
Introduction
 Lung cancer has produced the highest mortality rate in the world, 
current therapy is relatively ineffective and the survival rate at 5 years 
is still only 15% for the advanced disease. The presence of neoplas-
tic cells in the pleural fluid represents a common medical problem 
in cancer patients with advanced neoplastic disease and it leads to 
poor survival [1-8]. Lung and breast cancers cause approximately 
75% of all MPE. However, for around 10% of MPE cases, the primary  
tumor is unknown [9-13]. In MPEs it has been observed that  
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neoplastic cells produce factors that contribute to overcoming the 
protective mesothelial layer. For example, neoplastic cells are capable 
of internalizing the CD44-hyaluronan complex and hydrolyzing it in 
oligosaccharides showing increased permeability in the mesothelial 
layer and angiogenic chemotactic ability [14]. Furthermore, VEGF 
and bFGF produced by neoplastic cells increase the permeability of 
the pleural surface [15]; a low level of endostatin observed in patients 
with malignant pleural effusion increases endothelial cell migration, 
angiogenesis and tumor growth [16]. Microenvironment, hypoxia and 
chemokines can modify the mesothelial cell phenotype. The ability of 
these cells to switch dynamically between different phenotypic states 
led to a series of studies in which different authors demonstrated that 
MPEs could be an excellent source in cancer biology investigation and 
the identification of potential target therapy solutions. Following this, 
studies identified the presence of small sub-populations of cells, also 
named cancer stem cells or cancer initiating cells, within the tumor 
cells, causing the aggressive behaviour of cancer cells [17-19]. The 
presence of these sub-populations, capable of self-renewal and mul-
tipotent differentiation, could add a new element in cancer research, 
explain the concept of heterogeneity, relapse after treatment and resis-
tance to conventional chemotherapies.

Inducers of EMT
 The expression of EMT markers and of their related transcription 
factors has often been studied in stabilized cell lines. So far, very lim-
ited analysis has been performed in fresh cultures from primary tu-
mors. It is widely accepted that cancer stem cells are represented by 
a distinct subset of cancer cells. In fact, in comparison with cancer 
cells, CSCs are distinct in their ability to self-renewal, form tumors in 
immune-deficient mice and differentiate in other cell types. This dis-
tinct population was initially identified in leukemias, but subsequently 
identified in several solid malignancies (breast, lung, prostate, colon, 
brain, head and neck, liver) as well as in MPEs [20-25]. In pleural ef-
fusions, cancer cells are susceptible to anoikis and apoptotic triggers, 
grow in suspension and develop compact multicellular spheroid ag-
gregates. These cellular aggregates can resist against anoikis and apop-
tosis, and probably chemotherapeutic agents. It has been observed 
that the presence of elevated integrin attachments, available inside 
the tridimensional aggregate configuration, favors the protection and 
survival of cells [26]. In patients with ovarian cancer, peritoneal fluids 
and ascites, frequently exhibit spheroid aggregates, raising interest in 
their formation and function [27]. An association between contractile 
behavior, compact spheroid-forming ability, and the invasive capaci-
ty of cancer cells in 3D has been detected [26]. Cancer cells are able 
to form spheroids [28-30]. It has been suggested that there could be 
a positive correlation between spheroid formation and tumorigenity 
[30], such as the possibility that spheroid cancer cells gain invasive 
properties by undergoing EMT [26,31]. Epithelial plasticity is the 
ability of the cells to switch from a different state of phenotype, and 
the EMT is considered a transition from epithelial to mesenchymal 
phenotype (Figure 1 A,B,C). On the base of function and pathways, 
EMT shows different subtypes: embryonic development, tissue repair, 
inflammation and cancer [32]. The progression of most carcinomas  
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toward malignancy is associated with the loss of epithelial differentia-
tion and by switching towards mesenchymal phenotype with increas-
ing cell motility and invasion. Recent studies have demonstrated that 
EMT plays a critical role not only in tumor metastasis but also in tu-
mor recurrence, which is believed to be tightly linked to the presence 
of CSCs [33-35]. It is still not clear which factors could induce EMT 
and how the EMT could be a resource for CSCs [36]. Hypoxia but also 
cytokines can be factors inducing EMT activation but also transcrip-
tion factors and adhesion molecules are differentially expressed [37].

