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Abstract: We put forward a new modeling technique for Dynamic Resource Management
(DRM) based on discrete events control for symbolic logico-numerical systems, especially
Discrete Controller Synthesis (DCS). The resulting models involve state and input variables
defined on an infinite domain (Integers), thereby no exact DCS algorithm exists for safety
control. We thus formally define the notion of limited lookahead, and associated best-effort
control objectives targeting safety and optimization on a sliding window for a number of steps
ahead. We give symbolic algorithms, illustrate our approach on an example model for DRM,
and report on performance results based on an implementation in our tool ReaX.
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1. INTRODUCTION & MOTIVATING EXAMPLE

When dealing with automated resource management or
scheduling problems, designers of self-adaptive computing
systems often face the need to ensure some quality of
service while meeting intrinsic or application-dependent
constraints. Following our previous works on the sub-
ject [Berthier et al., 2015, 2016; An et al., 2016], our
approach relieves the designers from this error-prone task
by delegating some management decisions to a controlled
model of the system issuing said decisions at discrete points
in time (also called execution steps). The controlled model
consists of a given model that keeps track of the necessary
knowledge about the resources at hand, and an associated
controller, automatically computed by means of a Discrete
Controller Synthesis (DCS) algorithm, and whose goal is
to enforce given control objectives. The controlled model
is then paired with other pieces of software to form a
management system. Yet, the amount of resources to
manage may vary during the system’s lifetime, yielding the
need to handle quantitative, potentially infinite, models.

Dynamic Computing Resource Management Observe
that, while computing systems generally comprise a dy-
namic number of resources, the latter can often be catego-
rized into a finite number of groups that are of the same
kind, sharing some regularity in terms of their status and
operations. We say that resources of the same kind belong
to the same family. Such families may be the threads in
a pool, request handlers, computing resources like CPU
cores, communication channels, or some type of objects in
memory for instance.
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Fig. 1. Example resource automaton for request handlers.
Dashed arrows denote controllable transitions;
(resp. ) denote resource appearance (resp. disposal).

A family of resources can be described using a single
Resource Automaton (RA), similar to a finite-state au-
tomaton where states represent potential statuses of a
single one of the resources, and transitions model events
(i.e., status change). Transitions that are said controllable
feature management decisions (e.g., creating or deleting
threads in a pool, powering off a CPU core, resuming or
suspending a task). The other events are considered non-
controllable (e.g., end of a task, failure of a CPU core or
communication channel).
We depict in Fig. 1 a simple example of such an RA for
request handlers, that we use as a basis for the examples
throughout the paper. Once it has been created (c — i.e.,
triggered by the arrival of a request), a handler must be
started (s) to be able to process the request; it does so after
first entering a waiting stage (W) and then being resumed
(r); it can then yield its computation (y) and then be
resumed (r) any number of time. A handler disappears
from the managed system once it ends its computation (e).
Start-up (s) and resume (r) must be triggered by some
decision of the management system.

Quantitative Modeling We suggest a quantitative mod-
eling approach to deal with the dynamic aspect of the
resources in each family. Instead of modeling each resource
instance individually using as many finite-state automata,
we represent each state S in which a kind of resource can be,
as the quantity s of resources being in S at any time. Further,
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discrete changes in resource status manifest as variations
between these quantities at discrete instants, and man-
agement decisions can be deduced from the variations for
controllable transitions, chosen by a synthesized controller.
The RA of Fig. 1 features two controllable transitions: at
each one of its execution steps, the management system
decides how many handlers should be started (s) or resumed
(r) based on the other variations it receives as input (c, y ,
and e). Such modeling results in linear systems, for which
we give a symbolic representation in Section 2.

Resource Management Goals as Control Objectives Using
our modeling approach, interesting quantitative control
objectives about one or more family of resources can
be specified. Some management concerns relate to the
performance of the overall system, e.g., in terms of power
or energy consumption. Such goals can be expressed as
optimization objectives, where the role of the controlled
system is to minimize some quantity exhibited by the model,
such as the number of non-idle CPU cores at any time.
Useful qualitative properties can also be specified as safety
objectives on the model. For instance, limiting the quantity
of resources of a family into a given state expresses some
guarantee of service constraints; e.g., stating that the
number of threads in a pool does not exceed the (dynamic)
number of CPU cores available in the system.

