105,748 research outputs found

    Expression of Tumor Assosiated and Epithelial-mesenchymal Transition Markers in 2d and 3d Cell Cultures of Mcf-7

    Get PDF
    The target effects on the expression of epithelial-mesenchymal transition regulation molecules are promising for cancer therapy, including breast cancer. 3D cell culture is a model for studying epithelial-mesenchymal transition in vitro and may become a test system for anticancer therapy.Aim of research. The aim of this research was to evaluate and compare the expression of tumor associated and epithelial-mesenchymal transition markers in tumor cells of breast adenocarcinoma (MCF-7 cell line) in 2D and 3D cell culture.Methods. For realization of the aim MCF-7 cell line (breast adenocarcinoma) was chosen as an experimental model in vitro. The monolayer cell culture was cultured in standard conditions (37 0C, 5 % CO2, humidity 95 %). The initial density of inoculated cells was 2 x 104 cells/cm2. The cells were incubated for two days before their use in the experiment. For the initial generation of spheroids the monolayer cell culture was removed off the substrate after the four days of incubation, using 0,25 % Trypsin-EDTA, and placed in nutrient medium with 5 % carboxymethyl cellulose (Bio-Rad, USA) at concentration of 5 x 105 cells/ml. Then the plates were incubated on an orbital shaker (Orbital shaker, PSU-10i, Biosan, Latvia) at 50 rpm for 3–5 hours. Half of culture medium was replenished every 3 days. A spheroid culture was maintained for 14 days. Detection of markers (ER, p53, EpCAM, vim, AE1/AE3, panCK, EGFR) in 2D and 3D cell culture was performed using immunohistochemistry method with primary monoclonal antibodies. Histological samples of cells were photographed to compare the morphological characteristics and the expression of proteins in monolayer and spheroid cultureResults. The results demonstrated that the percentage of tumor marker positive cells (ER+, EGFR+, EpCAM+, panCK+, AE1/AE3+) in monolayer culture is 1.25–2 times than more in spheroid culture. In contrast, tumor spheroids consist of fewer cells with the expression of epithelial markers such as EpCAM and AE1/AE3, but they contain a large number of cells that expressed mesenchymal marker vimentin by 5 % and p53 by 10 %. This may indicate that the cells acquire a mesenchymal phenotype. However, tumor cells of monolayer cell culture were not expressed vimentin.Conclusions. Our results demonstrated the differences of expression of tumor associated and epithelial-mesenchymal transition markers in 2D and 3D breast cancer cell cultures. Thus, the percentage of epithelial markers (Cytokeratines and epithelial cell adhesion molecule) in tumor spheroids is less than in cells of monolayer however spheroids cells begin expressing a mesenchymal marker – vimentin. In 3D cell culture only the outer cell layers expressed tumor associated proteins unlike 2D cell culture in which all of cells showed equally expression. Reduced of manifestation of tumor associated markers in 3D cell culture may indicate an increase of stem properties. These data showed that 3D cell culture more than 2D cell culture characterized processes of epithelial-mesenchymal transition

    Cigarette smoke extract induces a phenotypic shift in epithelial cells: involvement of HIF1α in mesenchymal transition

    Get PDF
    In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-beta and HIF1 alpha signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-beta signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1 alpha knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1 alpha signaling appears to play an important role in this process

    TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)

    Get PDF
    Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon

    Endothelial Cells Expressing Endothelial and Mesenchymal Cell Gene Products in Lung Tissue From Patients With Systemic Sclerosis-Associated Interstitial Lung Disease.

    Get PDF
    OBJECTIVE: To examine whether lung endothelial cells (ECs) from patients with systemic sclerosis (SSc)-associated interstitial lung disease (ILD) express mesenchymal cell-specific proteins and gene transcripts, indicative of the occurrence of endothelial-to-mesenchymal phenotypic transition (EndoMT). METHODS: Lung tissue from 6 patients with SSc-associated pulmonary fibrosis was examined by histopathology and immunohistochemistry. Confocal laser microscopy was utilized to assess the simultaneous expression of EC and myofibroblast molecular markers. CD31+CD102+ ECs were isolated from the lung tissue of 2 patients with SSc-associated ILD and 2 normal control subjects, and the expression of EC and mesenchymal cell markers and other relevant genes was analyzed by quantitative polymerase chain reaction, immunofluorescence microscopy, and Western blotting. RESULTS: Immunohistochemical staining revealed cells expressing the EC-specific marker CD31 in the subendothelial, perivascular, and parenchymal regions of the lungs from all SSc patients. Confocal microscopy identified cells displaying simultaneous expression of von Willebrand factor and α-smooth muscle actin in small and medium-sized arterioles in the SSc lung tissue but not in normal control lungs. CD31+CD102+ ECs isolated from SSc lungs expressed high levels of mesenchymal cell-specific genes (type I collagen, type III collagen, and fibronectin), EC-specific genes (type IV collagen and VE-cadherin), profibrotic genes (transforming growth factor β1 and connective tissue growth factor), and genes encoding EndoMT-related transcription factors (TWIST1 and SNAI2). CONCLUSION: Cells coexpressing EC- and mesenchymal cell-specific molecules are present in the lungs of patients with SSc-associated ILD. CD31+CD102+ ECs isolated from SSc lungs simultaneously expressed mesenchymal cell- and EC-specific transcripts and proteins. Collectively, these observations demonstrate the occurrence of EndoMT in the lungs of patients with SSc-associated ILD