Exosome

 Recently, studies have evaluated the biology and composition of 
exosomes in cancer development has been observed that exosomes 
derived from tumor cells, communicate with stromal cells and 
vice-versa to promote tumor growth [38]. Exosomes released from 
cancer cells, may affect normal cells through the intercellular trans-
fer of oncogenic materials such as DNA, mRNA, regulatory miRNA, 
oncoproteins and MHC class I and II proteins [39,40]. Furthermore, 
tumor and stromal cells can regulate the invasiveness of cancer cells 
through exosome-mediated delivery of protein and miRNA in the 
regulation of EMT-related pathways. In lung cancer cells and in late 
stage of lung cancer serum, an involvment of exosome as drivers of 
epithelial to mesenchymal transition has been recently reported, fur-
thermore Lin et al., demonstrated that contents exosomes miR-205-5p 
and miR-200b were markedly increased in malignant pleural effusion 
[41,42].

E-cadherin

 Down-regulation of E-cadherin and up-regulation of N-cadherin 
has been reported in tumor cells suggesting that EMT can occur het-
erogeneously and/or transiently within an invasive tumor [43]. On the 
contrary Zhao et al., observed that tumor cells in the pleural effusions 
mainly expressed an epithelial E-cadherin phenotype marker. The 
high expression of E-cadherin was associated with EGFR mutation 
predicting better outcome [44].

Vimentin and LASP-1
 Vimentin, an intermediate filament protein normally expressed 
in mesenchymal cells, can be expressed in epithelial cells undergo-
ing EMT, in both physiological and pathological conditions [45]. Vi-
mentin and N-cadherin up-regulation and reduction of E-cadherin 
protein expression are representative of EMT markers in several tu-
mor types. In breast and lung cancer, up-regulation of EMT markers 
like Vimentin, N-cadherin, cadherin-11, smooth- muscle-actin, and 
the reduction of characteristic epithelial markers like E-cadherin and 
cytokeratin has been frequently observed and associated with high 
aggressiveness and metastatic activity [37]. In papillary thyroid can-
cer in vitro studies demonstrated that Vimentin was required for the 
development and maintenance of a mesenchymal morphology and 
invasiveness, concluding that EMT is a common event and that Vi-
mentin regulates EMT in thyroid cancer [46]. EMT is regulated by 
the activation of a cascade of transcription factors among which the 
most frequently involved are Snail, Slug and Twist. Twist is a highly 
conserved basic helix-loop-helix transcriptional factor. Its expression 
induces mesenchymal markers such as N-cadherin, Vimentin and fi-
bronectin [47]. However the loss of E-cadherin expression is neces-
sary but not sufficient to trigger EMT in cells over-expressing Twist. 
In addition, restoration of E-cadherin expression does not revert the 
mesenchymal phenotype [48]. Recently, has been reported a relation-
ship between vimentin and LASP 1 in undifferentiated HCC cell lines. 
Authors sustained that Vimentin (VIM) is a new molecular partner of 
LASP-1, an important hallmark of the epithelial-mesenchymal transi-
tion [49]. Further studies will be needed to verify a possible relation-
ship between LASP-1 and cancer cells derived from malignant pleural 
effusion.

Twist
 Twist, a highly conservative basic Helix-Loop-Helix (bHLH) tran-
scription factor, is overexpressed in a variety of human tumors and 
associated to cancer invasion, metastasis and poor prognosis. Also it 
plays an important role in multiply processes including angiogenesis, 
resistance to apoptosis, multidrug resistance and EMT [50- 53]. Twist 
expression enhanced cell migration, tumor-sphere formation and 
stem-like markers [54] and up-regulation has been reported in inva-
sive breast cancer, esophageal, parathyroid, hepatocellular and human 
bladder carcinoma [46,55-57]. In MPEs, Twist in adherent and spher-
oid cells, showed an extremely variable pattern of expression from 
sample to sample, which under scores the heterogeneity of malignant 
pleural effusion cells.

Snail and slug
 Snail (Snai1) and Slug (Snai2), evolutionarily conserved members 
of the Snail family of zinc finger transcription factors, play an import-
ant role in embryonic development. They regulate the process of EMT, 
characterized by loss of intercellular adhesions and acquisition of a 
migratory phenotype [58]. Snail and Slug have been shown to be in-
volved in pancreatic cancer development [59] and their effects were 
observed to be most active at the invasive front of tumors in invasive 
human breast cancers [60].

TGF-β
 Inflammatory cells are the main source of growth factors. In MPEs, 
neoplastic cells are frequently associated to a variable presence of in-
flammatory cells. TGF-β1 is an inductor of pleurodes and regulate 
proliferation, migration and differentiation cell, and a potent che-
moattractant for fibroblasts. Authors observed that mesothelial cells  

Figures A and B: The EMT mechanism transform MPE cells like from epithe-
lial to mesenchymal cell like with suppression of epithelial and activation of 
mesenchymal regulator markers.

