if |ψ′(ξ)| < 1, which is equivalent to

α

2
√
|ĝ′′(0)|

|p′(ϕ(ξ))ϕ′(ξ)− p′(ξ)|√
p(ϕ(ξ))− p(ξ)

< 2, with α > 0.

From eq.(2.24), we have p(ξ) = 1− (ϕ(ξ)− ξ)2|ĝ′′(0)|, then

p(ϕ(ξ)) = 1− (ϕ(ϕ(ξ))− ϕ(ξ))2|ĝ′′(0)|, and

p′(ϕ(ξ))ϕ′(ξ)− p′(ξ) =

2|ĝ′′(0)| [(ϕ(ξ)− ξ)(ϕ′(ξ)− 1)− ϕ′(ξ)(ϕ′(ϕ(ξ))− 1)(ϕ(ϕ(ξ))− ϕ(ξ))] . (3.62)

Since ϕ(ϕ(ξ)) − ϕ(ξ) = ϕ′(τ)(ϕ(ξ) − ξ), τ ∈ (ξ, ϕ(ξ))or ∈ (ϕ(ξ), ξ), eq.(3.62)

can be replaced by

2|ĝ′′(0)|(ϕ(ξ)− ξ)(ϕ′(ξ)− 1− ϕ′(τ)ϕ′(ξ)(ϕ′(ϕ(ξ))− 1).
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Furthermore, p(ϕ(ξ)− p(ξ)) =

|ĝ′′(0)|[(ϕ(ξ)− ξ)2 − (ϕ(ϕ(ξ))− ϕ(ξ))2] = |ĝ′′(0)|(ϕ(ξ)− ξ)2(1− ϕ′2(τ))

then
α

2
√
|ĝ′′(0)|

|p′(ϕ(ξ))ϕ′(ξ)− p′(ξ)|√
p(ϕ(ξ))− p(ξ)

=

α

2
√

1− ϕ′2(τ)
|[1− ϕ′(ϕ(ξ))]ϕ′(τ)ϕ′(ξ)− [1− ϕ′(ξ)]|.

The quantity in squared brackets is in (−1, 1) as it is the difference between

two positive numbers in the interval (0, 1). Hence, if

α√
1− ϕ′2(τ)

< 2 (3.63)

then |ψ′(ξ)| < 1 and

ϕ′(τ) < β =

√
1− 1/(2

√
2− 1) ≈ 0.67,

whenever α ∈ (0, 2
√

1− ϕ′2(τ)). As a result, the convergence is assured ∀ ξ :

ϕ′(ξ) < β.

Remark: It is easy to verify that ϕ′(ξ) = 1 − |ĝ′(ξ−ξR)|
2
√
|ĝ′′(0)|(1−ĝ(ξ−ξR))

and all its

extrema points satisfy [98]

(ĝ′(ξ − ξR))2 = −2ĝ′′(ξ − ξR)(1− ĝ(ξ − ξR)),

then, condition in eq.(3.4) is satisfied if 1− 1√
2

√
ĝ′′(ξ−ξR)
ĝ′′(0)

< β, i.e.,

ĝ′′(ξ − ξR)

ĝ′′(0)
> 2(1− β)2 ≈ 0.22.

In the gaussian case, ∀ξ : |ξ − ξR| < 1/σ we have ϕ′(ξ) < ϕ′(ξR) = 1− 1/
√

2 ≈
0.29 < β and the convergence of Method II is then proved for these points.

Proof of Proposition 2.13. It holds

p̃(ω̃1)− p̃(ξ0) = p(ω1)− p(ξ0) + δ1p
′(τ1) + ε1 − ε0, τ1 ∈ (ω1, ω1 + δ1).
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Since

(ξ1 − ξ0)2 =
α2

|ĝ′′(0)|
(p(ω1)− p(ξ0)),

(ξ̃1 − ξ0)2 =
α2

|ĝ′′(0)|
(p̃(ω̃1)− p̃(ξ0)),

by subtraction, it follows

(ξ̃1 − ξ0)2 − (ξ1 − ξ0)2 =
α2

|ĝ′′(0)|
(δ1p

′(τ1) + ε1 − ε0), (3.64)

which yields to

(ξ̃1 − ξ1)2 + 2(ξ1 − ξ0)(ξ̃1 − ξ1)− α2

|ĝ′′(0)|
(δ1p

′(τ1) + ε1 − ε0) = 0.