    Clinical significance of epithelial-to-mesenchymal transition in laryngeal carcinoma: Its role in the different subsites

    Get PDF
    Background: During epithelial-to-mesenchymal transition, cancer cells lose adhesion capacity gaining migratory properties. The role of the process on prognosis has been evaluated in 50 cases of laryngeal carcinoma. Methods: E-cadherin, N-cadherin, β-catenin, α-catenin, γ-catenin, caveolin-1, and vimentin immunohistochemical expression were evaluated using a double score based on staining intensity and cellular localization. Results: Cytoplasmic E-cadherin and α/γ catenin staining were associated with a decrease in survival, cytoplasmic β-catenin was associated with advanced stage, and N-cadherin and vimentin expression were associated with poor differentiation and tumor relapse. On the basis of cancer cells, epithelial or mesenchymal morphological and immunophenotypic similarity we identified 4 main subgroups correlated with a transition to a more undifferentiated phenotype, which have a different pattern of relapse and survival. Conclusion: The negative prognostic role of epithelial-to-mesenchymal transition has been confirmed and a predictive role in glottic tumors has been suggested, leading us to propose epithelial-to-mesenchymal transition as an additional adverse feature in laryngeal carcinoma

    Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype

    Get PDF
    Abstract Background Recent studies have indicated the presence of multipotent mesenchymal stromal cells (MSCs) in human lung diseases. Excess airway smooth muscle, myofibroblasts and activated fibroblasts have each been noted in asthma, suggesting that mesenchymal progenitor cells play a role in asthma pathogenesis. We therefore sought to determine whether MSCs are present in the lungs of ovalbumin (OVA)-sensitized and challenged mice, a model of allergic airways disease. Methods Balb/c mice were sensitized and challenged with PBS or OVA over a 25 day period. Flow cytometry as well as colony forming and differentiation potential were used to analyze the emergence of MSCs along with gene expression studies using immunochemical analyses, quantitative polymerase chain reaction (qPCR), and gene expression beadchips. Results A CD45-negative subset of cells expressed Stro-1, Sca-1, CD73 and CD105. Selection for these markers and negative selection against CD45 yielded a population of cells capable of adipogenic, osteogenic and chondrogenic differentiation. Lungs from OVA-treated mice demonstrated a greater average colony forming unit-fibroblast (CFU-F) than control mice. Sorted cells differed from unsorted lung adherent cells, exhibiting a pattern of gene expression nearly identical to bone marrow-derived sorted cells. Finally, cells isolated from the bronchoalveolar lavage of a human asthma patient showed identical patterns of cell surface markers and differentiation potential. Conclusions In summary, allergen sensitization and challenge is accompanied by an increase of MSCs resident in the lungs that may regulate inflammatory and fibrotic responses.http://deepblue.lib.umich.edu/bitstream/2027.42/78265/1/1465-9921-11-127.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/2/1465-9921-11-127.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/3/1465-9921-11-127-S1.DOCPeer Reviewe

    Inducers of epithelial mesenchymal transition and cancer stem cells in malignant pleural effusions

    Get PDF
    The Epithelial to Mesenchymal Transition (EMT) plays a role not only in tumor metastasis but also in tumor recurrence. This process is believed to be tightly linked to the presence of Cancer Stem Cells (CSCs) however, it is still not clear which factors could induce EMT and how it could be a source for CSCs. It has been demonstrated that Malignant Pleural Effusion (MPEs) may represent an excellent source to identify markers and molecular mechanisms involved in EMT and CSCs development. Growth factors, cell differentiation markers and molecular adhesion are involved in some of the crucial neoplastic cell events such as proliferation, metastasis, resistance to chemotherapy and EMT. In this review, we summarize the current understanding of which molecular markers can orchestrate EMT and CSCs in MPEs

    Immunomodulatory effects of human umbilical cord wharton's Jelly-Derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells

    Get PDF
    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases. In this study, we investigated the immunomodulatory effect of umbilical cord derivedmesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately cocultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cellcell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naive T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses. Copyright © Spring 2013, Iran J Allergy Asthma Immunol. All rights reserved
    corecore