Figure C: A subset of MPEs cells, known as CSCs, are tumorigenic and these 
cells are defined by their capacity for self renewal and differentiation plasticity. 
Furthermore these cells show CSCs and EMT markers suggesting that EMT is 
also thought to be a mechanism by which CSCs form.
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stimulated by TGF-β leads to collagen synthesis, matrix proteins, ma-
trix metalloproteinase-1 and 9, and tissue inhibitor of matrix metal-
loproteinases-2 [61,62]. EMT can be induced or regulate by TGF-β 
not only during embryogenesis but also in fibrosis and cancer. TGF-β 
is considered a key effector of EMT during cancer progression and 
metastasis. Studies showed that transgenic expression of activated 
TGF-β1 correlates with invasive spindle cell carcinomas. TGF-β1 pro-
duction by cancer cell triggers EMT, enhances angiogenesis providing 
an exit route for migratory mesenchymal cells [63].

VEGF
 Vascular Endothelial Growth Factor (VEGF) is a permeability and 
angiogenic factor mediating neovascularization [64]. Its expression is 
up-regulated in activated pleural mesothelial cells and produced in 
large amount in inflammatory and malignant effusions [65-67]. VEGF 
control mesothelial cells permeability throught phosphorylation of 
adherens junction proteins and dynamic interactions between molec-
ular adhesions. Exposure to noxious stimuli, the interaction of surface 
ligands with intercellular molecules expressed on mesothelial cells can 
cause cell migration and dispersion of high molecular weight proteins 
across the pleural membrane leading pleural effusion creation VEGF 
stimulation of normal epithelial cells and differentiated carcinoma 
cells can induce EMT [68,69], at the same time, hypoxia induces EMT 
in mesothelial cells by activation of HIF-1α, the major driver of VEGF 
expression in tumors [70,71].

PDGF
 Mesothelial cells are able to produce Platelet-Derived Growth Fac-
tor (PDGF) a mitogenic cytochine that stimulate hyaluronan produc-
tion and stimulate growth of fibroblast. Among PDGF family poly-
peptide chains encoded by four genes known as PDGF-A, B, C, D, 
PDGF factor D (PDGF-D) overexpression has observed in a variety of 
cancers. Overexpression of PDGF-D cells showed loss or relocation of 
E-cadherin, increased expression levels of vimentin that taken togeth-
er contributes to EMT in human cancer [72].

Neurotrophins and TrK receptors
 Recently, particular interest is given to the neurotrophin growth 
factor family. The term Neurotrophins (NTs), including Nerve 
Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), 
Neurotrophin-3 (NT-3), NT-4/5 and NT-6, refers to a family of related 
polypeptide growth factors whose activities were originally related to 
a variety of neural cell types. The biological effects of NTs are mediat-
ed through two unrelated classes of cell-surface membrane receptors 
characterized by different binding affinities and molecular weights 
[73,74]. All the NTs interact with a transmembrane glycol-protein 
without a direct catalytic function, the 75 kDa low-affinity p75 recep-
tor [75]. p75 receptor belongs to the tumor necrosis factor receptor 
family. NTs also bind distinct members of a superfamily of 140 - 145 
kDa high affinity transmembrane tyrosine kinase receptors known as 
Trks [76]. NGF interacts with TrkA, BDNF and NT-4/5 with TrkB and 
NT-3 with TrkC receptor. Nts are involved in the transformation and 
tumor progression of many types of solid tumors and hematological 
malignancies [77]. NTs and their receptors are widely expressed in 
many lung cancers [78] and this expression suggests that NTs may 
be involved in controlling growth and differentiation of human lung 
cancer. In particular, the TrkB/ BDNF axis has a very important role 
in the proliferation, differentiation and tumor invasion and, further-
more, has been reported that TrkB is a negative prognostic factor in 
lung cancer [79]. Despite the growing interest in the NT system in  

several lung diseases and in lung cancer [80-84], their role in ma-
lignant pleural effusion has been investigated only sparsely [85]. In 
vitro cell cultures obtained from lung adenocarcinoma pleural effu-
sion showed that TrkB is required for the maintenance of cells with 
slow proliferation that are still capable of growing in non-adherent 
conditions, rather than for the survival of progenitor and terminally 
differentiated cells [86]. TrkB is considered a promoter of EMT and 
anoikis resistance. Authors reported that TrkB is an inducer of EMT in 
head and neck, colorectal cancer and, recently, in human salivary ad-
enoid cystic and endometrial carcinoma [87-89]. In metastatic breast 
cancers, the acquisition of metastatic ability, which leads to clinically 
incurable disease and poor survival, has been associated with acquisi-
tion of EMT program and CSCs via activation of PI3K/AKT and IL6/
JAK2/STAT3 signaling pathways [90].

