
ELECTRICAL ENGINEERING

A MODEL INTEGRATED FRAMEWORK FOR DESIGNING

AND OPTIMIZATION OF SELF-MANAGING COMPUTING SYSTEMS

JIA BAI

Thesis under the direction of Professor Sherif Abdelwahed

This thesis addresses the problem of managing computing systems us-

ing an integration of model-based control techniques and efficient AI search

strategies. The proposed control approach uses the system model to fore-

cast all future system behavior up to a certain horizon and then searches for

the best path for the system based on a given utility function. In practical

computing systems, however, the large number of control (tuning) options

directly affects the computational overhead of the control module which ex-

ecutes in the background at run-time, and ultimately slows down the overall

system. To handle this problem, several search algorithms are introduced to

improve the controller’s performance.

This thesis also presents a model integrated framework, referred to as

the Automatic Control Modeling Environment (ACME), to facilitate the use

of control-based technology for self-management in computation systems.

Control-theoretic concepts like above have been investigated and applied

successfully to automate the management of computation systems of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ETD - Electronic Theses & Dissertations

https://core.ac.uk/display/216048426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


control technology. ACME is a domain-specific graphical modeling environ-

ment with automated synthesis tools. The framework allows domain en-

gineers to develop models for general computation systems and to capture

their performance requirements and operational constraints. The framework

can automatically generates executable codes for the controllers based on the

given system model and specifications.

A case study of an online processor power management is used to demon-

strate the effectiveness of the new search techniques for the model-based

control approach as well as the application of the ACME.

Approved Date



A MODEL INTEGRATED FRAMEWORK FOR DESIGNING

AND OPTIMIZATION OF SELF-MANAGING COMPUTING SYSTEMS

By

Jia Bai

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

August, 2008

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Sherif Abdelwahed



ACKNOWLEDGEMENTS

The work contained in this thesis could not have been accomplished with-

out the help and support of numerous individuals. First and foremost, my

advisor, Professor Sherif Abdelwahed, has been an invaluable resource. I of-

fer Professor Abdelwahed special thanks for not only giving me sage advice,

but for leading me to the way of scientific research.

I would also like to thank Professor Gabor Karsai, our institutes engineer

Di Yao, and my fellow graduate students, Furui Wang, Tripti Saxena, Liang

Dai, Abhishek Dubey, Aparna Barve and Jonathan Wellons. Many technical

revisions were made through our discussions, and I genuinely appreciate your

friendship. Thanks to those all who have kept my spirits high while I was

completing this research.

Most importantly, I would like to thank my parents for their love and

support from the other side of the Pacific ocean. All my successes are due to

the opportunities you have provided me, and I am forever grateful.

This thesis was supported in part through a grant from the NSF SOD

program, contract number: CNS-0804230

ii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

II. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . 7

General View of Control Approaches . . . . . . . . . . . . 8
Control Categories . . . . . . . . . . . . . . . . . . . . . . 11

PID Feedback Control . . . . . . . . . . . . . . . . 11
Feed-Forward Control . . . . . . . . . . . . . . . . . 13
Adaptive Control . . . . . . . . . . . . . . . . . . . 14
Fuzzy Control . . . . . . . . . . . . . . . . . . . . . 16
Model Predictive Control . . . . . . . . . . . . . . . 16
Stochastic Control . . . . . . . . . . . . . . . . . . 17
Optimal Control . . . . . . . . . . . . . . . . . . . . 18

III. LLC APPROACH DESIGN . . . . . . . . . . . . . . . . . . . 20

Hybrid System Model . . . . . . . . . . . . . . . . . . . . 20
QoS Specifications . . . . . . . . . . . . . . . . . . . . . . 22
Controller Design . . . . . . . . . . . . . . . . . . . . . . . 23
Control Algorithm . . . . . . . . . . . . . . . . . . . . . . 25
Characterizing LLC Performance . . . . . . . . . . . . . . 27

IV. ENHANCED SEARCH TECHNIQUES . . . . . . . . . . . . 30

Uniform-cost Search . . . . . . . . . . . . . . . . . . . . . 30
A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . 37
Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . 38

iii



V. ACME DEVELOPMENT . . . . . . . . . . . . . . . . . . . . 41

ACME Overview . . . . . . . . . . . . . . . . . . . . . . . 41
Architecture . . . . . . . . . . . . . . . . . . . . . . 43
Data Collection . . . . . . . . . . . . . . . . . . . . 43
System Dynamics and Adaptation . . . . . . . . . . 44

ACME Meta-Models . . . . . . . . . . . . . . . . . . . . . 44
Architecture Models . . . . . . . . . . . . . . . . . 45
Data Collection Models . . . . . . . . . . . . . . . . 47
Controller Model . . . . . . . . . . . . . . . . . . . 49
System Dynamics Model . . . . . . . . . . . . . . . 50

ACME Interpreter . . . . . . . . . . . . . . . . . . . . . . 52

VI. CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Problem Formulation . . . . . . . . . . . . . . . . . . . . . 57
Processor Model . . . . . . . . . . . . . . . . . . . . 58
Model Dynamics . . . . . . . . . . . . . . . . . . . 60
Control Problem . . . . . . . . . . . . . . . . . . . 61

Performance Evaluation . . . . . . . . . . . . . . . . . . . 62
Advanced Search . . . . . . . . . . . . . . . . . . . 62
ACME Model . . . . . . . . . . . . . . . . . . . . . 65

VII. CONCLUSION AND FUTURE RESEARCH . . . . . . . . . 71

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iv



LIST OF TABLES

Table Page

I.1. Table of Notation . . . . . . . . . . . . . . . . . . . . . . . . 6

III.1. The LLC Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

IV.1. Uniform-cost search algorithm . . . . . . . . . . . . . . . . . 31

VI.1. Comparison with systems without control . . . . . . . . . . 68

v



LIST OF FIGURES

Figure Page

II.1. Block diagram of a control system . . . . . . . . . . . . . . 9

III.1. Conceptual Structure of the Online Controller . . . . . . . . 24

III.2. The limited lookahead control approach . . . . . . . . . . . 26

IV.1. Generation of the heuristic table . . . . . . . . . . . . . . . 35

IV.2. Visualization of the beam search . . . . . . . . . . . . . . . 39

V.1. ACME design process . . . . . . . . . . . . . . . . . . . . . 42

V.2. meta-model of the architecture modeling . . . . . . . . . . . 45

V.3. meta-model of the ARMA estimator . . . . . . . . . . . . . 48

V.4. LLC meta-model . . . . . . . . . . . . . . . . . . . . . . . . 50

V.5. meta-model of the System Dynamics . . . . . . . . . . . . . 51

V.6. Navigating the object network . . . . . . . . . . . . . . . . . 53

VI.1. (a) A queueing model of the processor and (b) a hybrid
automaton representation of processor operating modes . . . 58

VI.2. Comparing the node extended for different search strategies 64

VI.3. Comparing the time spent for different search strategies . . 64

VI.4. An ACME system implementation . . . . . . . . . . . . . . 65

VI.5. Valid control input set modeling . . . . . . . . . . . . . . . 67

VI.6. Performance of power management system . . . . . . . . . . 68

vi



CHAPTER I

INTRODUCTION

There has been an exponential increase in the complexity of computer

systems in recent times. These systems often host information technology

applications vital to transportation, online banking and shopping, military

command and control, among others. In addition to the increasing complex-

ity, such systems also need to satisfy stringent performance requirements,

such as service delay bounded by a relatively small constant. Moreover,

these systems operate in highly dynamic environments, where the workload

to be processed may be time varying and hardware or software components

may fail or degrade during system operations. In order to achieve the perfor-

mance requirements while operating in such dynamic environments, numer-

ous performance-related parameters must be continuously monitored, and if

needed, optimized to respond rapidly to time-varying operating conditions.

The advent of corporate computer systems, where a combination of dif-

ferent technologies like networks is used has made the conventional, manual

management of computing systems very difficult, time-consuming, and error-

prone. There is an increasing need for these systems to possess autonomic

or self managing execution environment, thus, requiring minimal human in-

tervention. In such an autonomic managing environment, the systems will

receive high-level objectives from human administrators [49] and maintain the

specified requirements by adaptively tuning key operating parameters [35].

1



Control-theoretic strategies have been recently applied successfully to the

design and verification of various adaptive resource management schemes in

computation systems. This approach offers some important advantages over

rule-based policies for performance management in that a generic control

framework can address a variety of problems, such as power management,

resource allocation and provisioning, by using the same basic control con-

cepts. If system dynamics are precisely modeled and the changing environ-

mental parameters are accurately estimated, the appropriate run-time con-

trol algorithms can be effectively developed to realize system self-regulation

and achieve desired QoS objectives. Moreover, the feasibility or stability of

the proposed control scheme with respect to the performance metrics can be

verified prior to actual deployment. Examples of control-based resource man-

agement strategies include task scheduling [62, 86], QoS guarantees in web

servers [61], resource allocation control [38, 77], network flow control [48],

and power management [9].

A generic model-based control has also been designed [3, 43, 44] to address

self-managing problems in computing systems. A switching hybrid-system

model, previously introduced in [2], is adopted to capture the dynamics of

systems having a finite control-input set. Using this system model, a lim-

ited look-ahead control (LLC) technique is developed where control actions

are obtained by optimizing system behavior, as forecast by a mathemati-

cal model, for the specified performance criteria over a limited look-ahead

prediction horizon. Both the control objectives and operating constraints

are represented explicitly in the multi-objective optimization problem and

solved for each time instant. The optimization problem is to optimize a

2



multi-variable objective function specifying the trade-offs between achiev-

ing the desired requirements and the corresponding cost incurred in terms

of resource usage. For example, a controller may be required to meet a

certain response time for a time-varying workload while minimizing system

power consumption. This method can be applied to a variety of performance

management problems, from systems with simple dynamics to more com-

plex systems exhibiting non-linear behavior or ones with long delay or dead

times. This method can also accommodate changes to the behavioral model

itself caused by resource failures and/or parameter changes in time-varying

systems.

The LLC approach to system control incurs a number of interesting chal-

lenges out of which we focus on two main challenges: the first challenge is

the computational complexity of executing the model-predictive task online.

At each time step, the controller needs to explore a limited lookahead region

of the system state-space to select the best control action. If the search space

is very large and the search algorithm is not time and space efficient, it will

take too much time to achieve the best control action. Apart from this, the

domain engineers who develop distributed real-time and embedded systems

may not have the background to apply and implement the LLC method, so

the seconde challenge is the complexity of the LLC approach itself.

To address the second challenge, in [70], a domain-specific modeling

framework, referred to as the Dynamic QoS Modeling Environment (DQME),

has been developed to achieve end-to-end Quality of Service (QoS) manage-

ment in computing systems using the LLC approach. They proposed the

use of model-based techniques to raise the abstraction of control theoretic

3



techniques and make them available to domain engineers. Also a middleware

QoS-control architecture called ControlWare is proposed in [93] to facilitate

the use of linear feedback control theory. It is motivated by the needs of

performance-assured Internet services operating in highly uncertain environ-

ments or when accurate system load and resource models are not available.

While the DQME and the middleware QoS-control architecture are applica-

ble for certain systems, the limited lookahead control or the feedback control

may not be applicable for other computation systems.

In this thesis, we address the complexity of the LLC algorithm, by consid-

ering several efficient search methods that can significantly reduce the size of

the search space. The implemented search algorithms are shown to improve

the controller performance by reducing its overhead while maintaining the

system at or close to the optimal point.

We then present a generic model-based design framework that facilitates

the design of general control-based adaptation components for a general class

of computational systems. The framework is developed based on the LLC

approach, and extended to more general techniques. It includes a control

library from which a controller can be selected and parameterized for a given

system and operation settings. The framework allows the user to develop for-

mal models capturing relevant aspects of the system behavior as well as its

performance specifications. Further, we have developed a model interpreter

that auto-generates executable codes from the models for an appropriate

control module. This framework is referred to as the Automatic Control

Modeling Environment (ACME). The framework is based on the Generic

Modeling Environment (GME) [52], a meta-programmable toolkit, which

4



allows for easy creation of domain specific modeling languages and environ-

ments. The ACME framework allows the design and specification of general

control-based QoS adaptation policies.

The new search algorithms and the ACME framework is demonstrated

on a case study of a processor capable of dynamic voltage scaling (DVS)

where operating frequencies can be chosen from a finite set. We use the

LLC approach in the ACME framework. The management problem is to

maximize the processor utilization, which is a trade-off between processing

speed and power consumption, under a time-varying workload.