ξ̃1 − ξ1 is a solution of the second order equation x2 + 2(ξ1 − ξ0)x− e = 0, with

e = α2

|ĝ′′(0)|(δ1p
′(τ1) + ε1 − ε0). Since ξ̃1 − ξ1 must be zero when e = 0, by setting

β = sign(ξ1 − ξ0) it follows

ξ̃1 − ξ1 = −β|ξ1 − ξ0|
(
−1 +

√
1 +

e

(ξ1 − ξ0)2

)
,

and then

|ξ̃1 − ξ1| ≤
e

2|ξ1 − ξ0|
, (3.65)

where a first-order Taylor approximation has been used. Eq.(3.65) is exactly

eq.(2.26).

Let now derive bounds for errors ε1, and δ1.

Bound for ε1: Using the same notation adopted in Prop.2.2,

p(u, ξ)2 = ĝ2
1 +

a2
2

a2
1

ĝ2
2 + 2

a2

a1

ĝ1ĝ2 cos(φ2 − φ1)

and, without loss of generality, let consider the case ∆φ′(u) = φ′2(u)−φ′1(u) > 0

and a2 ≥ a1. It holds

(ĝ1 −
a2

a1

ĝ2)2 ≤ p2(u, ξ) ≤ (ĝ1 +
a2

a1

ĝ2)2 ⇔

|ĝ1 −
a2

a1

ĝ2| ≤ p(u, ξ) ≤ ĝ1 +
a2

a1

ĝ2.
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Let set ĝ1(ξ) = ĝ(ξ̄), with ξ̄ = ξ − φ′1(u), then ĝ2(ξ̄) = ĝ(ξ̄ + ∆φ′(u)) ≈
ĝ(ξ̄) + ĝ′(ξ̄)∆φ′, provided ĝ(ξ̄) + ĝ′(ξ̄)∆φ′ > 0. Hence,

ĝ(ξ̄)

(
1− a2

a1

)
− a2

a1

|ĝ′(ξ̄)∆φ′| ≤ p(u, ξ) ≤ ĝ(ξ̄)

(
1 +

a2

a1

)
+
a2

a1

|ĝ′(ξ̄)∆φ′| ⇔

−a2

a1

ĝ(ξ̄)− a2

a1

|ĝ′(ξ̄)∆φ′| ≤ p(u, ξ)− ĝ(ξ̄) ≤ a2

a1

ĝ(ξ̄) +
a2

a1

|ĝ′(ξ̄)∆φ′| ⇒

|ε1| = |p(u, ξ)− ĝ1(ξ)| ≤ a2

a1

(
1 + |∆φ′(u)| ·max

ξ
|ĝ′(ξ)|

)
.

Bound for δ1: Let define ∆1 =
√

1− p(ξ0) and ∆̃1 =
√

1− p̃(ξ0), then ∆̃2
1 =

∆2
1 − ε0, where ε0 is the error on the initial data, and

δ1 = |∆1|
(√

1− ε0
∆2

1

− 1

)
≈ −1

2
|∆1|

ε0
∆2

1

⇒ |δ1| <
ε0

2|∆1|
<

ε0
∆ω

.