Cancer Stem Cell Markers
 It has been recently demonstrated that MPEs could be an excel-
lent source for growing in vitro and in vivo cell cultures reproducing 
the natural heterogeneity of primary lung adenocarcinomas. Further-
more, the presence and proliferation of cancer cells in pleural effusion 
may be mediated by cancer stem cells, which also risk undergoing 
Epithelial Mesenchymal Transition (EMT). In the case of MPEs, flu-
ids contain a population with enormous self-renewal and regenera-
tion capacity, ability to escape apoptosis and resistance to anoikis. In 
MPEs, putative CSCs have been identified using a variety of markers. 
The identification of CSCs is carried out on the basis of molecular 
expression markers. However, these markers are not always and uni-
formly expressed across tumor types, for this reason the topic is still 
under discussion.

ALDH
 Aldehyde Dehydrogenase (ALDH) is a marker frequently used 
to distinguish normal and malignant stem/progenitor cells. Through 
oxidation of retinol to retinoic acid, ALDH is involved in early stem 
cell development [91]. Initially used to sort haematopoietic stem 
cells [92], ALDH contributes to drug resistance through the detoxi-
fication of many cytotoxic agents and has been reported as a reliable 
CSC marker in several tumor types [92-94]. Isolated ALDH1- positive 
cells from stable cell lines show features of CSC. This has been cor-
related with poor prognosis for patients with early-stage NSCLC [95]. 
Recently, through primary cultures obtained from MPEs, authors 
have described the existence of cells with ALDH1 activity by FACS 
analysis both in adherent and spheroid culture [96]. Results showed 
that in the majority of samples analyzed, the percentage of ALDHbr 
(ALDH-bright) cells increased upon culturing in spheroid conditions, 
providing information about the presence of putative CSC in MPE 
primary cultures [29].

CD133
 Another marker used to identify CSCs is the CD133, a member 
of transmembrane glycoproteins. CD133, also known as prominin-1, 
is a cell-surface transmembrane glycoprotein that has been used in 
the identification of putative CSCs in several malignant tumors. These 
cells have shown increased tumorigenic potential in transplantation 
studies in vitro and in vivo and, in clinical studies, an association with 
poor prognoses and distant metastases [97-99] however, the exact 
function of CD133 has not yet been established. In NSCLC patients, 
significant increase in CD133 cells has been observed suggesting the 
involvment of this cell population in tumor growth vasculogenesis. 
Eramo et al., were able to isolate small niche of CD133 from SCLC  
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and NSCLC observing that CD133 cell population showed ability to 
self-renew but were not tumorigenic [100]. In a study of CSCs mark-
ers in MPEs, authors observed three different combination patterns of 
positive or negative protein expression of Nanog, OCT-4 and CD133 
observing that the rates of immunoreactivity for these three CSC-rep-
resentative markers range were from 15% to 90% associated to vari-
ations and combinations of their expression probably due to pleural 
effusion intratumoral heterogeneity [101].

OCT-4
 OCT-4 and Nanog are both transcription factors essential for nor-
mal pluripotent cell development. Nanog is chiefly responsible for 
differentiation during embryogenesis whereas OCT-4 may have long-
term influences on both tissue proliferation and differentiation [102]. 
OCT-4 is especially expressed in embryonic stem cells and germ cells, 
and has been detected in specific types of testicular germ-cell tumors. 
Moreover, it is also preferentially expressed in undifferentiated human 
ESCs, pancreatic islets, and diffuse-type gastric cancers. Therefore, it 
has been suggested that OCT-4 contributes to maintaining stem cell 
properties. However, several recent reports have suggested that as 
many as 25% of the cancer cells within certain tumors have the prop-
erties of CSCs [102]. Data suggested that cancer cells show various cell 
surface markers and the use of more than one marker to isolate CSCs 
might increase the possibility to detect cell sub-population. Therefore 
more investigation should be done in order to detect more markers to 
identify CSCs in MPEs.

Conclusion
 The identification of more efficient therapies for the treatment 
of malignant pleural effusion in patients with metastatic lung can-
cer is crucial to understand the mechanisms that cause current fail 
treatment. Characterization of CSCs in malignant pleural effusion 
and recent understanding of EMT contributed to better know about 
environment, behavior and prognosis of this tumor. Advances have 
been made towards elucidating causes and mechanisms of EMT in 
malignant pleural effusion considering EMT process as one of pos-
sible mechanisms through which CSCs are generated. However, be-
yond identification and characterization of cell surface markers, there 
is still much that remains unknown about CSCs and EMT interaction 
including the mechanisms they utilize to maintain their chemoresis-
tance.
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