54 research outputs found

    Symbolic Limited Lookahead Control for Best-effort Dynamic Computing Resource Management

    Get PDF
    We put forward a new modeling technique for Dynamic Resource Management (DRM) based on discrete events control for symbolic logico-numerical systems, especially Discrete Controller Synthesis (DCS). The resulting models involve state and input variables defined on an infinite domain (Integers), thereby no exact DCS algorithm exists for safety control. We thus formally define the notion of limited lookahead, and associated best-effort control objectives targeting safety and optimization on a sliding window for a number of steps ahead. We give symbolic algorithms, illustrate our approach on an example model for DRM, and report on performance results based on an implementation in our tool ReaX

    Combined power and performance management of virtualized computing environments using limited lookahead control

    Get PDF
    There is growing incentive to reduce the power consumed by large-scale data centers that host online services such as banking, retail commerce, and gaming. Virtualization is a promising approach to consolidating multiple online services onto a smaller number of computing resources. A virtualized server environment allows computing resources to be shared among multiple performance-isolated platforms called virtual machines. By dynamically provisioning virtual machines, consolidating the workload, and turning servers on and off as needed, data center operators can maintain desired service-level agreements with end users while achieving higher server utilization and energy efficiency. This thesis develops an online resource provisioning framework for combined power and performance management in a virtualized computing environment serving sessionbased workloads. We pose this management problem as one of sequential optimization under uncertainty and solve it using limited lookahead control (LLC), a form of modelpredictive control. The approach accounts for the switching costs incurred while provisioning physical and virtual machines, and explicitly encodes the risk of provisioning resources in an uncertain and dynamic operating environment.We experimentally validate the control framework on a multi-tier e-commerce architecture hosting multiple online services. When managed using LLC, the cluster saves, on average, 41% in power-consumption costs over a twenty-four hour period when compared to a system operating without dynamic control. The overhead of the controller is low, compared to the control interval, on the order of a few seconds. We also use trace-based simulations to analyze LLC performance on server clusters larger than our testbed, and show how concepts from approximation theory can be used to further reduce the computational burden of controlling large systems.Ph.D., Computer Engineering -- Drexel University, 200

    A model-based approach for automatic recovery from memory leaks in enterprise applications

    Get PDF
    Large-scale distributed computing systems such as data centers are hosted on heterogeneous and networked servers that execute in a dynamic and uncertain operating environment, caused by factors such as time-varying user workload and various failures. Therefore, achieving stringent quality-of-service goals is a challenging task, requiring a comprehensive approach to performance control, fault diagnosis, and failure recovery. This work presents a model-based approach for fault management, which integrates limited lookahead control (LLC), diagnosis, and fault-tolerance concepts that: (1) enables systems to adapt to environment variations, (2) maintains the availability and reliability of the system, (3) facilitates system recovery from failures. We focused on memory leak errors in this thesis. A characterization function is designed to detect memory leaks. Then, a LLC is applied to enable the computing system to adapt efficiently to variations in the workload, and to enable the system recover from memory leaks and maintain functionality

    Multiple-objective sensor management and optimisation

    No full text
    One of the key challenges associated with exploiting modern Autonomous Vehicle technology for military surveillance tasks is the development of Sensor Management strategies which maximise the performance of the on-board Data-Fusion systems. The focus of this thesis is the development of Sensor Management algorithms which aim to optimise target tracking processes. Three principal theoretical and analytical contributions are presented which are related to the manner in which such problems are formulated and subsequently solved.Firstly, the trade-offs between optimising target tracking and other system-level objectives relating to expected operating lifetime are explored in an autonomous ground sensor scenario. This is achieved by modelling the observer trajectory control design as a probabilistic, information-theoretic, multiple-objective optimisation problem. This novel approach explores the relationships between the changes in sensor-target geometry that are induced by tracking performance measures and those relating to power consumption. This culminates in a novel observer trajectory control algorithm based onthe minimax approach.The second contribution is an analysis of the propagation of error through a limited-lookahead sensor control feedback loop. In the last decade, it has been shown that the use of such non-myopic (multiple-step) planning strategies can lead to superior performance in many Sensor Management scenarios. However, relatively little is known about the performance of strategies which use different horizon lengths. It is shown that, in the general case, planning performance is a function of the length of the horizon over which the optimisation is performed. While increasing the horizon maximises the chances of achieving global optimality, by revealing information about the substructureof the decision space, it also increases the impact of any prediction error, approximations, or unforeseen risk present within the scenario. These competing mechanisms aredemonstrated using an example tracking problem. This provides the motivation for a novel sensor control methodology that employs an adaptive length optimisation horizon. A route to selecting the optimal horizon size is proposed, based on a new non-myopic risk equilibrium which identifies the point where the two competing mechanisms are balanced.The third area of contribution concerns the development of a number of novel optimisation algorithms aimed at solving the resulting sequential decision making problems. These problems are typically solved using stochastic search methods such as Genetic Algorithms or Simulated Annealing. The techniques presented in this thesis are extensions of the recently proposed Repeated Weighted Boosting Search algorithm. In its originalform, it is only applicable to continuous, single-objective, ptimisation problems. The extensions facilitate application to mixed search spaces and Pareto multiple-objective problems. The resulting algorithms have performance comparable with Genetic Algorithm variants, and offer a number of advantages such as ease of implementation and limited tuning requirements