Chapter 2 of the thesis presents a brief background of control applica-

tions. Chapter 3 reviews the LLC concepts. Chapter 4 describes in detail

the different search approaches. Chapter 5 introduces the key concepts of the

ACME language. Chapter 6 describes the implementation of a DVS-capable

processor case study and provides test results of performances. Finally con-

clusion and future research are discussed in the final chapter.

Throughout this thesis, certain typographical conventions are used to

distinguish technical terms. Table I.1 summarizes the conventions.

5



Table I.1: Table of Notation

Symbol Explanation

k time step/index/instance

U control input set

|y| size of a set y

X system state space

ŷ estimation value of a variable y

y
¯
(k, m) the set of m previously observed vectors y(k), . . . , y(k −m)

φ training model for estimators

J() cost function

D(y, y∗) distance map defining how close y is to y∗

||.|| proper norm

Cost(y) accumulative distance cost from root to node y in tree structures

T sampling time

R robustness measure

σ(y) standard deviation of a variable y

O(.) asymptotic upper bound

g(n) cost of reaching the node n from the root in a tree structure

h(n) heuristic cost of node n in a tree structure

ȳ the mean of a variable y

λ arrival rate of environment inputs

ymax maximum value of a variable y

6



CHAPTER II

BACKGROUND

This chapter provides background on control theory and relates its un-

derlying concepts to the performance management problem.

While performance measurement is the process of assessing progress to-

ward achieving predetermined goals, performance management is building

on that process by adding the relevant communication and action on the

progress achieved against these predetermined goals [18], to meet or exceed

end-users’ or business’ expectations.

Performance can be thought of as actual results vs desired results. Any

discrepancy, where actual is less than desired, corresponds to a performance

improvement zone. Performance management and improvement can be con-

sidered as a three-stage cycle:

1. Goals and objectives are established in performance planning

2. A manager intervenes to give feedback and adjust performance in per-

formance coaching

3. Individual performance is formally documented and feedback is deliv-

ered in performance appraisal

So the performance problem arises whenever there is a gap between desired

results and actual results; performance improvement is any effort targeted

at closing the gap. In this problem a controller is used as an analytic engine

7



to provide robust performance guarantees by manipulating tunable inputs

to obtain the desired effect on the output of the system. From this point

of view, the performance management is similar to the control approach to

some extent. Control theory has well-established techniques which can be

used to verify the design itself a priori by analyzing key system properties,

such as its stability, convergence speed, safety, and liveness [72].

As control theory has been developing for several decades, various control

strategies have been investigated to adapt to different application scenarios

and specific requirements. Classical feedback control is one of the most basic

and widely applied control techniques, due to its simplicity and effectiveness.

More sophisticated control techniques such as adaptive control [85], fuzzy

control [68], stochastic control [37], and optimal control [23] have their own

features and applications to achieve performance management of physical

systems.

In the following the basic idea of the general control approaches are intro-

duced, several different control strategies are further discussed, and several

application examples regarding the performance management of computing

systems are presented.

General View of Control Approaches

Control theory was originally developed for physical process control. Al-

though there are a variety of control techniques, they share the essential

system elements introduced below:

8



Figure II.1: Block diagram of a control system

• Set point is the desired value of the system response (or transforma-

tions of them) that a system aims to reach. Reaching a set point value

in the system’s response may have temporal requirements attached to

it, such as a system response time less than 3 seconds. Sometimes, the

set point is referred to as reference input or desired output.

• Control error is the difference between the set point and the measured

output.

• Control input is a set of accessible parameters that affect the behavior

of the target system and can be adjusted dynamically. For instance,

the operating frequencies of the CPU affect the power consumption

and operation speed; or the number of data transfer threads in a server

affects the response time and server utilization.

9



• Controller determines the setting of the control input needed to achieve

the reference input. The controller computes values of the control input

based on the information it receives.

• Disturbance input is any externally caused change that affects the

way in which the control input influences the measured output (e.g.,

work load of a web server).

• Measured output is a measurable characteristic of the target system

such as CPU utilization and response time.

• Target system is the computing system to be controlled.

• Monitor transforms the measured output to state variables so that it

can be used by the controller or the learning module.

• Estimator is a function of the observable sample data used to estimate

unknown parameters.

• System state is the intermediate variable that is necessary to de-

fine the relationship between control inputs, measurements, and perfor-

mance variables. The temperature of a processor and available memory

space of a buffer are examples.

• Learning Module extracts information from data automatically by

computational and statistical methods.

• System model is a dynamic model in the model-based control describ-

ing the mathematical relationship between the input and the output of

a system, usually with differential or difference equations.

10



The foregoing is best understood in the context of a specific system [29].

Consider a cluster of three Apache Web Servers. The Administrator may

want these systems to run at no greater than 66% utilization so that if any

one of them fails, the other two can immediately absorb the entire load. Here,

the measured output is CPU utilization. The control input is the maximum

number of connections that the server permits as specified by the MaxClients

parameter. This parameter can be manipulated to adjust CPU utilization.

Examples of disturbances are changes in arrival rates and shifts in the type

of requests (e.g., from static to dynamic pages).

Control Categories

This section provides a brief review of different control approaches applied

to performance management problems.

PID Feedback Control

A proportional-integral-derivative control (PID controller) is a generic

control loop feedback mechanism widely used in control systems. A PID

controller attempts to correct the error between the measured output and

the desired set point by calculating and then outputting a corrective action,

or a control input that can adjust the process accordingly. The Proportional

value determines the reaction to the current error, the Integral determines the

reaction based on the sum of recent errors and the Derivative determines the

reaction to the rate at which the error has been changing. The weighted sum

of these three actions is used to adjust the control input. A PID controller

11



can be changed to a PI, PD, P or I controller in the absence of the respective

control actions.

The feedback mechanism causes system performance to exhibit a self-

correcting, self-stabilizing behavior, and since it is also robust, system con-

vergence is observed even in the presence of modeling inaccuracies, inherent

system nonlinearities, and variations of system parameters over time. How-

ever, it essentially is a reactive approach. The feedback loop operates by

responding to measured deviations from the desired performance, i.e., exert-

ing corrective action that attempts to reduce the deviation to zero. Unfortu-

nately, a feedback controller, which measures the current delay, will remain

oblivious to the impending overload until it occurs. This delay in response

is particularly significant since the server response time is a moving average

that is slow in response to changes.

In the server application, [5] uses a digital approximation of a linear con-

tinuous PI controller to measure server utilization. Paper [6] provides QoS

guarantees in web server resource management also by applying a PI con-

troller. For real time scheduling problems, [57] presents a feedback con-

trol real-time scheduling (FCS) framework with arriving-time QoS control,

and [58, 59] propose a feedback control to guarantee low deadline miss-ratio

in unpredictable environments, but the latter integrates PID control with an

EDF scheduler and was applied to a practical case study in [80]. In service

management, [32, 60] provide relative delay guarantees for different services

classes on web servers, and [73] applies a saturated integral controller to the

evaluation of controllers used for service level management of software sys-

tem. Moreover, [81] designs a feedback-based controller to allocate CPU to

12



threads based on proportion and period, [66] casts cache resource allocation

as a feedback-based controller design problem, [17] describes a mechanism for

scalable feedback control of multi-cast continuous media streams to establish

and maintain video conferences of reasonable quality even across congested

connections in the Internet, and [40] applies feedback control theory to ana-

lyze a congestion control algorithm on IP routers.

Feed-Forward Control

Feed-forward control [13] sets the actuator directly based on the predicted

behavior so that the system can react to disturbance before it takes effect.

Further, it can be used to keep the system in the neighborhood of an oper-

ating point around which it can be linearized. Feedforward control requires

a model that predicts the effect of system inputs on its performance. Several

theoretic foundations can be used for such prediction, including real-time

scheduling theory and queueing theory. Since the feedforward controller

keeps the system around the operating point, a linearized small-deviation

model becomes sufficient for the purposes of feedback control. Moreover,

the feedback controller eliminates the need for accuracy and corrects the

steady-state error from the estimation in feedforward models.

In [76], queuing theory is applied to predict the future queuing delay

based on observation of request arrival rate and estimation of service rate,

for which the queuing delay in the steady state can be computed with a

simple formula [51]. In [39], this predictor is improved to respond to sudden

and transient workload changes. The impact on the latency of future requests

13



is estimated through heuristic flow-level approximation. Similar techniques

and control structures are also applied in [64] for relative delay guarantees

in web servers. In [24], resource allocations required to meet certain service

level objectives are computed based on the predicted workloads using on-line

measurements of the request arrival process, service demand distribution

and queue length. The approach in [4] uses feedforward control to keep the

system in the neighborhood of an operating point around which it can be

linearized, in order to accommodate software non-linearities. [89] directly sets

the actuation level for the next control interval based on the target value

for the output metric and the predicted value for a related variable. The

possibility of predicting future resource demands through resource utilization

metrics such as CPU consumption is studied.

Adaptive Control

Adaptive control involves modifying the control law used by a controller

to cope with the fact that the parameters of the system being controlled are

slowly time-varying or uncertain. For example, as a network server works,

the workload will vary from time to time according to changing demands; we

therefore need a control law that adapts itself to such changing conditions.

The adaptive control is precisely concerned with control law changes.

An adaptive pole placement control applies to QoS-aware web caching,

providing proportional differentiation on average hit rate of different con-

tent classes [65]. The controller parameters which are updated online, are

based on a linear approximation, and the controller is dynamically fed a

14



model to fine-tune its function. In [55], a Queueing-Model-Based Adap-

tive Control, formed by an online parameter estimator and a control law

from the known parameter case, is proposed to handle modeling inaccuracies

and load disturbances. System model parameters are estimated by a Recur-

sive Least-Squares estimator. An adaptive control of resource containers on

shared servers is presented by [54]. The indirect self-tuning adaptive con-

troller estimates the dynamic model from online input-output measurements

and computes controller parameters from the current estimated model, using

recursive least-squares method and pole placement. In another paper, [46],

performance for storage access is ensured using an a direct self-tuning adap-

tive controller. The controller considers the system as a ”black box”, and the

system model is inferred from a monitor. The adaptive control methodology

is also applied for a class of nonlinear systems [31] and used to develop an

intelligent fault-tolerant control system [30], where spatially localized models

are used as online approximators to learn the unknown dynamics of the sys-

tem, and the applied adaptive laws are localized. A MIMO adaptive optimal

controller coupled with a nonlinear optimizer is described in [45] to maximize

the utility of a computer service shared by multiple customers, and in [47]

to provide non-intrusive performance differentiation in computing systems.

A greedy ranking heuristic is used to get an approximate solution to the

optimizer. The adaptive control is also applied to adjust the timer values

of temporal event correlation rules based on propagation delays to reduce

missed and false alarms [36]. The algorithm is based on a technique from

statistical hypothesis testing using non-parametric statistics.

15



Fuzzy Control

A fuzzy control system is a control system based on fuzzy logic [90], with

qualitative decision-making specification. In fuzzy logic, the membership of

y in a set A has a degree value in a continuous interval between 0 and 1.

Fuzzy sets are defined by membership functions that map set elements into

the interval [0, 1]. One of the most important applications of fuzzy logic is

the design of fuzzy rule-based systems. These systems use IF-THEN rules

(fuzzy rules) whose antecedents and consequents use fuzzy-logic statements

to represent the knowledge or control strategies of the system. A fuzzy model

is a qualitative model constructed from a set of fuzzy rules to describe the

relationship between system input and output [82].

A fuzzy system model is used in [88] to characterize the relationship be-

tween application workload and resource demand from its input-output data

without requiring a-priori knowledge about the system. The main objective

is to reduce resource consumption while achieving application performance

targets. Paper [56] explores approaches to online optimization of configura-

tion parameters of the Apache web server by employing hill climbing based

on fuzzy control.

Model Predictive Control

Model predictive control [22] is a widely applied methodology, which uses

a model to predict the system’s behavior over a finite future horizon and

16



chooses the control action that optimizes a cost function subject to con-

straints. This approach was used in [63] to control CPU utilization in dis-

tributed real-time systems. It requires an online solution to a constrained

optimization problem, and thus requires a significant overhead in real-time

systems. The proposed approach is also limited to time invariant linear

system models that are known a priori. An event-driven model predictive

controller using detected events and remaining resource information as state

variables was discussed in [83] to optimally control the system (sensors, trans-

mission, storage) in real-time.