Towards Best-effort Control The DCS algorithms cur-
rently available [Berthier and Marchand, 2014, 2015] for
logico-numerical systems focus on safety control. Due to
the necessary over-approximations that these algorithms in-
volve to terminate and give conservative results, the degree
of freedom (i.e., the domain of controllable variables) given
to the synthesized controller must be finite; in the case of
symbolic systems, this freedom usually corresponds to the
domain of some special input variables, said controllable.
In some contexts though, strictly considering a safety
control objective might be considered too constraining
in terms of the controlled systems’ behaviors, or computa-
tional power involved in enforcing the objective. Hence, in
Section 3 we first formally develop the notion of symbolic
limited lookahead, inspired by the work of Chung et al.
[1992]. We then detail exact algorithms for best-effort
bounded safety control (as opposed to the usual strict safety
control), accompanied with a transformation of controllers
towards recovery, where the controlled system still does its
best to avoid operating states violating a desired invariant
when it reaches states from which it might fail in doing so.
Algorithms for optimization are also developed, based on
the same principles as bounded safety. Sections 4, 5 and 6
give some implementation details and performance results,
review related works, and conclude.

2. CONTROL OF SYMBOLIC TRANSITION SYSTEMS

We first fix some notations, and recall in this section the
model of Arithmetic Symbolic Transition Systems [Berthier
and Marchand, 2014] and the associated control problems.

2.1 Notations

Let V = 〈v1, . . . , vn : DV 〉, with DV =
∏
i∈{1,...,n}Dvi , be

a vector (or tuple) of variables v1, . . . , vn, each defined

on (infinite) domains Dv1
, . . . ,Dvn . V ∩ W is the result

of removing from a vector V all variables not belonging
to a vector W , and ∅ is the empty vector; V ]W is the
concatenation of V and W , defined iff they contain distinct
sets of variables (V ∩W = ∅).

A valuation ν ∈ DV for each variable in V can be seen
as the mapping ν : V → DV . We denote valuations using
tuple notations as in ν = (ff, . . . , tt), to actually denote ν =
{v1 7→ ff, . . . , vn 7→ tt}. Further, given an additional vector
W of variables distinct from those in V , and corresponding
valuations ν ∈ DV and µ ∈ DW , the union of ν and µ
is (ν, µ) ∈ DV ]W . Considering two sequences of n ∈ N+

valuations ν = a1·. . .·an ∈ DnV and µ = b1·. . .·bn ∈ DnW , we
denote their union by ν∪µ = (a1, b1)·. . .·(an, bn) ∈ DnV ]W .
The empty sequence is noted ε.

Given a vector Vx of variables defined on numerical domains
(e.g., Integers or Reals), we denote LVx the set of all linear
affine arithmetic expressions involving variables of Vx only.
Given an additional vector Vb of variables defined over
finite domains (e.g., Booleans), PVb]Vx denotes the set
of all propositional predicates defined over variables in
Vb and a finite set of linear (in-)equalities expressed on
variables of Vx. Further, LPVb]Vx denotes the set of all
guarded arithmetic expressions, that are total functions
mapping pairwise disjoint predicates of PVb]Vx into a finite
subset of LVx .

Note that all numerical expressions involved in predicates
and arithmetic expressions are linear, hence any PV is
closed under quantifier elimination—i.e., any predicate
involving existential or universal quantifiers from PV is
equivalent to a quantifier-free predicate also in PV . The
process of computing such an equivalent quantifier-free
predicate is called quantifier elimination. For succinctness,
we denote in the sequel the set of quantifier-free expressions
over variables V as EV = PV ∪ LPV .
Given e ∈ EV and a valuation ν ∈ DV , JeKν is the
Boolean or numerical value obtained through the usual
evaluation of e after substituting every variable in e with its
corresponding value in ν. For a predicate e ∈ PV , one writes
ν |= e to denote that ν satisfies e, and thus JeKν ≡ (ν |= e).