181



Appendix B

Proof of Proposition 3.1. Setting s = 1 in eq.(1.3), it follows

Sgfk(u, ξ) =
ak(u)

2
ei(φk(u)−ξ·u) (ĝ(ξ − φ′(u)) + εk(u, ξ)) , ∀ k = 1, ...N,

with εk negligible. Assuming solvable non-separability regions, by STFT linear-

ity we obtain

|Sgf (u, ξ)|2 =
N∑
k=1

|Sgfk(u, ξ)|
2 + 2

∑
k 6=j

cos θk,j(u)|Sgfk(u, ξ)| · |S
g
fj

(u, ξ)|, (3.66)

where θi,j = φk(u) − φj(u) is the angle between Sgfk(u, ξ) and Sgfj(u, ξ). Since

|Sfk(u, ξ)| = ak(u)
2
ĝ(ξ − φ′k(u)) and θk,j is independent of ξ, by substitution in

eq.(3.66), it follows

+∞∫
−∞

|Sgf (u, ξ)|2dξ =
∑
k

ak(u)2

4

+∞∫
−∞

ĝ2(ξ − φ′k(u))dξ

+
ak(u)aj(u)

2
cos θi,j(u)

∑
k 6=j

+∞∫
−∞

ĝ(ξ − φ′k(u))ĝ(ξ − φ′j(u))dξ . (3.67)

Finally, the proof follows by applying Plancharel formula, i.e.

+∞∫
−∞

ĝ2(ξ − φ′k(u))dξ = ||ĝ||L2(R) = 2π

+∞∫
−∞

g(t)2dt, ∀ k

and setting K(u) =
∑

k

a2
k(u)

4
||ĝ||L2(R) = π

2

∑
k a

2
k(u)

+∞∫
−∞

g(t)2dt.
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Proof of Proposition 3.3. Window FT is ĝ(ξ) =
∫ +∞
−∞ g(t)e−iξt dξ = exp(−1

2
σ2ξ2),

then by replacing it in eq.(3.3), ∀u : ak(u)aj(u) > 0, we get

2Ak,j(u)

ak(u)aj(u)
=

+∞∫
−∞

exp

(
−σ

2

2
[(ξ − φ′k(u))2 + (ξ − φ′j(u))2]

)
dξ

=

+∞∫
−∞

exp

(
−σ

2

2
[2ξ2 − 2(φ′k(u) + φ′j(u)) · ξ + φ′k(u)2 + φ′j(u)2]

)
dξ.

The argument of the exponential can be rewritten as

− σ2

[
ξ2 − (φ′k(u) + φ′j(u))ξ +

φ′k(u)2 + φ′j(u)2

2

]
=− σ2

[
ξ2 − (φ′k(u) + φ′j(u))ξ + 2

φ′k(u)2 + φ′j(u)2

4
+ 2

φ′kφ
′
j

4
− 2

φ′kφ
′
j

4

]
=− σ2

[(
ξ −

φ′k(u) + φ′j(u)

2

)2

+
φ′k(u)2 + φ′j(u)2

4
− 2

φ′kφ
′
j

4

]

=− σ2

[(
ξ −

φ′k(u) + φ′j(u)

2

)2

+
(φ′k(u)− φ′j(u))2

4

]
.

By a change of variables, it follows

2Ak,j(u)

ak(u)aj(u)
=

1

σ
exp

(
−σ

2

4
(φ′k(u)− φ′j(u))2

) +∞∫
−∞

exp (−ξ2) dξ

=

√
π

σ
exp

(
−σ

2

4
(φ′k(u)− φ′j(u))2

)
,

which gives eq.(3).

Proof of Proposition 3.5. By Prop.3.1, fint(u) = A1,2 cos ∆φ1,2, with ∆φ1,2 =

φ1(u)− φ2(u). From eq.(1.3) with ε(u, ξ) negligible and s = 1 we get

<(Sgfint(u, ξ)) =
A1,2(u)

2
ĝ(ξ − |∆φ′(u)|) cos ∆φ1,2(u) . (3.68)

It is worth observing that the previous model holds true for time instants u

such that <(Sgfint(u, ξ)) and fint(u) have the same sign. In this case, for all u
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belonging to the support of fint, we consider the ratio

<(Sfint(u, ξ))

fint(u)
=

1

2
ĝ(ξ − |∆φ′(u)|) . (3.69)

Since ĝ(ξ) =
∫ +∞
−∞ g(t)e−iξt dξ = exp(−1

2
σ2ξ2), by evaluating eq.(3.69) at ξ = 0,

we get

exp

(
−1

2
σ2∆φ′2(u)

)
=

2<(Sgfint(u, 0))

fint(u)
, (3.70)

and then

∆φ′2(u) = − 2

σ2
ln

(
2<(Sgfint(u, 0))

fint(u)

)
= ln

[(
2<(Sgfint(u, 0))

fint(u)

)− 2
σ2
]
, (3.71)

for all u ∈ supp{fint} : ln
(

2<(Sgfint
(u,0))

fint(u)

)
≤ 0, i.e.