Stochastic Control

Stochastic control is a branch of control theory that aims at predicting and

minimizing the effect of the random deviations of a dynamic system. Such

deviations occur when random noise and disturbance processes are present

in the system, and force it to deviate from its prescribed course. Difference

mechanisms have been established to reduce uncertainty and to optimize

control performances.

A number of applications of stochastic control to computing systems

are studied in literature. [14] applies the stochastic control theory to re-

source allocation under uncertainty. [91] and [92] use an approach based on

a continuous-time formulation and stochastic control theory to obtain opti-

mal solutions for transmitting deadline-constrained data over time-varying

channels with the objective of minimizing the total transmission energy ex-

penditure. Standard suboptimal stochastic control methods were also used

17



online in conjunction with an approximation of the cost-to-go in a task as-

signment problem for a fleet of UAVs in a surveillance/search mission [71].

Optimal Control

Optimal control theory, a generalization of the calculus of variations, is

a mathematical optimization method for deriving control policies. Optimal

control deals with the problem of finding a control law for a given system to

achieve a certain optimality criterion. An optimal control is a set of differ-

ential equations describing the paths of the control variables that minimize

the functional cost.

An optimal control policy is implemented in a command and control cen-

ter for military air operations [84]. The policy is threshold-based to minimize

the average reconfiguration time when the center experiences failures. It is

also applied to plan recommended maneuvers in advanced driver assistance

systems by properly formulating the risk functional [15]. The suggestions

given are related to the overall risk level as well as the whole vehicle dynam-

ics and represented the most effective control input for the case. Paper [26]

then proposes a dynamic optimal control-model-based queueing theory, to

guarantee the schedulability of soft real-time systems and the quality of ser-

vice of incoming tasks and to improve the system throughput. To compensate

for delays in communication networks, optimal controllers with the perfor-

mance cost criteria are designed [53, 87]. [87] presents an optimal stochastic

control methodology for networked control systems. It derives the optimal

time-stamp linear quadratic gaussian controller with quadratic cost by using

18



dynamic programming. [7, 25, 74] use H∞ control for IP routers manage-

ment. [74] uses a frequency domain solution to synthesize the controller, [25]

adopts a simple approximation for the time delay and uses the state-space

solution, while [7] obtains the linear matrix inequality constraint.

19



CHAPTER III

LLC APPROACH DESIGN

This chapter describes the switching hybrid system model and introduces

key online control concepts.

Hybrid System Model

The control approach discussed here targets a special class of hybrid sys-

tems having a finite control-input set. The following discrete-time state-space

equation describes the continuous dynamics of such a system.

x(k + 1) = f(x(k), u(k), w(k)) (III.1)

where with k as the time index, u(k) ⊂ U ⊂ Rm denotes the control

inputs, and x(k) ⊂ X ⊂ Rn and w(k) ⊂ Ω ⊂ Rr are sampled forms of

the continuous system state and environment parameters at time k, respec-

tively. The system state space, the input set and an know compact set are

denoted by X, U, Ω, respectively. The input set U is assumed to be finite,

and the state space X is considered compact and continuous, and referred to

as the operating domain of the system. While the system model f captures

the relationship between the observed system parameters, particularly those

relevant to the QoS specifications, and the control inputs that adjust these

parameters. Many computing systems have a limited finite (quantized) set

20



of control inputs and, therefore, their dynamics can be adequately captured

using the above model.

In computing systems operating in open and dynamic environments, the

corresponding inputs to the controller are generated by external sources

whose behavior typically cannot be controlled; for example, web-page re-

quests made to a server by Internet clients. It has also been observed that

most web and e-commerce workloads of interest show strong and pronounced

time-of-day variations [33, 12, 11], and the key workloads characteristics such

as request arrival rates can change quite significantly and quickly - usually in

the order of a few minutes. In most situations, however, such workload vari-

ations can be estimated effectively using well-known forecasting techniques

such as the Box-Jenkins ARIMA modeling approach [28] and Kalman fil-

ters [20]. A forecasting model is typically obtained via analysis or simulation

of relevant parameters of the underlying system environment, and has the

following form for a system input w.

ŵ(k) = φ(w
¯
(k − 1,m), p(k)) (III.2)

where ŵ(k) denotes the estimated value, w
¯
(k−1,m) is the set of m previ-

ously observed environment vectors w(k−1), . . . , w(k−m−1), and p(k) ∈ Rp

denotes the relevant estimation parameters, for instance, the covariance ma-

trix in the Kalman filter. These parameters are typically obtained by training

the model φ using test data representative of actual values observed in the

field. We assume φ to be differentiable over every argument. For simplicity

and without loss of generality, we also assume the estimation parameters in

21



the forecasting model to be constant or time invariant, i.e., φ is not peri-

odically re-tuned, and assume m = 1. Therefore, ŵ(k) = φ(w(k − 1), e(k))

where e(k) ∈ E is a bounded random variable reflecting the effect of the

estimation error.

Since the current value of w(k) cannot be measured until the next sam-

pling instant, the system dynamics can only captured using a model with

uncertain parameters, as follows.

x(k + 1) = f(x(k), u(k), w(k)) = f(x(k), u(k), φ(w(k − 1), e(k))) (III.3)

In the above equation, e(k) is the (only) uncertain parameter of the model.

QoS Specifications

In general, computing systems are required to achieve specific QoS objec-

tives while satisfying certain operating constraints. In most real-life systems,

QoS specifications may be classified in two categories.

- set-point specification requires that the key operating parameters must

be maintained at some specified level or follow a given pattern (or

trajectory); examples include system utilization levels, response times,

etc. The controller, therefore, aims to drive the system to within a

close neighborhood of the desired operating state x∗ ∈ X in finite time

and maintain the system there.

22



- performance specification is involved where relevant measures such as

power consumption and mode switching, etc., must be optimized.

It is also possible to consider transient costs as part of the operating

requirements, expressing the fact that certain trajectories towards the desired

state are preferred over others in terms of their cost or utility to the system.

Such performance measures may also take into account the cost of the control

inputs themselves and their change.

To summarize, the primary objective of the controller is to drive the com-

puting system to the desired state x∗ in “reasonable” time using an admissible

trajectory. The controller may also be required to achieve a secondary objec-

tive of minimizing the transient-cost function J
′
(x, u) as the system moves

towards x∗. Then, the overall performance measure can be represented by

an overall function J(x, u) where the control objective is to minimize J at

every time instance k, and typically uses a norm in which these variables

are added together with different weights reflecting their contribution to the

overall system utility.

Controller Design

Fig. III.1 shows the overall framework of a generic online controller. Rel-

evant parameters of the operating environment, such as workload arrival

patterns, etc., are estimated and used by the system model to forecast future

behavior over a look-ahead horizon. The controller optimizes the forecast

behavior as per the specified QoS requirements by selecting the best control

inputs to apply to the system[3]. The lookahead controller can be simply

23



Figure III.1: Conceptual Structure of the Online Controller

considered as an agent that applies a sequence of actions to achieve a certain

QoS objective. In particular, it constructs a set of future states from the

current state up to a specified prediction horizon N . The controller then

selects the trajectory within this horizon minimizing the cost function while

satisfying both the state and input constraints. The input leading to this

trajectory is chosen as the next control action. The process is repeated at

each time step. The key ideas behind the controller are as follows:

• Future system states, in terms of x̂(k + j), for a predetermined predic-

tion horizon of j = 1 . . . N steps are estimated during each sampling

instant k using the corresponding behavioral model. These predictions

depend on know values (past inputs and outputs) up to the sampling

instant k, and on the future control signals u(k + j), j = 0 . . . N − 1,

which are inputs to the system that must be calculated.

24



• A sequence of control signals u(k + j) resulting in the desired system

behavior is obtained for each step of the prediction horizon by optimiz-

ing the QoS-related specification.

• The control signal u∗(k) corresponding to the first control input in the

above sequence is applied as input to the system during time k while

the other inputs are rejected. During the next sampling instant, the

system state x(k +1) is known and the above steps are repeated again.

Note that the observed state x(k + 1) may be different from those

predicted by the controller at time k.

A basic control specification in such system is set-point regulation where

key operating parameters must be maintained at a specified level or follow

a certain trajectory. The controller, therefore, aims to drive the system

to within a close neighborhood of the desired operating state x∗ ∈ X in

finite time and maintain the system there. As shown in Fig. III.2, in the

LLC approach, the next control action is selected based on a distance map

defining how close the current state is to the desired set point. This map may

be defined for each state x ∈ Rn as D(x) = ||x− x∗||, where ||.|| is a proper

norm for n. For a performance specification, the control input optimizing a

given utility function J(x) is selected. This function assigns to each system

state, a cost associated with reaching and maintaining that state.

Control Algorithm

Table III.1 shows the online control algorithm that aims to satisfy a given

performance specification for the underlying system. At each time instant k,

25



Figure III.2: The limited lookahead control approach

it accepts the current operating state x(k) and returns the best control input

u∗(k) to apply. Starting from this state, the controller constructs in breadth-

first fashion, a tree of all possible future states up to the specified prediction

depth. Given an x(k), we first estimate the relevant parameters of the oper-

ating environment, and generate the next set of reachable system states by

applying all control inputs from the set U . The cost function corresponding

to each estimated state is then computed. Once the prediction horizon is

fully explored, a unique sequence of reachable states x̂(k + 1), . . . , x̂(k + N)

is applied to input u∗(k) along the path to x̂(k + N) is applied to the sys-

tem while the rest are discarded. The above control action is repeated each

sampling step.

In a computation system where control inputs are chosen from discrete

values, the LLC algorithm exhaustively evaluates all possible operating states

within the prediction horizon to determine the best control input. Therefore,

the size of the search tree grows exponentially with the number of inputs; if

|U | denotes the size of the input set, and N the prediction depth, the number

of explored states is given by
∑N

j=1 |U |j. This is not a major concern for

26



Table III.1: The LLC Algorithm

1 OLC(x(k)) /* x(k) := current state measurement */
2 sk := x(k); Cost(x(k)) = 0
3 for all k within prediction horizon of depth N do
4 Forecast environment parameters for time k + 1
5 sk+1 := φ
6 for all x ∈ sk do
7 for all u ∈ U do
8 x̂ = Φ(x, u) /* Estimate state at time k + 1 */
9 Cost(x̂) = Cost(x) + J(x̂)
10 sk+1 := sk+1 ∪ x̂
11 end for
12 end for
13 k := k + 1
14 end for
15 Find xmin ∈ sN having minimum Cost(x)
16 u∗(k) := initial input leading from x(k) to xmin

17 return u∗(k)

systems with few control options. However, with a large control-input set, the

corresponding control overhead may be excessive for real-time performance.

Characterizing LLC Performance

The goal of the LLC scheme is to optimize the system utility function

with respect to time-varying environment inputs. However, since the control

set is finite and only a limited search is conducted, the controller can only

achieve suboptimal performance. In general, system performance depends

on several controller-related factors and the operating environment. One of

these factors, the environment input, is not controllable, and therefore, must

be neutralized with respect to the relevant performance measures. On the

other hand, there are several controllable factors parameters, including

27



• Prediction Horizon: When future environment inputs are known in

advance, or can be predicted perfectly, increasing the lookahead hori-

zon will typically improve system performance. However, due to the

stochastic nature of the environment inputs, the positive effects of in-

creasing the prediction horizon on system utility will be countered by

the gradual accumulation of prediction errors as the controller explores

deeper into the horizon.

• Control Set: Increasing the number of control inputs improves con-

troller accuracy and robustness with respect to environment inputs. In

the case of a set-point specification, increasing the control set leads to

a smaller containable region. The distribution of values within the con-

trol set can also have a major effect on control performance. In most

cases, regularly quantized values for each control input leads to better

performance than an irregular set.

• Sampling Time: In general, reducing the sampling time increases the

accuracy and robustness of the controller.

The prediction horizon N can be tuned by the designer, and is only

limited by the computational overhead. However, the size of the control set

|U | and the sampling time T are typically adjustable only within a limited

range as they depend on the physical characteristics the underlying system.

The above factors directly influence controller performance, characterized via

the following quantitative measures.

• Utility: This characterizes the average cost incurred by the controlled

system. The system utility is normalized with respect to the average

28



values of the environment inputs to reduce the effect of this (uncontrol-

lable) factor. This performance measure can be improved by increasing

the prediction horizon (up to a certain extent) and the number of con-

trol inputs, or by reducing the controller sampling time.