2.2 Arithmetic Symbolic Transition Systems

An Arithmetic Symbolic Transition System (ASTS) com-
prises a finite set of (state and input) variables, whose
domain can be infinite, and evolves at discrete points in
time. An update function indicates the new values for each
state variable according to the current values of the state
and input variables. This model allows the representation
of infinite systems whenever the variables take their values
in an infinite domain, while it has a finite structure and
offers a compact way to specify systems handling data.

Definition 1. An Arithmetic Symbolic Transition System
is a tuple S = 〈X, I, T,A,Θ0〉 where:

• X = 〈x1, . . . , xn : DX〉 is a vector of state variables
encoding the memory necessary for describing the
system’s behavior;

• I = 〈i1, . . . , im : DI〉 is a vector of input variables;
• T ∈ EnX]I is the transition function of S, and encodes

the evolution of all state variables based on n (well-
typed) expressions involving variables in X ] I;
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• A ∈ PX]I encodes an assertion on the admissible
values of the inputs depending on the current state;
• Θ0 ∈ PX is a predicate encoding the initial states.

An ASTS is linear logico-numerical if its state and input
variables are Boolean variables (B) or numerical variables

(typically, Z or Q), i.e., it is such that DX = Bk×Qk′×Zk′′

with k + k′ + k′′ = n (and similarly for I).

Consider an ASTS S = 〈X, I, T,A,Θ0〉. The state reached
by S starting from any state x ∈ DX with a sequence of
m valuations for its input variables ι ∈ DmI is denoted by
[S](x, ι) ∈ DX ∪ {⊥}, defined as

[S](x, ε)
def
= x

[S](x, ι · ι) def
= [S](T (x, ι), ι) if (x, ι) |= A,⊥ otherwise.

(1)

[S](x, ι) = ⊥ indicates that the valuation of inputs ι does
not satisfy the assertion A, and thus S cannot evolve from
state x with input ι: we say that ι is not admissible (by
S) in x. We also write [S]i(x) ⊆ DX the set of states
reachable by S from state x whatever the sequence of i ∈ N
inputs; i.e., [S]i(x)

def
=
⋃

ι∈Di
I
[S](x, ι) \ {⊥} . Further, the

orbit O (S) ⊆ DX of S (also known as its reachable state

space) is O (S)
def
=
⋃

(n,x0)∈N×Θ0
[S]n(x0). Note that the

orbit might not be computable due to the infiniteness of
the state space.

Example 1. Applying the quantitative modeling principles
mentioned in the Introduction on the RA described in
Fig. 1 provides the ASTS Srh = 〈X, I, T,A,Θ0〉 where
each integer state variable i, w and a represents the
number of handlers in states I, W and A: X = 〈i,w, a : Z3〉,
I = 〈c, s, r , y , e : Z5〉, Θ0(X) = (i = 0 ∧ w = 0 ∧ a = 0),

T (X, I) =

{
i := i− s + c
w := w + s + y − r
a := a + r − y − e

, and

A(X, I) = s > 0 ∧ r > 0 ∧ y > 0 ∧ c > 0 ∧ e > 0∧
s 6 i ∧ r 6 w ∧ y + e 6 a.

The assertion A restricts the domain of admissible inputs
and quantities associated with states to natural numbers.
Further assumptions on the inputs can be represented in a
similar way, e.g., with a conjunction with c 6 10 if no more
than 10 new handlers can be created between two successive
execution steps. We show in Example 2 below how to tune
Srh to take controllable transitions into account.
From the (here single) state x0 = (0, 0, 0) (i.e., such that
Θ0(x0)), one execution step of Srh with input vector ι1 =
(3, 0, 0, 0, 0) leads to x1 = [Srh](x0, ι1) = (3, 0, 0). One fur-
ther step with ι2 = (1, 2, 0, 0, 0) reaches x2 = [Srh](x1, ι2) =
(2, 2, 0). With ι3 = (0, 0, 3, 0, 0), [Srh](x2, ι3) = ⊥ as
(x2, ι3) |= A does not hold (due to the falsified condition
r 6 w ≡ 3 6 2). A longer, admissible execution trace of
Srh based on randomly generated inputs satisfying A, is
shown in Fig. 2. /

2.3 Control of ASTSs

A controllable ASTS is an ASTS whose vector of input
variables I is partitioned into non-controllable U and
controllable variables C (i.e., I = U ] C).