2<(Sgfint
(u,0))

fint(u)
≤ 1.

Proof of Proposition 3.6.

Recalling the spectrogram model

P (u, ξ) =
a2

1

4
ĝ2

1 +
a2

2

4
ĝ2

2 +
a1a2

2
cos ∆φ1,2(u)ĝ1ĝ2, ĝi = ĝ(ξ − φ′i(u)), (3.72)

∆φ(u) = ∆φ1,2(u) = φ1(u) − φ2(u), let us compute the numerator of eq.(3.9)

for a real and even window g. First, we observe that

+∞∫
−∞

ξ ĝ2(ξ− φ′i) dξ =

+∞∫
−∞

ξ ĝ2(ξ) dξ + φ′i(u)

+∞∫
−∞

ĝ2(ξ) dξ = φ′i(u) · ||ĝ||L2(R). (3.73)

In addition,

a1a2

2

+∞∫
−∞

ξ ĝ(ξ − φ′1)ĝ(ξ − φ′2) dξ

=
a1a2

2

+∞∫
−∞

(
ω +

φ′1 + φ′2
2

)
ĝ

(
ω +

∆φ′

2

)
ĝ

(
ω − ∆φ′

2

)
dω

=
a1a2

2

+∞∫
−∞

ω ĝ

(
ω +

∆φ′

2

)
ĝ

(
ω − ∆φ′

2

)
dω +

φ′1 + φ′2
2

A1,2(u)
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=
a1a2

2

+∞∫
−∞

ω ĝ2(ω) dω

︸ ︷︷ ︸
=0

+
φ′1 + φ′2

2
A1,2(u).

Hence,∫ +∞

−∞
ξ · P (u, ξ) dξ = ||ĝ||L2(R)

(
a2

1

4
φ′1(u) +

a2
2

4
φ′2(u)

)
+
φ′1 + φ′2

2
cos ∆φ(u)A1,2(u),

(3.74)

where eqs.(3.72), (3.73) and (3.74) have been accounted for. On the other hand,

using the same equations,

Eg(u) = ||ĝ||L2(R)

(
a2

1

4
+
a2

2

4

)
+ A1,2(u) cos ∆φ(u),

and eq.(3.9) becomes

G(u) =
||ĝ||L2(R)

(
a2

1

4
φ′1(u) +

a2
2

4
φ′2(u)

)
+

φ′1+φ′2
2

cos ∆φ(u)A1,2(u)

||ĝ||L2(R)

(
a2

1

4
+

a2
2

4

)
+ A1,2(u) cos ∆φ(u)

=
||ĝ||L2(R)

a2
1

4

(
φ′1(u) +

a2
2

a2
1
φ′2(u)

)
+

φ′1+φ′2
2

cos ∆φ(u)A1,2(u)

||ĝ||L2(R)
a2

1

4

(
1 +

a2
2

a2
1

)
+ A1,2(u) cos ∆φ(u)

=
φ′1(u) +

a2
2

a2
1
φ′2(u)

1 +
a2

2

a2
1

1 +
2(φ′1+φ′2)

||ĝ||L2(R)

(
φ′1(u)+

a2
2
a2
1
φ′2(u)

) cos ∆φ(u)A1,2(u)

1 + 4A1,2(u) cos ∆φ(u)(
1+

a2
2
a2
1

)
||ĝ||L2(R)︸ ︷︷ ︸

(∗)

.