• Robustness: This characterizes the runtime variability in system utility,

in response to the corresponding variability in the environment inputs.

Here, we define control robustness as the standard deviation observed

in the system utility against the standard deviation observed in the

environment inputs, or R = σ(J)/σ(w).

• Computational Overhead: This factor quantifies the execution-time re-

quirement of the controller, which depends directly on prediction hori-

zon, size of the control set, and the sampling time.

Increasing controller utility and robustness conflicts directly with reduc-

ing its computational overhead. Therefore, trade offs are necessary to achieve

the desired controller performance; for example, by appropriately tuning the

controller using values from (N, U, T ) and synthetic environment inputs.

29



CHAPTER IV

ENHANCED SEARCH TECHNIQUES

As shown in the previous chapter, the search process is responsible for

the exponential growth of the control algorithm. To enhance the efficiency

of the control algorithm, we investigate several efficient search algorithms in

the following sections that can be directly applied to the LLC approach.

Uniform-cost Search

Uniform-cost search [75] is a tree search algorithm used for traversing or

searching a weighted tree, tree structure, or graph. As shown in Table IV.1,

it begins at the root node, but instead of always expanding the shallowest

node like breadth-first search, the uniform-cost search continues by visiting

the next node with the least Cost - the accumulative path cost from the root

to the current node. Nodes are visited in this manner until the goal state

is reached. The uniform-cost search is complete and optimal if the cost of

each step is greater than or equal to some small positive constant ε [75]. But

when all path costs of the uniform-cost search are positive and identical, it

changes back to breadth-first search.

The space complexity of the uniform-cost search is the number of nodes

with Costs smaller than or equal to the cost of the optimal solution, plus

the ones extended by those nodes. The time complexity is the time needed

to process the nodes. Formally, if C∗ is the cost of the optimal solution and

30



Table IV.1: Uniform-cost search algorithm

1 Initialize Let Q = S /*S := start node*/
2 while Q is not empty
3 pull Q1, /*Q1 := first element in Q*/
4 if Q1 is a goal
5 report success and quit
6 else
7 childnodes = expand(Q1)
8 <eliminate childnodes which represent loops>
9 put remaining childnodes in Q
10 delete Q1
11 sort Q according to Cost /*Cost := pathcost(S to node)*/
12 end if
13 continue while

it is assumed that every path cost is at least ε, the algorithm’s complexity is

O(b1+bC∗/εc), instead of O(bd) in breadth-first search.

We implement the uniform-cost search for the LLC approach following the

pseudo code in Table IV.1. Typically, the search algorithm involves expand-

ing nodes by adding all unexpanded neighboring nodes that are connected

by directed paths to a priority queue. In the queue, each node is associated

with its Cost, and the least-Cost node is given highest priority, so that the

queue is sorted in an ascending order. The node at the head of the queue

is subsequently popped and expanded, appending the next set of connected

nodes with their Costs to the queue.

The completeness and optimality of the uniform-cost search can be guar-

anteed by setting even-exponent terms in the utility function of the Cost

to make all the path costs positive. The utility function at time k can be

31



designed by the following form:

J(k) = β1y
2
1(k) + β2y

2
2(k) + · · ·+ βmy2

m(k)

when there are m components the utility function tries to optimize, yi(k), i ∈
m represents a component at time k, and βi is the user-specified weight

denoting the relative importance of yi(k). We can also use even exponents

instead of squared ones as shown in the equation according to application

specifications. Moreover, in the control framework, usually different values

are assigned to the components of the utility function, so the path costs will

rarely be identical. The two conditions above provide promising supports for

applying uniform-cost search in the control algorithm. But as uniform-cost

search is guided by path costs rather than depths, sometimes its complexities

cannot easily be characterized and its worst-case time and space complexities

can be much greater than those of a breadth-first search.

A* Search

We have only considered the path costs from the starting node to the

current node, but not the possible costs from the current node to the goal

node in the tree structure. A* search, one of the most widely-known form

of best-first search, evaluates nodes by combining g(n), the cost to reach the

node from the root, and h(n), the cost to get from the node to the goal:

f(n) = g(n) + h(n)

32



Then the algorithm complexity is determined by both g(n) and h(n).

Note that uniform-cost search is a special case of the A* search when

the heuristic h(n) is constant, so the A* search algorithm is similar to the

uniform-cost search in Table IV.1 except that the Cost is given by pathcost(S

to node) + h(node) instead. A* is complete in the sense that it will always

find a solution if there is one. However, its optimality depends on if h(n)

is an admissible heuristic, or never overestimates the cost to reach the goal.

Formally, for all paths y, z where z is a successor of y,

g(y) + h(y) ≤ g(z) + h(z)

A* is also optimally efficient for any heuristic h; no algorithm employing

the same heuristic will expand fewer nodes than A*, except when there are

several partial solutions where h exactly predicts the cost of the optimal

path. Therefore, the performance of the heuristic search depends on the

quality of the heuristic function. If the heuristic is accurate, we will quickly

reach the goal node. Good heuristics may be constructed by relaxing the

problem definition, by pre-computing solution costs for sub-problems in a

pattern database, or by learning from experience with the problem class.

To apply the A* search to the control algorithm, we can compose the

uniform-cost search with a heuristic function. Since computing the heuris-

tics is always time consuming, a heuristic-cost table computed before run

time is used for the control implementation. In the previous control frame-

work, a system is always subject to environment inputs, has its own system

states, and manipulates a finite number of control inputs to the system, all

33



of which are key characteristic behaviors of the control system. Based on

the underlying utility function, we can define a 3-dimensional heuristic ta-

ble heuristic(w, x, k). In this table, w ⊂ Ω denotes the environment input,

x ⊂ X represents the system state, and k is the step distance from current

node to the goal node. Note that w and x refer to their respective groups

of elements. If there are several environment inputs and they are related to

each other, we can use just one to represent all the others; but if some of

them are independent, we can either increase the dimension of the heuristic

table, or only choose the more significant ones. More system states can be

treated in the same way as the environment inputs. Then a cell c at position

heuristic(w, x, k) stores the estimated smallest accumulated cost value of a

node with a system state of x, environment input of w, and step distance of

k. The accumulated cost is the total cost from the node c to the goal node

in the search tree.

Before computing the final heuristic table, several issues need to be spec-

ified.

1. w and x may not be integers. But according to the requirement of the

heuristic table, w and k are matrix indexes, so we must ensure that

they are integers before accessing the table, by rounding them down or

up, or by mapping them to integral indices.

2. The ranges of w and x may be large. For example, when w is from

0 to 10000, it is not practical to generate a table of 10001 cells con-

sidering space limitation. Instead, we can select certain data points

0, 50, 100, · · · , and map them to the table indices 0, 1, 2, · · · .

34



3. Admissible heuristic should be satisfied to guarantee the optimality of

the A* search. Thus data should always be underestimated by using

a value equal to, or smaller than the real value whenever necessary.

For instance, for a workload w = 346, if we only have data points at

multiples of 50, w will be rounded down to 300.

4. An assumption of w is made. We need to iterate k steps to calculate

the heuristic cost, but we do not know what the next value of w will

be. To solve this problem, we define the difference of the environment

inputs between two adjacent simulation steps as ∆w. Assume that

∆w is bounded, and is relatively small compared with the maximum

value of w. Then a new w can be estimated by decreasing the last

environment input by ∆w if smaller environment input causes less cost;

or increasing it by ∆w if larger one causes less cost. This will help

prevent overestimating the path costs.

Figure IV.1: Generation of the heuristic table

35



Fig. IV.1 shows the steps to compute the heuristic table. For each combi-

nation of w, x and k, w and x are initially sent to the system model to calcu-

late x̂i, the next system state corresponding to the control input ui ∈ U . The

j is initialized as 1, and will be increased by 1 after each loop. Assume the

control set has |U | control inputs, all the |U | 2-tuples (x̂i, ui) are sent to the

utility function to obtain a cost J(x̂i, ui). The smallest cost is then added to

the accumulator(initialized to 0), while the system state x̂i is trimmed, e.g.

rounded to an integer. x̂ and w−∆w are further used as inputs for the next

iteration. The computation will iterate k times, and the final value of the

accumulator is filled to the cell heuristic(w, x, k). Each cell of the heuristic

table is calculated this way.

The calculated heuristic table will be used once a node is extended. Af-

ter mapping environment input, system state and step distance of the cur-

rent node to corresponding indices w, x and k in the table, we can get

heuristic(w, x, k) as the heuristic h(n).

Assume that there are nx, nw, and nu elements of system state, environ-

ment input and control input respectively in the heuristic table. According

to the calculation of the heuristic table, for each element of x and each ele-

ment of w, all the control inputs ui will be tried for k iterations. Therefore

the time complexity of calculating the heuristic table is O(nx ∗ nw ∗ nu ∗ k).

But as the heuristic table is calculated offline before system execution, the

time cost is not a significant problem. The space complexity of the heuristic

table is O(nx ∗ nw ∗ k).

The complexity of the A* search is also O(b1+bC∗/εc), as it is based on

the uniform-cost search and adds heuristics by just looking them up in the

36



heuristic table. In addition, since ε becomes the smallest underestimated cost

from the root to the goal here, it should be larger than that of the uniform-

cost search, and therefore the A* search will be faster than the uniform-cost

search.

Pruning Algorithm

A search space is a structure built with all available information for finding

the most suitable areas. However, sometimes the given set of data may be

irrelevant, erroneous or unnecessary. Therefore pruning the search space

is necessary. Pruning is a process of making the search space smaller by

removing selected subspaces. Ignored portions of the space are no longer

considered because the algorithm knows based on already collected data (e.g.

through sampling) that these subspaces do not contain the searched object,

and the pruning will therefore not affect the final choice [75].

In the search tree of the control algorithm, the system states of some

nodes turn out to be the same. Moreover, from the definition of the control

algorithm, nodes at the same depth will receive identical environment input.

So if the nodes with same system states are at the same depth, their future

evolutions will be the same. In this case, only the one with the smallest cost

needs to be kept for further extension, while all the others having the same

system states can be pruned together with their subtrees. If the successors

of the kept node in the pruning process are invalid, then the successors of the

deleted nodes will be invalid as well as they share the same future. Thus the

37



above pruning approach is complete. In addition, the pruning can be com-

bined with other search methods by adding a step of checking and deleting

the “equal” nodes in each level of a tree.

In the implementation of the pruning, because we only compare each

node with the one right before it within the same level, just one extra node

needs to be stored for the comparison. Since the pruning is always combined

with some other search algorithms, the complexity of the combined search

depends on the complexity of the other search algorithms. However, as the

pruning will largely reduce search space, especially when nodes with similar

system states have close costs, pruning will decrease the search complexity.

Greedy Algorithm

A greedy algorithm is any algorithm that follows the problem solving

metaheuristic of making the locally optimal choice at each stage with the

hope that this choice will lead to a global optimum [27]. The algorithm

will generally not find all the solution or the best solution, but a feasible

one, because it usually does not operate exhaustively on all the data. It

may make commitments to certain choices too early which prevent it from

finding the best overall solution. Nevertheless, it is useful for a wide range

of problems, particularly when overhead reduction is essential. In many

practical situations, this approach can lead to good approximations of the

optimum.

Beam search [16] can be viewed as a greedy algorithm. For a beam search

of width k, the search only keeps track of the k best candidates at each step,

38



Figure IV.2: Visualization of the beam search

and generates descendants for each of them. The resulting set is then reduced

again to the k best candidates. This process thus keeps track of the most

promising alternatives to the current top rated hypothesis and considers all

of their successors at each step. Beam search uses breadth-first search to

build its search tree but splits each level of the search tree into slices of at

most B states, where B is called the beam width [34]. The number of slices

stored in memory is limited to one at each level. When beam search expands

a level, it generates all successors of the states at the current level, sorts

them in order of increasing values (from left to right in the figure), splits

them into slides of at most B states each, and then extends the beam by

storing the first slides only. Beam search terminates when it generates a goal

state or runs out of memory. Therefore the beam search reduces the memory

39



consumption of breadth-first search from exponential to linear, as illustrated

by the shaded areas in Fig. IV.2.