Example 2. Reflecting the controllable transitions of the
RA in Fig. 1 on Srh of Example 1 brings the controllable
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Fig. 2. An execution trace of Srh. Values for variables in I
are randomly picked at each step so that A is satisfied.
Each column shows the input values at step i and the
new values (for step i+ 1) for the state variables; the
latter are all null initially.

ASTS S′rh = 〈X,U ] C, T,A,Θo〉 where U = 〈c, y , e : Z3〉
and C = 〈s, r : Z2〉. Notice DC is infinite. /

Reactive ASTSs Raw ASTSs shall be reactive, meaning
that there always exist admissible valuations for their input
variables, whatever the current (reachable) state:

Definition 2. An ASTS S is reactive iff

∀x ∈ O (S) ,∃ι ∈ DI , [S](x, ι) 6= ⊥. (2)

This notion is very similar to the usual deadlock-freeness,
except that we choose to reserve the latter term to
controlled ASTSs only; we give a definition for such
deadlock-free ASTSs below.

Controlled ASTSs To fulfill its objective, a controller
restricts the admissible values for the controllable subset
of the input variables of the ASTS it controls.

Definition 3. Given an ASTS S = 〈X, I, T,A,Θ0〉 with
inputs I = U ] C, a controller K ∈ PX]I provides
a controlled ASTS S/K = 〈X, I, T,K,Θ0〉 such that
∀(x, u, c) ∈ O (S/K)×DU ×DC ,

[S/K ](x, u, c) 6= ⊥ ⇒ [S](x, u, c) 6= ⊥. (3)

Eq. (3) above states that K is at least as restrictive as A,
hence does not allow evolutions that are forbidden in the
original system; i.e., O (S/K) ⊆ O (S), and

∀(x, ι) ∈ O (S/K)×DI , ((x, ι) |= K ⇒ (x, ι) |= A) .

In the remainder of the paper, we devise algorithms taking
as input a controllable ASTS S = 〈X, I, T,A,Θ0〉 and some
target objective o, and computing a controller K for S so
that a resulting controlled ASTS S/K fulfills o.

Deadlock-free ASTSs As our aim is to eventually obtain
controlled systems that are executable, we devise algo-
rithms producing deadlock-free controlled ASTSs, i.e., for
which values for controllable variables always exist whatever
the non-controllable inputs admissible by S:
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Definition 4. A controlled ASTS S/K is deadlock-free if S
is reactive and ∀(x, u, c) ∈ O (S/K)×DU ×DC ,

[S](x, u, c) 6= ⊥ ⇒ ∃c′ ∈ DC , [S/K ](x, u, c′) 6= ⊥. (4)

3. SYMBOLIC κ-LOOKAHEAD CONTROL

Let us consider given in this Section a controllable ASTS
S = 〈X,U ] C, T,A,Θ0〉 and a strictly positive Integer
κ ∈ N+. We first explain the core computations of our
algorithms for κ-lookahead control in an explicit way—i.e.,
using set-theoretic notations—and turn to the related
symbolic representations and algorithms. We then focus
on the use of such tooling for bounded-safety, best-effort,
recovery, and optimization control.

3.1 κ-Lookahead Control

Potential & Admissible i-paths: Ri & Ai As ASTSs’
transition functions are deterministic by construction, a
set of paths starting in a state x ∈ DX and of a finite
number i of transitions, can be identified by relating x and
a sequence of i valuations for every variable in I:

Definition 5. A (potentially infinite) set of i-paths Ri ⊆
DX × DiI , for i ∈ N, relates states of S with sequences of
i successive valuations for its inputs.