If the signal amplitudes are comparable, i.e. a1

a2
≈ 1, then

(φ′1 + φ′2)

2
≈

(
φ′1(u) +

a2
2

a2
1
φ′2(u)

)
(

1 +
a2

2

a2
1

) ,
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and
2(φ′1 + φ′2)(

φ′1(u) +
a2

2

a2
1
φ′2(u)

) ≈ 4(
1 +

a2
2

a2
1

) .
Hence, (∗) ≈ 1 and then

G(u) ≈ φ′1(u) + φ′2(u)

2
,

where the equality holds for a1 = a2.

Proof of Proposition 3.13. Let us define F (r, θ, t) = r − t cos θ − φ′(t) sin θ,

then M is implicitly given by

F (r, θ, t) = 0, (3.75)

and Ft(r, θ, t) = 0⇔ − cos θ− φ′′(t) sin θ = 0⇔ cot θ = −φ′′(t). It follows thatr(θ0) = t cos θ0 + φ′(t) sin θ0

θ0(t) = − arctan 1
φ′′(t)

(3.76)

satisfies F (r(θ0(t)), θ0(t)) = 0 and Ft(r(θ0(t)), θ0(t)) = 0. If φ′′(t) is strictly

monotone, eq.(3.76) defines t0 = φ′′−1(cot θ0). Finally, by replacing t with t0

and θ with θ0 in eq.(3.75), we obtain the function of variables (r, θ0)

G(r, θ0) = r − t0 cos θ0 − φ′(t0) sin θ0, (3.77)

and the envelope is implicitly given by G(r, θ0) = 0.

Proof of Proposition 3.14.

R(r, θ) =

∫∫
p(u, ξ)δ(r − u cos θ − ξ sin θ)du dξ

=
a

2

∫∫
ĝ(ξ − φ′(u))δ(r − u cos θ − ξ sin θ)du dξ

=
a

4π

∫∫
ĝ(ξ − φ′(u))

∫
e−ik(r−u cos θ−ξ sin θ)dk du dξ,
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that by the change of variable k = k′

sin θ
becomes

=
a

4π sin θ

∫∫
dk′ du e−

ik′r
sin θ eik

′u cot θ

∫
ĝ(ξ − φ′(u))eik

′ξdξ

=
a

4π sin θ

∫∫
e−

ik′
sin θ eik

′ cot θg(k)eik
′φ′(u)dk′ du

=
a

4π sin θ

∫∫
g(k′)e−

ik′
sin θ

(r−u cos θ−φ′(u) sin θ)dk′ du

=
a

4π sin θ

∫
ĝ

(
r − u cos θ − φ′(u) sin θ

sin θ

)
du.

Proof of Proposition 3.16. Let us consider the change of variablesu = t+ c cos θ

ξ = φ′(t) + c sin θ,

with t ∈ [0,+∞) and θ ∈ [0, π). The corresponding jacobian is

J(t, c) = det

(
1 cos θ

φ′′(t) sin θ

)
= sin θ − φ′′(t) cos θ,

which is non-zero ∀ θ 6= arctanφ′′(t), therefore eq.(3.35) well-defines a new

parametrization of the spectrogram, ∀ θ ∈ [0, π)− {arctanφ′′(t)}.
Furthermore,∫∫

p(u, ξ)2 du, dξ =

∫∫
p̃2(t, c) | sin θ − φ′′(t) cos θ| dc dt,

and the thesis follows by observing that θ0 identifies the direction (cos θ0, sin θ0) =(
− φ′′(t)

1+φ′′2(t)
, 1

1+φ′′2(t)

)
, so that sin θ0 − φ′′(t) cos θ0 = 1.