In our application of the beam search, we further define a vector by

assigning the number of the best candidates for each level. Then we can

change the beam width as well as the shape of the beam search according

to system specifications. As one of the greedy algorithms, beam search has

a serious drawback – it is incomplete, so it does not guarantee an optimal

solution. However, the speed of the search and the possibility that the search

obtains a solution close to the optimal one can be enhanced by changing the

beam width. The search complexity will also depend on the values of the

beam width. When a system has a relatively loose performance requirement

but requires short and strict timing, the beam search may be a good choice.

40



CHAPTER V

ACME DEVELOPMENT

ACME Overview

Effective self management requires the ability to monitor and tune system

variables that affect various QoS related parameters. Those parameters are

often inter-dependent, i.e. modifications made on one may affect others.

Also, operational constraints such as resource limitations and safety margins

impose additional requirements on the system. The inter-dependencies and

constraints need to be effectively captured for a self-management design. In

addition, future variations in the system components and structure need to

be considered as well to guarantee the system performance. Control-based

techniques have proven to be effective in addressing the above requirements

for self-management design and in addition they can provide performance

guarantees under given operating conditions. However, the adoption of such

techniques remains limited due to lack of tools and libraries that facilitate

the control-based design for design engineers.

To address this problem, we propose in this thesis the ACME framework.

The ACME is control-theory oriented framework aimed at providing effective

self management for computation systems. Fig. V.1 shows the development

process of the ACME. Structurally, the ACME is composed of three main

aspects. One is the architecture structure, in which high level components

41



Figure V.1: ACME design process

and their interconnections are defined. Another is the data collection struc-

ture, which is responsible for collecting system measurements corresponding

to the model variables. The third one is the system dynamics structure used

for capturing the system model, specifications and operation constraints, as

well as providing modules for estimating system future variations and tuning

system variables with respect to operational variations and constraints.

Although LabView and MatLab have control toolkits with similar inter-

face to ACME, the ACME can generate various executable codes, like C++,

XML, Python, or even MatLab codes upon requests based on the graphical

models. More importantly, control engineers can easily modify the modeling

structure and specifications when necessary by updating meta-models.

The following subsections describe the semantic intent of the key model-

ing components in ACME. In this thesis, to enhance readability, the following

font-based notations are adopted: “components” used for the main compo-

nents of the meta-model, “connections” used for the connections between

the components, “visible” used for the visibility aspects of models, and “at-

tribute” used for the component attributes.

42



Architecture

The architecture in the ACME captures the main structure of the whole

system. It contains any of the components in the self-management design, as

well as the connections between the underlying ports of these components.

From the architecture level of view, the designer can construct the high-level

components of the system and define the connections betweens them. The

details of these components are encapsulated in the underlying substructures,

which have their own internal descriptions.

Data Collection

The data collection entity contains all the system variables. In practical

systems, some of the system variables can be measured directly while others

cannot. In some situations, system variables that cannot be measured can

still be calculated based on the measured variables using observers. In other

applications, future values of certain system variables need to be estimated.

ACME distributes the data collection tasks to three different entity models

as follows.

First, a Sensor model reads in all the measurable data, which include en-

vironment inputs, observable system states, and system outputs. Latency,

bandwidth, and CPU utilization are examples of observable system states

for some class of systems. Second, to calculate the system states that cannot

be observed directly, an Observer model collects all the related variables and

computes the system states by association equations. Third, an Estimator

model uses the latest and historical sample data to estimate future system

43



variables. An example of implemented estimators in ACME is the autore-

gressive moving average (ARMA) estimator. In general, the user can choose

estimators that best fit the system configuration from an estimator library

in ACME.

System Dynamics and Adaptation

In the ACME framework, the system dynamics is a schematic description

that captures the known or inferred behavioral properties of a computational

system. The system dynamics is used for the design and verification of the

self-managing structures.

The system adaptation specification represents the configuration of a con-

troller module chosen from the control library available in the ACME. For

example, the LLC controller can be selected as the system adaptation mod-

ule, and can be configured by identifying the look ahead horizon, the possible

control input set, and a utility function that characterizes each point in the

QoS space with a utility value (or cost). The LLC utilizes these specifica-

tions to manage the system at run-time by optimizing the underlying system

utility within the constraints posed by certain operational requirements.

ACME Meta-Models

This section introduces the ACME meta-models corresponding to the ba-

sic aspects of a self-management design specification. The aim of this model-

ing approach is to capture the system design in a modular component-based

form that can be easily accessible to the system designer. For example, the

44



Figure V.2: meta-model of the architecture modeling

Estimator model discussed in the previous section can be added to the ar-

chitecture as a high-level component, parameterized, and connected to other

model blocks in the architecture through their available ports. In the fol-

lowing subsection we presents the ACME meta-model, which is expressed

with a stereotyped UML class-diagram notation. The stereotypes including

<<Model>> , <<Atom>>, <<Connection>>, etc., express the binding of

the abstract syntax to the concrete syntax implemented by the GME envi-

ronment. Details of the concrete syntactic constructs supported by the GME

environment are presented in [1, 52]. The sub-languages that constitute the

ACME language are addressed below.

Architecture Models

The architecture stereotyped as a folder, contains a System model that

collects all necessary parts of a system, each of which encapsulates its local

45



components. In a distributed system, such as a web-server, a system in-

volves multiple subsystems, each of which has independent local controllers

with different performance requirements; also, a global controller addressing

system-wide performance requirements will be constructed for the system,

managing the interaction between the local controllers.

This model expresses the general structure of the overall system. Fig. V.2

shows the meta-model of the architecture modeling sub-language. Note that

the meta-model figures only show the main models, while other models are

diminished in gray for simplification. The UML notation for containment is

a line connecting an object to its container, with a small black diamond on

the ”container” end of the line. So PhysicalSystem, SystemModel, Environ-

ment, Observer, Controller, and Estimator are all key components which can

be contained in the System.

The connections in the architecture define data transportation between

models. As shown in Fig. V.2, the System also contains a connection Controllable.

The small black dot associates the connection with two endpoints ControlIn-

put and Actuators, which act as ports of the high-level components, while

the connection is directed from “src” to “dst”. Similarly, signals in the

Environment models can be sent to the Estimator models by SensorToEst

connection, to the Observer models by Measurement connection, or to Sys-

temModel by SensorConn connection; estimated variables can be sent from

the Estimator models to the SystemModel through EstSignalOut connection;

ports of system states in different blocks can be connected to each other by

SystemStateConn connection, as can of control inputs with ControlInputConn

connection.

46



Data Collection Models

All basic data types used in the meta-model like the ControlInput are first

defined in a component paradigm. SystemState, SystemOutput, and Con-

trolInput are basic types of variables for control systems. ControlInput and

SystemState represent the control inputs and system states respectively. Sys-

temState and ControlInput can be used in the Observer, SystemModel and

Controller models, while SystemOutput is used in the Observer only. Compos-

ite data types can be defined and modified only in the component paradigm,

since data used in all the other places are proxies of the data in the compo-

nent. The following models are used to get the values of the data proxies.

The data types are often defined with their attributes, some examples of the

attributes are name, type, IP address, and speed in a configured network sys-

tem. In Fig. V.2, ControlInput has two attributes DefaultValue and DataType

in the lower half of the class rectangle.

Environment Model

The operation plants involved in certain environment always interact with

the environment. The Environment model then represents the operation en-

vironment. In real time applications, the Environment only contains Sensor

models to measure relevant environment variables from the real environment;

in the simulation application, environment is simulated and environment vari-

ables are generated by the methods defined in a data generation library. For

47



Figure V.3: meta-model of the ARMA estimator

example, in the library, model Reader reads in data from local files, and Gen-

erator model can generate uniform distributed numbers. The generated data

are then sent to other components via Sensor models.

Estimator Model

The Estimator model can be selected from an estimator library, where

different estimators like ARMA filters and Kalman filters are included. For

example, we use an ARMA filter to estimate the environment parameter such

as future data arrival rate λ̂(k + 1). Given the arrival rate λ(k) at time k

and the mean λ̄ of past observations over a specified window size of m, the

estimate rate for k + 1 is:

λ̂(k + 1) = (1−
m−1∑
i=0

βi)λ̄ +
m−1∑
i=0

βiλ(k − i), i ∈ [0,m]

48



where the gain β determines how the estimator tracks variations in the ob-

served arrival rate. The ACME uses two kinds of models to represent the

ARMA filter. The HistAve model specifies λ̄, and its attribute HistWin-

dowSize defines m. The OrderedIndiv model specifies the λ(k − i), and its

attribute HistIndex defines i (e.g. a HistIndex of 1 represents the (k − 1)th

observed data). Both models have Parameter attributes defining the gains

(1−∑m−1
i=0 βi) and βi respectively.

Observer Model

The Observer model calculates unobservable system states using mea-

surable variables and parameters if the underlying functions are available.

All the needed variables like SystemOutput, Variable, ControlInput, and Sys-

temState are read in the Observer to the Function models to calculate the

unknown values. Finally, SystemStates hold the computed data and assign

them to other models.

Controller Model

The Controller model specifies the parameters of the controller design,

and Fig. V.4 shows the meta-model of the LLC controller, which has an

attribute Horizon specifying the prediction horizon of the LLC. It contains

Utility, ControlInputSet, and SetPoint models. The Utility has three impor-

tant attributes: Constraints includes the constraints the system need to fol-

low, UtilityFunction is to write the utility function, and Operation decides

49



Figure V.4: LLC meta-model

whether to “minimize” or “maximize” the utility function. The ControlInput-

Set contains all the available control inputs for the system. SetPoint is the

target value that the automatic control system aims to reach. ControlInput,

SystemState and SetPoint can be sent to the Utility by UtilityConn. Users

can then use the LLC by setting the above values of the models without

knowing the implementation details.

System Dynamics Model

The system dynamics specifies the behavioral characteristics of a com-

putation system. The ACME has three types of models for the system dy-

namics: SystemModel, PhysicalSystem sim and PhysicalSystem. In System-

Model and PhysicalSystem sim, the behavioral characteristics are expressed

by hybrid automata or mathematical functions, through which system states

50



Figure V.5: meta-model of the System Dynamics

are updated. The general forms of HybridAutomata notation and Function

notation are defined in the meta-model. In PhysicalSystem, the behavioral

characteristics are the physical system states measured by the Sensor models.

The key models of the SystemModel as shown in Fig. V.5 are HybridAu-

tomata, Function, and ValidCtrlInputs. The HybridAutomata has State models,

including one InitialState in each HybridAutomata, and StateTransition con-

nections between them. State has attributes EntryAction, ExitAction, and

FunctionExpression; Transition has attributes Action, Trigger, and Guard.

The transitions can be addressed in the attribute HA scripts of the Hy-

bridAutomata, or modeled inside the HybridAutomata by choosing from the

HA expression attribute, ”Using scripts” or ”Embed HA inside”. The Hybri-

dAutomata model also has two aspects: FSMAspect and DataFlowAspect.

In the FSMAspect state transitions are visible, while the DataFlowAspect

demonstrates how data flow into States. The Function model has an Ex-

pression attribute that captures mathematical relations. The ValidCtrlInputs

51



checks the validity of the control inputs sent by the controller correspond-

ing to current system states. For example, if there are two States: Idle and

Active, the ValidCtrlInputs should also have two ValidSets like IdleSet and Ac-

tiveSet correspondingly. Assume that the system is in the Idle State, then if

a control input is not in the IdleSet, it is considered invalid; otherwise it is

valid.

PhysicalSystem sim model is used to simulate the behaviors of physical

systems. Similar to the SystemModel, PhysicalSystem sim has HybridAu-

tomata and Function. It also has Actuator and Sensor models corresponding

to the same elements as in the real physical system.

The PhysicalSystem, working in a real-time application mode, contains

Actuator and Sensor models. Sensor receives system states from, and Actuator

sends control inputs selected by Controller to physical plants. Both models

have two main attributes: sampling rate and accuracy. System dynamics can

also be included if the system can be analytically modeled.

ACME Interpreter

Interpreters are model translators designed to work with all models cre-

ated using the domain-specific GME. The translated models then can be used

as sources for analyzing programs [1]. We use a framework named Builder

Object Network version 2.0 (BON2) to access the ACME components and

the relationships between them. The BON2 generates the basic files of the

interpreter, and our work consists of writing the crucial portion of the inter-

preter code. First, the interpreter navigates the object network and traverses

52



Figure V.6: Navigating the object network

all the models. If a System exists, the traversal will start using TraversalAll()

in the Component::invokeEx() function, and the TraverseAll() function will

generate necessary files successively as in Fig. V.6, when each individual com-

ponent is queried by accessing its properties, attributes, meta-information, or

associations. For instance, the LLC controller code identifies the Controller by

the model property, reads the Horizon attribute from the Controller, and ob-

tains the associated system states and control inputs. The generated scripts

are ready to run for execution.