Note that we define i-paths based on the transition
functions only, i.e., both admissible and non-admissible
transitions are considered. To take transitions admissibility

into account, we further define the sets Ai
def
=
{

(x, ι ·
ι) ∈ DX×DiI

∣∣[S](x, ι) 6= ⊥ ⇒ [S](x, ι ·ι) 6= ⊥
}

, for i ∈ N+,
that each are the sets of all i-paths whose ith transitions
(if any) are admissible by S.

We can now assume given a set of desirable κ-paths Rκ
for S; we further detail the computation of such sets in
Sections 3.4 and 3.5.

Controllable Prefixes of Rκ Given a set Ri+1 of (i+ 1)-
paths, the set Ri of all its direct controllable prefixes
consists of the i-paths whose suffix transitions admissible
by S cannot uncontrollably form an (i+ 1)-path that does
not belong to Ri+1; i.e., after following any i-path in Ri,
and given an admissible valuation for all non-controllable
variables (U), one can always find a valuation for the
controllable variables (C) so that the system remains on
an (i+ 1)-path belonging to Ri+1.
Formally, Rκ being given, we define Ri based on Ri+1 as

Ri
def
= Prefix c (Ri+1) (i ∈ {0, . . . , κ− 1}) (5)

where Prefix c : DX ×Di+1
I → DX ×DiI

def
=

Ri+1 7→

{
(x, ι) ∈
DX ×DiI

∣∣∣∣∣ ∀u ∈ DU ,(@c ∈ DC , (x, ι · (u, c)) ∈ Ai+1)∪
(∃c ∈ DC , (x, ι · (u, c)) ∈ R′i+1)

}
with R′i+1

def
= Ri+1 ∩Ai+1. The left-hand side of the union

in the definition of Prefix c consists in prefixes of (i+ 1)-
paths that are not admissible by S whatever the valuation
of the controllable variables at step i+1. We illustrate this
principle in Fig. 3 in which, contrary to i-paths denoted
by c, those denoted by a are included into Ri as there
always exists a choice for valuations c to stay on an (i+ 1)-
path belonging to Ri+1 whatever u. i-paths b belong to

a

b

c

∀u∃cR′i+1

∀u
(
@cAi+1 ∪ ∃cR′i+1

)
∀u@cR′i+1

d

e

f

g

h

Ri

DX ×Di
I

Ri+1

DX ×Di+1
I

(
R′

i+1 = Ri+1 ∩ Ai+1

)

u ∈ DU c ∈ DC

Fig. 3. Direct controllable prefixes Ri of Ri+1. Plain cir-
cles represent sets of i-paths (resp. (i+ 1)-paths)
belonging to Ri (resp. Ri+1); dashed circles repre-
sent i-paths (resp. (i+ 1)-paths) not belonging to Ri
(resp. Ri+1); smaller circles denote transient states,
after input values u for the i-th non-controllable vari-
ables are given and before the subsequent controllable
ones c are chosen; plain (resp. dotted ) arrows
denote sets of transitions satisfying admissible (resp.
non-admissible) by S.

Ri as from them valuations u always leading to g are not
admissible at step i+ 1.

Eq. (5) gives an inductive definition for controllable prefixes
of any non-negative length i < κ of Rκ. We now write Ri
to denote all i-paths that are controllable prefixes of Rκ.

3.2 Symbolic Computations

In order to symbolically represent valuations of input
variables in κ subsequent future steps, we define indexed
versions of all input variables of S. From the vector U
(resp. C) we define κ − 1 additional indexed versions
U2 . . . Uκ (resp. C2 . . . Cκ), and set U1 = U and C1 = C.

We additionally define Ii
def
= Ui ] Ci for i ∈ {1, . . . , κ}, as

well as Vi;j
def
=
⊎
k∈{i,...,j} Vk for any vector of indexed

variables V ∈ {U,C, I}, with Vi;j
def
= ∅ if i > j. Lastly,

given two vectors of variables of equal lengths V and W ,
and any expression e ∈ EV ]Z , e[V/W ] ∈ EW]Z denotes the
substitution in e of all occurrences of any variable belonging
to V with its counterpart in W .