    Energy optimization methods for Virtual Machine Placement in Cloud Data Center

    Get PDF
    The Information Technology industry has been upheaved by the influx of cloud computing. The extension of Cloud computing has resulted in the creation of huge data centers globally containing numbers of computers that consume large amounts of energy resulting in high operating costs. To reduce energy consumption providers must optimize resource usage by performing dynamic consolidation of virtual machines (VMs) in an efficient way. The problems of VM consolidation are host overload detection, host under-load detection, VM selection and VM placement. Each of the aforestated sub-problems must operate in an optimized manner to maintain the energy usage and performance. The process of VM placement has been focused in this work, and energy efficient, optimal virtual machine placement (E2OVMP) algorithm has been proposed. This minimizes the expenses for hosting virtual machines in a cloud provider environment in two different plans such as i) reservation and ii) on-demand plans, under future demand and price uncertainty. It also reduces energy consumption. E2OVMP algorithm makes a decision based on the gilt-edged solution of stochastic integer programming to lease resources from cloud IaaS providers. The performance of E2OVMP is evaluated by using CloudSim with inputs of planet lab workload. It minimized the user’s budget, number of VM migration resulting efficient energy consumption. It ensures a high level of constancy to the Service Level Agreements (SLA).Keywords: Cloud resource management; virtualization; dynamic consolidation; stochastic integer programming (SIP)*Cite as: Esha Barlaskar, N. Ajith Singh, Y. Jayanta Singh, “Energy optimization methods for Virtual Machine Placementin Cloud Data Center†ADBU J.Engg.Tech., 1(2014) 0011401(7pp

    Softwarization in Future Mobile Networks and Energy Efficient Networks

    Get PDF
    The data growth generated by pervasive mobile devices and the Internet of Things at the network edge (i.e., closer to mobile users), couple with the demand for ultra-low latency, requires high computation resources which are not available at the end-user device. This demands a new network design paradigm in order to handle user demands. As a remedy, a new MN network design paradigm has emerged, called Mobile Edge Computing (MEC), to enable low-latency and location-aware data processing at the network edge. MEC is based on network function virtualization (NFV) technology, where mobile network functions (NFs) that formerly existed in the evolved packet core (EPC) are moved to the access network [i.e., they are deployed on local cloud platforms in proximity to the base stations (BSs)]. In order to reap the full benefits of the virtualized infrastructure, the NFV technology shall be combined with intelligent mechanisms for handling network resources. Despite the potential benefits presented by MEC, energy consumption is a challenge due to the foreseen dense deployment of BSs empowered with computation capabilities. In the effort to build greener 5G mobile network (MN), we advocate the integration of energy harvesting (EH) into future edge systems

    Energy Savings Through Multi-Level Security Clients

    Get PDF
    In a multi-desktop environment, where users are required to access separate desktops to use different systems due to security requirements, the redundant desktop computers present a gross inefficiency in relation to power consumption even if each individual system is thoroughly examined and overhauled for energy efficiency. Several organizations require the use of separate networks and computer systems to perform different functions or access different data. The separation of networks is often the consequence of the need for security between the information and data on each individual system. The military is an excellent example of this situation. The need to separate classified, secret, and top-secret information has resulted in the need for access to several separate networks. This case study will measure the power savings through consolidating multiple desktop computers into one multi-level security client

    Towards green computing in wireless sensor networks: controlled mobility-aided balanced tree approach

    Get PDF
    Virtualization technology has revolutionized the mobile network and widely used in 5G innovation. It is a way of computing that allows dynamic leasing of server capabilities in the form of services like SaaS, PaaS, and IaaS. The proliferation of these services among the users led to the establishment of large-scale cloud data centers that consume an enormous amount of electrical energy and results into high metered bill cost and carbon footprint. In this paper, we propose three heuristic models namely Median Migration Time (MeMT), Smallest Void Detection (SVD) and Maximum Fill (MF) that can reduce energy consumption with minimal variation in SLAs negotiated. Specifically, we derive the cost of running cloud data center, cost optimization problem and resource utilization optimization problem. Power consumption model is developed for cloud computing environment focusing on liner relationship between power consumption and resource utilization. A virtual machine migration technique is considered focusing on synchronization oriented shorter stop-and-copy phase. The complete operational steps as algorithms are developed for energy aware heuristic models including MeMT, SVD and MF. To evaluate proposed heuristic models, we conduct experimentations using PlanetLab server data often ten days and synthetic workload data collected randomly from the similar number of VMs employed in PlanetLab Servers. Through evaluation process, we deduce that proposed approaches can significantly reduce the energy consumption, total VM migration, and host shutdown while maintaining the high system performance
    corecore