Following are the descriptions for the sub functions of the TraverseAll()

function.

• generateTreeCode(): In generateTreeCode(), two functions generate-

TreeHeader() and generateTreeSource() are included, which generate a

53



Tree.h and a Tree.cpp separately as a library providing tree structures.

The tree structure is to help do some computing.

• generateEstimator(): Same as generateTreeCode(), function genera-

teEstimator() is also to generate a library of an estimator to help work

on prediction. This function will generate an ”Estimator.h” file. Li-

braries are mostly independent of user’s applications, so they do not

require much information from GME models.

• PrintStructures(): Next function PrintStructures() is to print a structs.h

file with a structure containing the current simulation time, system

states and control inputs. Figure 3 shows the main body of the PrintStruc-

tures(). It traverses the PhysicalSystem sim model in the System

model, and collects data it needs. Note that we use several 2-dimension

arrays here. Actually three arrays are defined in the Traversal class:

systemstate[ ][ ], ctrlinputs[ ][ ], and Env var[ ][ ]. Currently, system-

state[i][0], ctrlinputs[i][0], or Env var[i][0] stores the date type, while

systemstate[i][1], ctrlinputs[i][1], or Env var[i][1] keeps the name.

• generateHACode(): The fourth function generateHACode() is respon-

sible for generating HA PSi.h and HA PSi.cpp files or HA SMi.h and

HA SMi.cpp, where i=0, 1, 2, . . . . As there may be several hybrid

automatons in the physical system model or system state model, i is

to distinguish them from one another. Now the transition functions

are simply embedded as scripts in the GME model. We just need to

read the scripts are put them into the transition function. A library

54



class of hybrid automaton can be added, thus the GME model can be

interpreted directly instead of asking for scripts from users.

• generateMainCode(): The last one, also the most important one, the

generateMainCode() function also interprets using two sub functions:

generateMainHeader() and generateMainSource(), one to write .h file

and the other for .cpp file.

The generateMainHeader() function has two sub functions as well.

First, it calls PrintInitialParam() to output all the important definitions

of variables, constants, and global functions. It needs to traverse all

the models in the main System model to get all the useful values. The

generateMainHeader() calls the PrintClassHead() next to write defini-

tions of PhysicalSystem class, SystemModel class, and Controller class

into the .h file. Figure 4 shows the skeleton of the PrintClassHead().

Note that in the full code, there is a maincpp variable appears quite

often in this function, which is to collect data for the .cpp file. To work

out those classes, the function traverses the PhysicalSystem model, the

SystemModel model, and the Controller model separately.

Second, a function GetUtilityPrecedence() in PrintClassHead() is to

get all the utility functions. In the Controller block, there can be sev-

eral Utility models with their own functions on each of them. Each

Utility model has one output or no output, but it can have several in-

puts. All the Utility models have one output except the last one. So

the GetUtilityPrecedence() will find the last Utility model first, then

backtrack all its inputs. If the root of an input is also a Utility model,

55



GetUtilityPrecedence() is called again inside the function itself. Af-

ter calling another GetUtilityPrecedence() function, the first GetUtili-

tyPrecedence() outputs its utility function to the .cpp file. Otherwise,

the input is a variable used by the Utility model. We just need to read

the variable into the .cpp file, followed by the utility function. Figure

5 shows how this function works. There is another function named

GetFunctionPrecedence(), very similar to the GetUtilityPrecedence().

The difference is that Function block always has one output to the Sys-

temState. Thus, we start from one of those atoms to backtrack all the

functions. The GetFunctionPrecedence() is called whenever Function

model appears.

The generateMainSource() function is simple. We just output the col-

lected data maincpp to the .cpp file.

56



CHAPTER VI

CASE STUDY

To demonstrate the efficiency of the search algorithms and the applica-

bility of the ACME modeling, we did a case study concerning power man-

agement(PM) of a DVS-capable processor operating under a time-varying

workload [3].

Problem Formulation

Power consumption has become an important design constraint for densely

packed processor clusters due to electricity costs and heat dissipation is-

sues [69]. To tackle this problem, many modern processors allow their oper-

ating frequency and supply voltage to be dynamically scaled. For example,

processors such as the AMD-K-2 [8] and Pentium M processors [41] offer a

limited number of discrete frequency settings, eight and six, respectively. We

first apply the LLC approach to manage the power consumed by such a pro-

cessor under a time-varying workload comprised of HTTP requests. Assum-

ing a processor with multiple operating frequencies, the controller is required

to achieve a specified response time for these requests while minimizing the

corresponding power consumption.

57



Figure VI.1: (a) A queueing model of the processor and (b) a hybrid au-
tomaton representation of processor operating modes

Processor Model

Fig. VI.1(a) shows a simple queueing model for processor P where λ(k) ∈
Λ ⊂ R and µ(k) ∈ Υ ⊂ R denote the arrival and processing rates, respec-

tively, of the incoming data stream di, where Λ and Υ are bounded, and q(k)

is the queue size at time k [42]. We do not assume a prior arrival-rate dis-

tribution for di and P does not idle if the queue contains data items; queue

utilization is given by ρ(k) = q(k)/qmax where qmax is the maximum queue

size.

Processor P may be treated as a switching hybrid system and its oper-

ation is represented using the hybrid automaton model in Fig. VI.1(b) [10].

Transitions between operating modes may be triggered by events or the pas-

sage of time. For example, when the queue is empty, P is idled to save power;

58



when new events arrive, P is switched back to the active state with little time

overhead. If the processor stays idle beyond some threshold duration, it is

placed in the sleep state for a specified time period. In this state, however, P

does not register external events, and consequently, they are simply dropped.

The processor transitions back to the active state at the end of the sleep pe-

riod. We assume P can be operated at multiple frequencies. Therefore, its

active state is a bounded collection of discrete sub-states, each with a specific

frequency setting fi. In this state, power consumption can be minimized by

scaling fi appropriately. Power consumption relates quadratically to supply

voltage which can be reduced at lower frequencies [21]. Consequently, en-

ergy savings can be quite significant. We denote the time required to process

di while operating at the maximum operating frequency fmax by ci. Then

the corresponding processing time while operating at some instantaneous

frequency f(k) ∈ fi is ci/α(k) where α(k) = f(k)/fmax is the appropriate

scaling factor. The energy consumed by P while operating at f(k) is given

by α2(k) [78] and this simple energy model has been shown to provide rea-

sonably accurate estimates [67].

This section develops a controller to address P ’ s power consumption

in the active state. It can, however, be readily integrated with techniques

such as predictive shutdown [79] to affect the other mode transitions in

Fig. VI.1(b).

59



Model Dynamics

The following equations describe the dynamics of the processor in the

active state:

q̂(k + 1) = max{q(k) + (λ̂(k + 1)− α(k + 1)/c(k + 1))× T, 0} (VI.1)

D̂(k + 1) = max{q̂(k + 1)− qmax, 0} (VI.2)

q̂(k + 1) = q̂(k + 1)− D̂(k + 1) (VI.3)

r̂(k + 1) = (1 + q̂(k + 1))× ĉ(k + 1)/α(k + 1) (VI.4)

ρ̂(k + 1) = q̂(k + 1)/qmax (VI.5)

Ê(k + 1) = α(k + 1)2 (VI.6)

Given the observed queue length dynamic q(k) at time instant k, Equa-

tion VI.1 estimates its length at time k+1 where λ̂(k+1) and ĉ(k+1) denote

the estimated data arrival rate and execution time, respectively. When the

queue is full, the estimated dropped requests are represented by q̂d(k + 1).

The average response time of requests arriving during the time interval

[k, k+1] is estimated as r̂(k+1) in Equation VI.4, and α(k+1) = f(k+1)/fmax

is the scaling factor; the execution time is obtained with respect to the max-

imum processor frequency fmax. The sampling time of the controller is de-

noted by T . Equation VI.5 estimates the corresponding queue utilization

while Equation VI.6 gives the energy consumed by the processor.

60



Returning to Equation VI.1, good estimators of future system inputs

and outputs are crucial to model accuracy. Here, we use an ARMA filter to

estimate the environment parameter: the future data arrival rate λ̂(k+1) [19].

Given the arrival rate λ(k) at time k and the mean λ̄ of past observations

over a specified history window, the estimated rate for k + 1 is:

λ̂(k + 1) = βλ̄ + (1− β)λ(k) (VI.7)

where the gain β determines how the estimator tracks variations in the

observed arrival rate; a low β biases the estimator towards the current obser-

vation while larger values favor past history. Rather than statically fix β, an

adaptive estimator described in [50] can be used. It tracks large arrival-rate

(execution time) changes quickly while remaining robust against small vari-

ations. When the estimated values match the observed ones, those estimates

are given more weight with a higher β. If, however, the estimator does not

accurately match the observed values, β is decreased to improve convergence.

Control Problem

During any time interval k, the controller on processor P must select the

proper frequency settings to operate P as close as possible to the desired

performance criterion. Let J be the cost function to be optimized at time

k. Therefore, J is determined by the queue utilization ρ(k), the dropped

requests Dk, the achieved response time r(k) and the corresponding energy

consumption E(k). Lower ρ(k) values are desirable since the processing delay

incurred by a newly arrived data item is inversely proportional to 1 − ρ(k),

61



and we do not expect any requests to be dropped. The OLC algorithm

is suitably modified to minimize the following cost function to obtain the

required operating frequency f(k):

Ĵ(k+1) = β1ρ̂(k+1)2+β2D̂(k+1)2+β3(r̂(k+1)−r∗)2+β4Ê(k+1)2 (VI.8)

where βi, i = 1, 2, 3, 4 are user-specified weights denoting the relative

importance of ρ̂(k), D̂(k), r̂(k) and Ê(k) respectively, and r∗ denotes the

desired average response time.

Performance Evaluation

We evaluated the performances of the search algorithms and the ACME

using above models under a time-varying workload.

Advanced Search

We assume the scaled possible operating frequencies of the processor are

0.2564, 0.3479, 0.4349, 0.5219, 0.650, 0.7829 and 1.0000. The execution time

of the workload is 0.0367ms, and the sampling period of the controller is 30ms.

The weights in the utility function are all set to 1. A series of experiments

are carried out to evaluate the effect of different search strategies on the

controller’s performance in Matlab, SIMULINK.

The uniform-cost search follows the pseudo code and employs a priority

queue. All the extended nodes are added to the queue, while each queue

62



component is composed of information of the extended node, including its

accumulative cost, its depth in the tree, its system states and the first control

input along the path to the node. The queue is sorted according to the

component costs in an ascending order.

The A* search extends the uniform-cost search with the heuristic table

heuristic(w, x, k). In the PM case, workload to the system λ is the environ-

ment input, which ranges in [0, 1000]. Assume that ∆λ is no larger than 50,

to simplify the table, the indexes w = 0, 1, 2, · · · , 20 are mapped to workload

0, 50, 100, · · · , 1000. Moreover, the PM has three system states: queue level,

dropped signal and response time, but as the last two are dependent on the

first one, only queue size q is represented for x. In addition, the queue level

can be decimal, but the table can not use non-integer index, so only integers

between 0 and the maximum queue level have values in the table. Finally,

a 21 × 51 × (N − 1) heuristic table heuristic(λ, q,N − 1) is built, where N

is the prediction horizon. We use N − 1 instead of N because leaf nodes do

not extend anymore and no heuristic is needed for the Nth level of the tree.

The pruning is currently combined with the uniform-cost search. Among

all the systems states in the case study, only the queue level is used to

calculate next system states, so we only compare the queue levels. As the

queue level is bounded, it cannot be smaller than zero or larger than the

maximum size, so it is likely to result in the same queue level. The pruning

search then decides which subtree should be removed from the current tree

structure.

Fig. VI.2, VI.3 summarize results for four prediction horizons N using a

synthetic workload. They demonstrate the number of nodes extended and

63



Figure VI.2: Comparing the node extended for different search strategies

Figure VI.3: Comparing the time spent for different search strategies

64



Figure VI.4: An ACME system implementation

time spent by the controller per sampling time step (workload arrivals span

9000 simulation time) for the first three methods. The larger N is, the better

the new searches perform. In addition, all the control inputs obtained by the

first three search methods are identical. In this special case, the pruning

almost reaches the optimal solution, that is, only extending nodes on the

path to the goal.