Proof of Proposition 3.17. For each fixed t, the area of the spectrogram

section identified by θ is

Area(θ) =

∫
p̃(t, c) dc =

∫
p(t+ c cos θ, φ′(t) + c sin θ) dc,
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and then

dArea

dθ
=

∫
−c pu sin θ + c pξ cos θ dc =

∫
c pξ · (φ′′(t) sin θ + cos θ) dc;

since (cos θ0, sin θ0) =
(
−φ′′(t)

1+φ′′2(t)
, 1

1+φ′′2(t)

)
, then d

dθ
Area(θ0) = 0. Furthermore,

d2Area

dθ2

∣∣∣∣
θ=θ0

=

∫
c pξ · (φ′′(t) cos θ0 − sin θ0)dc = −

∫
c pξ · (−φ′′(t) cos θ0 + sin θ0)︸ ︷︷ ︸

=1

dc

= −
∫
c pc dc =

[
−c p+

∫
p dc

]
=

∫
p dc.

It follows that assuming ĝ to be compactly supported or rapidly decreasing to

zero we obtain d2Area
dθ2

∣∣
θ=θ0

> 0 and then θ0 is a minimum of Area.

Proof of Proposition 3.18. Let us consider the section of the spectrogram

centered in (t, φ′(t)) and normal to the ridge direction identified by θ0(t) =

− arctan 1
φ′′(t)

for a fixed t, i.e.

p̃(t, c) = p(u(t), ξ(t)) = p(t+ c cos θ0(t), φ′(t) + c sin θ0(t)), c ∈
[
−∆ω

2
,
∆ω

2

]
.

(3.78)

If t ∈ [0,+∞), eq.(3.78) provides a new parametrization for the spectrogram,

through the change of variablesu = t+ c cos θ0(t)

ξ = φ′(t) + c sin θ0(t),
(3.79)

whose jacobian is

J(t, c) = det

(
1− c φ′′′

1+φ′′2(t)
sin θ0(t) cos θ0(t)

φ′′(t) + c φ′′′

1+φ′′2(t)
cos θ0(t) sin θ0(t)

)

= sin θ0 − φ′′(t) cos θ0 − c
φ′′′

1 + φ′′2(t)
= 1− c φ′′′(t)

1 + φ′′2(t)
,

which is equal to 1 if φ′′′(t) = 0 or both φ′′ and φ′′′ are zero (Hp 1). |c| < 1+φ′′2(t)
φ′′′(t)

guarantees that J(t, c) 6= 0, ∀ t. The latter condition is met if the bandwidth of
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the analysis window satisfies ∆ω ≤ 1+L2
1

L2
. According to eq.(3.35),

p̃(t, c) = p(t+c cos θ0(t), φ′(t)+c sin θ0(t)) = ĝ(φ′(t)+c sin θ0(t)−φ′(t+c cos θ0(t))),

that reduces to

p̃(t, c) = ĝ(c (−φ′′(t) cos θ0 + sin θ0(t))o(c)),

whenever c is close to 0. By recalling (−φ′′(t) cos θ0 +sin θ0(t)) = 1 and neglect-

ing the error in Taylor approximation, it holds

p̃(t, c) = ĝ (c) .

and then d
dt
p̃(t, c) = 0.

Proof of Proposition 3.19. A generic characteristic curve can be parametrized

as

(t− c · cos θ0, φ
′(t)− c · sin θ0), t ≥ 0,

where θ0 = θ0(t) = − arctan
(

1
φ′′(t)

)
and c ∈ [−∆ω

2
, ∆ω

2
] — see Fig.3.34. Let us

suppose ĝ to be compactly supported, symmetric and positive.

It is worth observing that the spectrogram value at a point belonging to

a characteristic curve can be obtained by considering the spectrogram section,

i.e. p̃(t, c) = ĝ(c). In addition, the shifting property, R[f(x − a, y − b)](r, θ) =

R[f ](r−a cos θ− b sin θ, θ) allows to write the parametric RT of a TF represen-

tation which is perfectly localized on a point Pcar on a generic characteristic,

i.e.

RPcar(r, θ, t) = ĝ(c) δ(r − c cos θ0 cos θ − c sin θ0 sin θ − t cos θ − φ′(t) sin θ)

= ĝ(c) δ(r − t cos θ − φ′(t) sin θ − c cos(θ − θ0)). (3.80)

The RT of p̃(t, c) is obtained by integrating eq.(3.80) over c, R(r, θ, t) =
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∫
RPcar(r, θ, t) dc, i.e.