Using the above notations, the symbolic representation
of a set of i-paths (for i ∈ {0, . . . , κ}) is a predicate in
PX]I1;i

. More generally, the i-lookahead of e ∈ EX is
the expression e|i ∈ EX]I1;i

encoding the value of e after
i successive applications of its transition function T , in
terms of the current state (variables from X) and any
future input sequence of length i (variables from I1;i):
given i ∈ {0, . . . , κ}, e|i is such that ∀(x, ι) ∈ DX ×DI1;i ,

([S](x, ι) 6= ⊥)⇒ (Je|iK(x, ι) = JeK[S](x, ι)) . (6)

Let us now turn to the actual construction of such i-
lookahead expressions. Assume given an expression e ∈ EV
with V ∩ I = ∅. T−1(e) is the (parallel) substitution in e
of each state variable in X with its respective expression
in T ; i.e., ∀(x, ι, y) ∈ DX ×DI ×DV \(X]I),

JT−1(e)K(x, ι, y)
def
= JeK(T (x, ι), y). (7)

Proposition 6. e|i can be recursively built as

e|i+1 = T−1(e|i[I1;i/I2;i+1]), with e|0 = e.

Proof. Beyond the base case for i = 0 which is obvious,
we show that e|i+1 is properly built if e|i is. Given
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any (x, ι · ι) ∈ DX × Di+1
I , our recursion hypothesis is

Je|iK(x, ι) = JeK[S](x, ι) (HR). After substituting e|i+1 by
T−1(e|i[I1;i/I2;i+1]) and ι by ι · ι in Eq. (6), we assume
[S](x, ι · ι) 6= ⊥ (H1) and check the equality

JT−1(e|i[I1;i/I2;i+1])K(x, ι · ι) (
?
= JeK[S](x, ι · ι)).

= JT−1(e|i)K(x, ι, ι) (Def. of T−1 & I ∩ I2;i+1 = ∅)
= Je|iK(T (x, ι), ι) (by Eq. (7))
= JeK[S](T (x, ι), ι) (by HR)
= JeK[S](x, ι · ι) (by H1 & Eq. (1))

Example 3. Building upon Example 2, (a 6 42)|1 = a +
r − y − e 6 42 symbolically represents all potential paths
(x, ι · ι) (i.e., from state x with successive inputs ι · ι)
for which the value of the state variable a after one
step is lower or equal than 42: s.t JaKT (x, ι) 6 42. Also,
(a 6 42)|1 ∧ (a 6= 42)|2 = (a 6 42)|1 ∧ a + r + r2− y − y2−
e − e2 6= 42 represents all potential paths (x, ι1 · ι2 · ι) for
which JaKT (x, ι1) 6 42 ∧ JaKT (T (x, ι1), ι2) 6= 42. /

Remark 7. The symbolic computation procedure giving
the lookahead of expressions defined on state variables only
given in Prop. 6, can be adapted to the case of expressions
involving both state and input variables by restricting to
i ∈ N+ and setting e|1 = e.

As a result of the above remark, the predicate A|i symboli-
cally describes the set Ai, for i ∈ {1, . . . , κ}.
Example 4. Considering S′rh from Example 2, with fu-
ture variables I2 = 〈c2, s2, r2, y2, e2 : Z5〉, A|2(X, I1;2) =

s2 > 0 ∧ r2 > 0 ∧ y2 > 0 ∧ c2 > 0 ∧ e2 > 0∧
s2 6 i− s + c ∧ r2 6 w + s + y − r ∧
y2 + e2 6 a + r − y − e. /

Symbolic Computation of Controllable Prefixes Let
Ri+1 ∈ PX]I1;i+1

be such that Ri+1 =
{
∈ DX ×

Di+1
I

∣∣ |= Ri+1

}
. Mirroring Eq. (5), one can symbolically

compute all direct controllable prefixes of the (i+ 1)-paths

represented by Ri+1 using prefixic : PX]I1;i+1 → PX]I1;i

defined as

prefixic (Ri+1)
def
= ∀Ui ((∃CiA|i+1)⇒ ∃Ci (A|i+1 ∧Ri+1))

where ∃V e (resp. ∀V e) is the existential (resp. universal)
elimination of all variables of V from a predicate e.
By extension, prefixjc(Ri+1), for j ∈ {0, . . . , i}, computes
the j-paths that are controllable prefixes of Ri+1. For
instance, prefix1

c (R3) = prefix1
c ◦ prefix2

c (R3) denotes all
1-paths that are controllable prefixes of the 3-paths in R3.