ACME Model

The generic control framework is fully developed using the ACME tool.

We build the PM application using the models generated by the ACME meta-

models. Fig. VI.4 is a screen shot of the implemented application, which is the

architecture of the system. As the case study is in the simulation mode, we

use Environment Sim and PhysicalSystem sim models instead of Environment

and PhysicalSystem. In each simulation step, two environment variables are

generated in Environment Sim. One is the request arrival rate obtained from

65



a local file using the Reader model; the other is the execution time of the

requests, set to 6.0ms in the Generator model. The future values of the

variables are estimated by the ARMA filters and sent to the SystemModel

to forecast two system states, queue level and dropped requests, over the

Horizon of the Controller Optimizer. The queue is a buffer to store incoming

requests with a limited size, so the dropped requests represent the signals

dropped when the queue is full. By selecting the control input, the best

CPU processing frequency, the Optimizer balances the forecast queue level,

dropped requests, and the frequency. Finally, PhysicalSystem sim updates the

system states using the selected control input and new environment variables.

In each simulation step, the Optimizer reads the current queue level,

and sends it together with all the frequencies in the ControlInputSet to the

SystemModel. The SystemModel will calculate all the next possible queue

sizes qi and dropped requests Di corresponding to the ith frequency fi. The

set qi, Di, fi are compared with their SetPoint and computed in the Utility

model.

Each time the SystemModel receives new data, including current queue

size and all the possible frequencies, it will check the validity of the pro-

cessing frequencies for the queue size in the ValidCtrlInputs model as shown

in Fig. VI.5. If the frequency is valid, it will be sent to the Functions of

the SystemModel together with the queue size to compute the next possible

queue size, which is then sent back to the Optimizer for further operation.

Otherwise, it will be discarded.

66



Figure VI.5: Valid control input set modeling

Performance Analysis. We tested code generated by the interpreter.

The performance of the power management system is evaluated using a syn-

thetic workload file and Fig. VI.6 shows the results of one simulation run.

The processor can operate between [200, 600] Mhz with 25 Mhz increments,

and the Horizon of the Optimizer was set to 2. For simplicity, we use the

utility function of

J(k+1) = 0.45∗(0.01∗q(k))2+0.65∗(0.01∗f(k))2+1.0∗(0.1∗D(k))2 (VI.9)

The request arrival rates exhibit cyclical variations characteristic of most

HTTP and e-commerce workloads [12]. From the frequency responses, we

can see that the controller tracks the arrival rates well. The increase in the

dropped requests is due to a sustained high request arrival rate, when the

controller already operates with its maximum frequency.

67



Figure VI.6: Performance of power management system

We compare the simulation results above with a similar system using a

constant frequency 400Mhz for 10000 simulation steps, where the first 200

data are discarded considering the system adaptation. As shown in Ta-

ble VI.1, the LLC drops only 1.5% of the requests dropped by the constant

control, while spending 73.3% of the power spent by the constant control.

Table VI.1: Comparison with systems without control

With Control No Control With Control/No Control
max average max average average

Queue level 50 3.6 50 14.2 25.4 %
Dropped request 107 0.4 310 27.2 1.5 %
Frequency(Mhz) 600 342.5 400 400 85.6 %
Power cost(MJ) 360000 117306 160000 160000 73.3 %

Robustness 0.05 0.71 7.0 %

68



Moreover, if the frequency in the uncontrolled model is decreased, more re-

quests will be dropped as the processing speed of the server is slower; while

an increase of the constant frequency will make the system consume more

power, because the frequency of 400Mhz is already greater than the average

frequency 342.5Mhz of the LLC system. In addition, the robustness of the

constant control is much worse than that of the LLC.

In summary, the new search strategies have shown great potential for im-

proving the performance of the LLC approach. They try to decrease the time

and space complexity by reducing the search space. The first three strategies

bound the search space to a smaller region, with the primary consideration

of guaranteeing the optimality and completeness of the search, while the last

strategy always cuts down a fixed amount from the search regions, provid-

ing a sub-optimal solution through a faster search. Still, the new strategies

need extra time and space to process additional steps but these expenses are

smaller than the time and space needed to explore the reduced search space.

Overall, the new search strategies can be successfully applied to different

situations, providing flexibility and useful advantages for the LLC approach.

The ACME framework abstracts the control theories and their related

components into graphical and simple models. It can provide great con-

venience for end users. The users can not only put the models together,

they can also select the models and values of variables they consider most

appropriate for their systems. On the other hand, it may be not easy for

developers to maintain the framework, because every time an adjustment

is made to their meta-models, they need to change the interpreter code to-

gether with the models. Further, by allowing the users to select their own

69



model, it should better provide guidance for the selection of the models and

variable values. Although the ACME is not a complete toolkit, it can be a

direction of embedding control theories to computational systems, providing

easy access for engineers who are not familiar with control techniques.

70



CHAPTER VII

CONCLUSION AND FUTURE RESEARCH

We have presented a limited lookahead control framework to design self-

optimizing computing systems. In the approach, control actions governing

system operation were obtained by optimizing its behavior, as forecast by

a mathematical model, over a finite time horizon. We investigated the ap-

plication of efficient AI search algorithms to improve the performance of

the LLC framework. Furthermore, we presented a model integrated frame-

work ACME to facilitate the design of self-managed computation systems.

The proposed framework can accommodate a variety of model-based control

strategies. Modules supporting the control structure such as estimators can

be added and parameterized based on the user-defined system model and

its specification. The framework provides supports of automatic synthesis of

the managing controller modules based on a given system model, constraints

and specification.

To demonstrate the performance of the proposed search algorithms, we

implemented the limited lookahead controller in a case study of efficiently

managing power consumption in a DVS-capable processor under a time-

varying workload. Our results indicated that the search algorithms can

largely decrease the memory usage and greatly speed up the system execu-

tion. The case study is also successfully developed in the ACME framework.

Although the simulation results of the case study are satisfying, the case

study may be too simple to address hidden problems. In future work, we will

71



test more complex applications in order to correct and improve the current

approaches.

72



BIBLIOGRAPHY

[1] GME 5 Users Manual(v5.0), 2005. WebSite:
http://www.isis.vanderbilt.edu/Projects/gme
/GMEUMan.pdf.

[2] S. Abdelwahed, G. Karsai, and G. Biswas. Online safety control of a
class of hybrid systems. Decision and Control, 2002, Proceedings of the
41st IEEE Conference on, 2:1988–1990 vol.2, Dec. 2002.

[3] Sherif Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. On-
line control for self-management in computing systems. In 10th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium(RTAS’04), Toronto, Canada, May 2004.

[4] T. Abdelzaher, Ying Lu, Ronghua Zhang, and D. Henriksson. Practical
application of control theory to web services. American Control Confer-
ence, 2004. Proceedings of the 2004, 3:1992–1997 vol.3, 30 June-2 July
2004.

[5] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees
for web server end-systems: a control-theoretical approach. In Parallel
and Distributed Systems, IEEE Transactions on, volume 13, pages 80–
96, Jan 2002.

[6] T.F. Abdelzaher and N. Bhatti. Web server qos management by adaptive
content delivery. In Quality of Service, 1999. IWQoS ’99. 1999 Seventh
International Workshop on, number 6375742 in 0-7803-5671-3, pages
216–225, 1999.

[7] F. Abdollahi and K. Khorasani. A robust dynamic routing strategy
based on h control. Control & Automation, 2007. MED ’07. Mediter-
ranean Conference on, pages 1–6, 27-29 June 2007.

[8] Advanced Micro Devices Corp. Mobile AMD-K6-2+ Processor Data
Sheet, publication 23446 edition, June 2000.

[9] Andrea Alimonda, Andrea Acquaviva, Salvatore Carta, and Alessandro
Pisano. A control theoretic approach to run-time energy optimization
of pipelined processing in mpsocs. In DATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages 876–877,

73



3001 Leuven, Belgium, Belgium, 2006. European Design and Automa-
tion Association.

[10] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[11] M. Arlitt and T. Jin. Workload characterization of the 1998 world
cup web site. Technical report hpl-99-35r1, Hewlett-Packard Labs,
Septermber 1999.

[12] Martin F. Arlitt and Carey L. Williamson. Web server workload char-
acterization: the search for invariants. SIGMETRICS Perform. Eval.
Rev., 24(1):126–137, 1996.

[13] K. Astrom and T. Hagglund. PID Controllers: Theory, Design, and
Tuning. Instrument Society of America, 2nd edition, 1995.

[14] Y. Bar-Shalom, R. Larson, and M. Grossberg. Application of stochas-
tic control theory to resource allocation under uncertainty. Automatic
Control, IEEE Transactions on, 19(1):1–7, Feb 1974.

[15] E. Bertolazzi, F. Biral, and M. Da Lio. Future advanced driver assis-
tance systems based on optimal control: the influence of ”risk functions”
on overall system behavior and on prediction of dangerous situations.
Intelligent Vehicles Symposium, 2004 IEEE, pages 386–391, 14-17 June
2004.

[16] R. Bisiani. Encyclopedia of Artificial Intelligence, pages 56–58. Beam
search. Wiley & Sons, 1987.

[17] JC Bolot, T Turletti, and I Wakeman. Scalable feedback control for mul-
ticast video distribution in the internet. In Proceedings of the conference
on Communications architectures, protocols and applications, pages 58–
67, 1994.

[18] M. Bourne, M. Franco, and J. Wilkes. Measuring Business Excellence,
volume 7, pages 15–21. Emerald Group Publishing Limited, 2003.

[19] G.P. Box, G.M. Jenkins, and G.C. Reinsel. Time Series Analysis: Fore-
casting and Control. Prentice-Hall, Upper Saddle River, New Jersey, 3
edition, 1994.

[20] K. Brammer and G. Siffling. Kalman-Bucy Filters. Norwood MA: Artec
House, 1989.

74



[21] T.D. Burd and R.W. Brodersen. Energy efficient cmos microprocessor
design. System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii
International Conference on, 1:288–297 vol.1, 3-6 Jan 1995.

[22] E.F. Camacho and C. Bordons. Model Predictive Control, Advanced
Textbooks in Control and Signal Processing. Springer-Verlag, 2004.

[23] Tianyou Chai. A hybrid intelligent optimal control method for the whole
production line and applications. Integration Technology, 2007. ICIT
’07. IEEE International Conference on, pages nil14–nil15, 20-24 March
2007.

[24] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for
shared data centers using online measurements. 11th IEEE International
Workshop on Quality of Service, June 2003.

[25] Qiang Chen and O.W.W. Yang. Design of aqm controller for ip routers
based on h/sub /spl infin// s/u msp. Communications, 2005. ICC 2005.
2005 IEEE International Conference on, 1:340–344 Vol. 1, 16-20 May
2005.

[26] Xudong Chen, qingxin Zhu, Yong Liao, Ping Kuang, and Guangze
Xiong. Dynamic optimal control for aperiodic soft real-time systems.
Communications, Circuits and Systems Proceedings, 2006 International
Conference on, 4:2796–2800, June 2006.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. MIT Press, 2nd edition, 2001.

[28] S.A. DeLurgio. Forecasting Principles and Applications. McGraw-Hill,
1998.

[29] Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Rean Griffith, Gail
Kaiser, and Dan Phung. Self-managing systems: A control theory foun-
dation. ecbs, 00:441–448, 2005.

[30] Yixin Diao and K.M. Passino. Stable fault-tolerant adaptive
fuzzy/neural control for a turbine engine. Control Systems Technology,
IEEE Transactions on, 9(3):494–509, May 2001.

[31] Yixin Diao and K.M. Passino. Adaptive neural/fuzzy control for in-
terpolated nonlinear systems. Fuzzy Systems, IEEE Transactions on,
10(5):583–595, Oct 2002.

75



[32] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differenti-
ated services: Delay differentiation and packet scheduling. ACM SIG-
COMM Computer Communication Review, 29(4):109–120, Oct. 1999.

[33] D. Menasce et al. In search of invariants for e-business workloads. In
Proc. ACM Conf. Electronic Commerce, pages 56–65, 2000.

[34] D. Furcy and S. Koenig. Limited discrepancy beam search. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2005.