R(r, θ, t) =

∫
R
ĝ(c) (r − t cos θ − φ′(t) sin θ − c cos(θ − θ0)) dc

=
1

2π

∫
R
dc ĝ(c)

∫
R
e−ik[r−t cos θ−φ′(t sin θ)−c cos(θ−θ0)] dk

=
1

2π

∫
R
dk e−ik(r−t cos θ−φ′(t) sin θ)

∫
R
ĝ(c)eikc cos(θ−θ0)dc.

Therefore,

R(r, θ, t) =
1

2π

∫
R
g (k cos(θ − θ0)) e−ik(r−t cos θ−φ′(t) sin θ) dk,

and the change of variable k cos(θ − θ0) = k′ finally gives

R(r, θ, t) =
1

2π cos(θ − θ0)
ĝ

(
r − t cos θ − φ′(t) sin θ

cos(θ − θ0)

)
, ∀ θ : |θ − θ0| ∈

[
0,
π

2

)
.

Proof of Proposition 3.20. Let us take R(r, θ, t) derivatives with respect to

variable r, at fixed θ.

2πRr(r, θ, t) =
1

cos2(θ − θ0)
ĝ′
(
r − t cos θ − φ′(t) sin θ

cos(θ − θ0)

)
,

2πRrr(r, θ, t) =
1

cos3(θ − θ0)
ĝ′′
(
r − t cos θ − φ′(t) sin θ

cos(θ − θ0)

)
.

It follows Rr(r(t), θ, t) = 1
2π cos2(θ−θ0)

ĝ′(0) = 0

Rrr(r(t), θ, t) = 1
2π cos3(θ−θ0)

ĝ′′(0) < 0, ∀ θ 6= 0.

Proof of Proposition 3.21. Let us compute R(r, θ, t) derivatives with respect

variable r and θ.

Rr(r, θ, t) =
1

2π cos2(θ − θ0)
ĝ′
(
r − t cos θ − φ′(t) sin θ

cos(θ − θ0)

)
,
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Rθ(r, θ, t) =
sin(θ − θ0)

2π(cos(θ − θ0))2
ĝ

(
r − t cos θ − φ′(t) sin θ

cos(θ − θ0)

)
+

1

2π cos(θ − θ0)
ĝ′
(

(r − t cos θ − φ′(t) sin θ)

cos(θ − θ0)

)
·

· cos(θ − θ0)(t sin θ − φ′(t) cos θ) + sin(θ − θ0)(r − t cos θ − φ′(t) sin θ)

cos2(θ − θ0)

=
sin(θ − θ0)

cos(θ − θ0)
R(r, θ, t) +

−φ′(t) cos θ0 + t sin θ0 + r sin(θ − θ0)

cos(θ − θ0)
Rr(r, θ, t);

it follows

cos(θ − θ0)Rθ + (φ′(t) cos θ0 − t sin θ0 − r sin(θ − θ0))Rr(r, θ, t) = sin(θ − θ0)R.

Proof of Proposition 3.22. The characteristic curves of eq.(3.38) are the

solution of the following system of odesθ̇(τ) = 1

ṙ(τ) = −r(τ) tan(θ(τ)− θ0) + −t sin θ0+φ′(t) cos θ0
cos(θ(τ)−θ0)

,

that is equivalent to the following equation

ṙ(θ) + r(θ) tan(θ − θ0) =
1

cos(θ − θ0)
(−t sin θ0 + φ′(t) cos θ0),

whose solution is

r(θ) = cos(θ − θ0)(−t sin θ0 + φ′(t) cos θ0)

(∫
1

cos2(θ′ − θ0)
dθ′ + c

)
=

= cos(θ − θ0)(−t sin θ0 + φ′(t) cos θ0) (tan(θ − θ0) + k)

= k(−t sin θ0 + φ′(t) cos θ0) · cos(θ − θ0)|+ sin(θ − θ0)(φ′(t) cos θ0 − t sin θ0),

which proves eq.(3.39).