[35] A. G. Ganek and T. A. Corbi. The dawn of the autonomic computing
era. IBM Systems Journal, 42(1):5–18, 2003.

[36] R. Griffith, J. Hellerstein, G. Kaiser, and Yixin Diao. Dynamic adap-
tation of temporal event correlation for qos management in distributed
systems. Quality of Service, 2006. IWQoS 2006. 14th IEEE Interna-
tional Workshop on, pages 290–294, June 2006.

[37] Ning Gui, Chaoxin Wu, Songqiao Chen, and Jianxin Wang. A stable
stateless fair bandwidth allocation algorithm using stochastic control.
Communications, Circuits and Systems Proceedings, 2006 International
Conference on, 3:1722–1726, 25-28 June 2006.

[38] F. Harada, T. Ushio, and Y. Nakamoto. Adaptive resource allocation
control for fair qos management. Transactions on Computers, 56(3):344–
357, March 2007.

[39] D. Henriksson, Y. Lu, and T. Abdelzaher. Improved prediction for web
server delay control. Real-Time Systems, 2004. ECRTS 2004. Proceed-
ings. 16th Euromicro Conference on, pages 61–68, 30 June-2 July 2004.

[40] C.V. Hollot, V. Misra, D. Towsley, and Wei-Bo Gong. A control theoretic
analysis of red. In INFOCOM 2001. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 3 of 0-7803-7016-3, pages 1510–1519, 2001.

[41] Intel Corp. Enhanced Intel SpeedStep Tecnology for the Intel Pentium
M Processor, 2004.

[42] R. Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, New York, 1991.

[43] N. Kandasamy and S. Abdelwahed. Designing self-managing distributed
systems via online predictive control. Tech. report isis-03-404, Vander-
bilt University, 2003.

76



[44] N. Kandasamy, S. Abdelwahed, and J.P. Hayes. Self-optimization in
computer systems via on-line control: application to power management.
Autonomic Computing, 2004. Proceedings. International Conference on,
pages 54–61, 17-18 May 2004.

[45] M. Karlsson. Maximizing the utility of a computer service using adaptive
optimal control. Networking, Sensing and Control, 2006. ICNSC ’06.
Proceedings of the 2006 IEEE International Conference on, pages 89–94,
23-25 April 2006.

[46] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: performance isolation
and differentiation for storage systems. Quality of Service, 2004. IWQOS
2004. Twelfth IEEE International Workshop on, pages 67–74, 7-9 June
2004.

[47] M. Karlsson, Xiaoyun Zhu, and C. Karamanolis. An adaptive opti-
mal controller for non-intrusive performance differentiation in comput-
ing services. Control and Automation, 2005. ICCA ’05. International
Conference on, 2:709–714 Vol. 2, 26-29 June 2005.

[48] P.F. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control for communi-
cation networks: Shadow prices, proportional fairness and stability. The
Journal of the Operational Research Society, 49(3):237–252, Mar. 1998.

[49] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, Jan 2003.

[50] Minkyong Kim and Brian Noble. Mobile network estimation. In Proceed-
ings of the Seventh Annual International Conference on Mobile Comput-
ing and Networking, pages 298–309, July 2001.

[51] L. Kleinrock. Queueing Systems Theory, volume 1. John Wiely & Sons,
January 1975.

[52] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Gar-
rett, Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter
Volgyesi. The generic modeling environment. In WISP’, Budapest, Hun-
gary, May 24-25 2001.

[53] Bo Lincoln and Bo Bernhardsson. Optimal control over networks with
long random delays. 2000.

77



[54] X. Liu, X. Zhu, S. Singhal, and M. Arlitt. Adaptive entitlement control
of resource containers on shared servers. Integrated Network Manage-
ment, 2005. IM 2005. 2005 9th IFIP/IEEE International Symposium
on, pages 163–176, 15-19 May 2005.

[55] Xue Liu, Jin Heo, Lui Sha, and Xiaoyun Zhu. Adaptive control of multi-
tiered web applications using queueing predictor. Network Operations
and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP,
pages 106–114, 2006.

[56] Xue Liu, Lui Sha, Yixin Diao, steven Froehlich, Joseph L. Hellerstein,
and Sujay Parekh. Quality of Service - IWQoS 2003, chapter Online
Response Time Optimization of Apache Web Server, page 153. Springer
Berlin / Heidelberg, 2003.

[57] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-time
scheduling: Framework, modeling, and algorithms. J. Real-Time Syst.,
23(1-2):85–126, July/September 2002.

[58] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Mar-
ley. Performance specifications and metrics for adaptive real-time sys-
tems. In Real-Time Systems Symposium, 2000. Proceedings. The 21st
IEEE, pages 13–23, Orlando, FL, USA, 2000.

[59] C Lu, JA Stankovic, G Tao, and SH Son. Design and evaluation of a
feedback control edf scheduling algorithm. In Real-Time Systems Sym-
posium, 1999. Proceedings. The 20th IEEE, 0-7695-0475-2, pages 56–67,
1999.

[60] Chenyang Lu, Tarek F. Abdelzaher, John A. Stankovic, and Sang H.
Son. A feedback control approach for guaranteeing relative delays in
web servers. In Real-Time Technology and Applications Symposium,
2001. Proceedings. Seventh IEEE, pages 51–62, 2001.

[61] Chenyang Lu, Ying Lu, T.F. Abdelzaher, J.A. Stankovic, and
Sang Hyuk Son. Feedback control architecture and design methodology
for service delay guarantees in web servers. Transactions on Parallel and
Distributed Systems, 17(9):1014–1027, Sept. 2006.

[62] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback
control real-time scheduling: Framework, modeling, and algorithms*.
Real-Time Syst., 2006.

78



[63] Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos. Feedback uti-
lization control in distributed real-time systems with end-to-end tasks.
IEEE Transactions on Parallel and Distributed Systems, 16(6):550–561,
2005.

[64] Y. Lu, T. Abdelzaher, Chenyang Lu, Lui Sha, and Xue Liu. Feedback
control with queueing-theoretic prediction for relative delay guarantees
in web servers. Real-Time and Embedded Technology and Applications
Symposium, 2003. Proceedings. The 9th IEEE, pages 208–217, 27-30
May 2003.

[65] Ying Lu, T. Abdelzaher, Chenyang Lu, and Gang Tao. An adaptive
control framework for qos guarantees and its application to differentiated
caching. Quality of Service, 2002. Tenth IEEE International Workshop
on, pages 23–32, 2002.

[66] Ying Lu, A. Saxena, and T.F. Abdelzaher. Differentiated caching ser-
vices; a control-theoretical approach. In Distributed Computing Systems,
2001. 21st International Conference on., 0-7695-1077-9, pages 615–622,
Apr. 2001.

[67] Zhijian Lu, Jason Hein, Marty Humphrey, Mircea Stan, John Lach,
and Kevin Skadron. Control-theoretic dynamic frequency and voltage
scaling for multimedia workloads. In CASES ’02: Proceedings of the
2002 international conference on Compilers, architecture, and synthesis
for embedded systems, pages 156–163, New York, NY, USA, 2002. ACM.

[68] A.K. Moharana, K. Panigrahi, B.K. Panigrahi, and P.K. Dash. Vsc
based hvdc system for passive network with fuzzy controller. Power
Electronics, Drives and Energy Systems, 2006. PEDES ’06. Interna-
tional Conference on, pages 1–4, 12-15 Dec. 2006.

[69] T. Mudge. Power: a first-class architectural design constraint. Com-
puter, 34(4):52–58, Apr 2001.

[70] Sujata Mujumdar, Nagabhushan Mahadevan, Sandeep Neema, and
Sherif Abdelwahed. A model-based design framework to achieve end-
to-end qos management. In ACM-SE 43: Proceedings of the 43rd an-
nual Southeast regional conference, pages 176–181, New York, NY, USA,
2005. ACM.

[71] J. Le Ny, M. Dahleh, and E. Feron. Multi-agent task assignment in the
bandit framework. Decision and Control, 2006 45th IEEE Conference
on, pages 5281–5286, 13-15 Dec. 2006.

79



[72] K. Ogata. Modern Control Engineering. Prentice Hall, Englewood Cliffs,
NJ, 1997.

[73] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and
J. Bigus. Using control theory to achieve service level objectives
in performance management. J. Real-Time Syst., 23(1-2):127–141,
July/September 2002.

[74] P.-F. Quet and H. Ozbay. On the design of aqm supporting tcp flows
using robust control theory. Automatic Control, IEEE Transactions on,
49(6):1031–1036, June 2004.

[75] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2003.

[76] Lui Sha, Xue Liu, Ying Lu, and T. Abdelzaher. Queueing model based
network server performance control. Real-Time Systems Symposium,
2002. RTSS 2002. 23rd IEEE, pages 81–90, 2002.

[77] A. Shukla, A. Ghosh, and A. Joshi. State feedback control of multilevel
inverters for dstatcom applications. Power Delivery, IEEE Transactions
on, 22(4):2409–2418, Oct. 2007.

[78] A. Sinha and A.P. Chandrakasan. Energy efficient real-time schedul-
ing [microprocessors]. Computer Aided Design, 2001. ICCAD 2001.
IEEE/ACM International Conference on, pages 458–463, 2001.

[79] M.B. Srivastava, A.P. Chandrakasan, and R.W. Brodersen. Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 4(1):42–55, Mar 1996.

[80] JA Stankovic, C Lu, SH Son, and G Tao. The case for feedback control
real-time scheduling. In Real-Time Systems, 1999. Proceedings of the
11th Euromicro Conference on, 0-7695-0240-7, pages 11–20, 1999.

[81] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Cal-
ton Pu, and Jonathan Walpole. A feedback-driven proportion allocator
for real-rate scheduling. In Proceedings of the third symposium on Oper-
ating systems design and implementation, 1-880446-39-1, pages 145–158.
USENIX Association, Berkeley, CA, USA, 1999.

[82] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative
modeling. Fuzzy Systems, IEEE Transactions on, 1(1):7–, Feb 1993.

80



[83] A. Talukder, R. Bhatt, T. Sheikh, R. Pidva, L. Chandramouli, and
S. Monacos. Dynamic control and power management algorithm for
continuous wireless monitoring in sensor networks. Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, pages
498–505, 16-18 Nov. 2004.

[84] S. Thavamani. Control of c2 unit using arena modeling and simulation.
Simulation Conference, 2006. WSC 06. Proceedings of the Winter, pages
1316–1323, 3-6 Dec. 2006.

[85] Wanqing Tu, Cormac J. Sreenan, and Weijia Ji. Worst-case delay con-
trol in multigroup overlay networks. Transactions on Parallel and Dis-
tributed Systems, 18(10):1407–1419, Oct. 2007.

[86] Xiaorui Wang, Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos.
On controllability and feasibility of utilization control in distributed real-
time systems. Real-Time Systems, 2007. ECRTS ’07. 19th Euromicro
Conference on, pages 103–112, 4-6 July 2007.

[87] Linbo Xie, Weiyi Zhao, and Zhicheng Ji. Lqg control of networked con-
trol system with long time delays using δ−operator. Intelligent Systems
Design and Applications, 2006. ISDA ’06. Sixth International Confer-
ence on, 2:183–187, Oct. 2006.

[88] Jing Xu, Ming Zhao, Jose Fortes, Robert Carpenter, and Mazin Yousif.
On the use of fuzzy modeling in virtualized data center management.
Autonomic Computing, 2007. ICAC ’07. Fourth International Confer-
ence on, pages 25–25, 11-15 June 2007.

[89] Wei Xu, Xiaoyun Zhu, S. Singhal, and Zhikui Wang. Predictive con-
trol for dynamic resource allocation in enterprise data centers. Net-
work Operations and Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pages 115–126.

[90] L. A. Zadeh. ”fuzzy sets”. Information and Control, 8:338–353, 1965.

[91] M. Zafer and E. Modiano. Minimum energy transmission over a wireless
fading channel with packet deadlines. Decision and Control, 2007 46th
IEEE Conference on, pages 1148–1155, 12-14 Dec. 2007.

[92] M. Zafer and E. Modiano. Delay-constrained energy efficient data trans-
mission over a wireless fading channel. Information Theory and Appli-
cations Workshop, 2007, pages 289–298, Jan. 29 2007-Feb. 2 2007.

81



[93] Ronghua Zhang, Chenyang Lu, T.F. Abdelzaher, and J.A. Stankovic.
Controlware: a middleware architecture for feedback control of software
performance. Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on, pages 301–310, 2002.

82