Proof of Proposition 3.23. By assuming φ′(t)
t
≈ φ′′(t), the support of the RT

of a characteristic curve as in eq.(3.80) can be expressed as

δ
(
r − t

√
1 + cot2 θ0 sin (θ − θ0)− c cos (θ − θ0)

)
,
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while eq.(3.39) becomes

δ
(
r − t

√
1 + cot2 θ0 sin(θ − θ0) + k t

√
1 + cot2 θ0 cos(θ − θ0)

)
.

They are equivalent if c = k t
√

1 + cot2 θ0 ⇔ k = c

t
√

1+cot2 θ0
= c | sin θ0|

t
, t > 0.

In particular, k = 0 corresponds to the mapped ridge curve.

Proof of Proposition 3.24. The change of variables in eq.(3.79) gives du dξ =∣∣∣1− c φ′′′

1+φ′′2(t)

∣∣∣ dt dc with
(

1− c φ′′′

1+φ′′2(t)

)
> 0 by hypothesis; it follows

R(r, θ) =

∫∫ [
p̃(t, c) ·

(
1− c φ′′′

1 + φ′′2(t)

)
·

δ(r − t cos θ − φ′(t) sin θ − c cos(θ − θ0))

]
dt dc,

that is

R(r, θ) =

∫∫
R(r, θ, t) dt (3.81)

−
∫∫

c ĝ (c)
φ′′′(t)

1 + φ′′2(t)
δ(r − t cos θ − φ′(t) sin θ − c cos(θ − θ0)) dt dc.

(3.82)

Eq.(3.82) is equal to

− 1

2π

∫∫
dt dc

φ′′′(t)

1 + φ′′2(t)
c ĝ (c)

∫
e−ik(r−t cos θ−φ′(t) sin θ−c cos(θ−θ0)) dk

= − 1

2π

∫∫
dt

φ′′′(t)

1 + φ′′2(t)
e−ik(r−t cos θ−φ′(t) sin θ)

∫
c ĝ (c) eikc cos(θ−θ0)) dc dk

=
i

2π

∫∫
φ′′′(t)

1 + φ′′2(t)
e−ik(r−t cos θ−φ′(t) sin θ)

∫
ic ĝ (c) eikc cos(θ−θ0) dc dk dt;

and by applying FT properties to the last integral, we obtain

=
i

2π

∫∫
φ′′′(t)

1 + φ′′2(t)
e−ik(r−t cos θ−φ′(t) sin θ)g′ (kcos(θ − θ0)) dk dt.

By applying the change of variable k cos(θ−θ0) = k′, the previous equation can
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be written as

=
i

2π

∫∫
φ′′′(t)

cos(θ − θ0)(1 + φ′′2(t))
e
− ik
′(r−t cos θ−φ′(t) sin θ)

cos(θ−θ0) g′(k′) dk′ dt

= − 1

2π

∫
φ′′′(t)

1 + φ′′2(t)

r − t cos θ − φ′(t) sin θ

cos2(θ − θ0)
ĝ

(
r − t cos θ − φ′(t) sin θ)

cos(θ − θ0)

)
dt.

(3.83)

Since 1 + φ′′2(t) = 1 + cot θ2
0(t) = 1/ sin2 θ0, then eq.(3.83) is

= − 1

2π

∫
φ′′′(t) sin2 θ0

r − t cos θ − φ′(t) sin θ

cos2(θ − θ0)
ĝ

(
r − t cos θ − φ′(t) sin θ)

cos(θ − θ0)

)
dt,

and from eq.(3.37) it results

= −
∫
φ′′′(t) sin2 θ0

cos(θ − θ0)
(r − t cos θ − φ′(t) sin θ)R(r, θ, t) dt. (3.84)

Finally, eq.(3.40) follows by replacing eq.(3.84) in eq.(3.82).
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the short-term time-frequency rényi entropy. EURASIP Journal on Ad-

vances in Signal Processing, 2011(1):125, 2011.

206