3.3 Building Symbolic κ-lookahead Controllers

We now proceed to define κ-lookahead controllers that
enforce bounded safety or κ-optimization objectives. We
first advance means for building controllers strictly allowing
a given set of desirable κ-paths, and develop controller
transformation and composition operations leading to
deadlock-free systems with best-effort and recovery control.
We detail in Sections 3.4 and 3.5 how to derive desirable
κ-paths from target objectives.

State Safety w.r.t. Sets of κ-paths We say that a state
x ∈ DX is safe w.r.t. Rκ under non-controllable input

u ∈ DU , denoted x
u
; Rκ, whenever there exists a value

for controllable variables admissible by S and forming a

1-path that is a controllable prefix of κ-paths belonging to

Rκ; i.e., x
u
; Rκ

def
= ∃c ∈ DC , (x, u, c) ∈ R1 ∩ A1.

Building Strict κ-lookahead Controllers A κ-lookahead
controller implicitly encodes all possible relevant outcomes
for the next κ steps and achieves its objective by restricting
the admissible values of the controllable inputs for the
current step.

Definition 8. A strict controller Kκ for desirable κ-paths
Rκ is such that ∀(x, u) ∈ O (S)×DU ,

∃c ∈ DC , (x, u, c) |= Kκ ⇔ x
u
; Rκ. (8)

We say that Kκ induces a deadlock with non-controllable
input u in every reachable state unsafe w.r.t. Rκ under u.

Theorem 9. Let Rκ ∈ PX]I1;κ
be a predicate such

that Rκ = { ∈ DX ×DκI | |= Rκ}. Then Kκ = A ∧
prefix1

c (Rκ) .

Proof. First, Kκ is a controller for S by construction, (as
∀P ∈ PX]I , (A ∧ P ) ⇒ A, leading to Eq. (3) through
Eq. (1)). Next, noting that R1 = prefix1

c (Rκ) is such that
R1 = { ∈ DX ×DI | |= R1} and O (S) ⊆ DX , one can
rewrite the left-hand side of Eq. (8) as ∀(x, u) ∈ O (S) ×
DU ,∃c ∈ DC , (x, u, c) ∈ R1 ∩ A1.

Transformation for Best-effort Control As our aim is to
eventually obtain controlled systems that are executable, we
now devise a controller transformation producing deadlock-
free controlled systems.

Definition 10. A best-effort controller be (K) for S ob-
tained from another controller K is such that,
∀(x, u, c) ∈ O (S)×DU ×DC , [S/be(K)](x, u, c) ={

[S/K ](x, u, c) if ∃c ∈ DC , (x, u, c) |= K
[S](x, u, c) otherwise.

(9)

In plain words, S/be(K) behaves as S/K as long as it does
not deadlock, or as S otherwise.

Proposition 11. be (K) = A ∧ (∃CK ⇒ K).

Proof. be (K) is a controller for S for the same reason as
for Theorem 9. Then, the rewriting of the definition of
be (K) against Eq. (9) comes directly.

Although inducing a significant relaxation in terms of
the enforced objectives, best-effort controllers bring us
deadlock-freeness, hence executable controlled systems:

Theorem 12. If S is reactive, then any best-effort con-
troller for S produces a deadlock-free ASTS.

Proof. Let us write Eq. (4) as df (S/K) ≡ ∀(x, u, c) ∈
O (S/K) × DU × DC , [S](x, u, c) 6= ⊥ ⇒ ∃c′ ∈
DC , [S/K ](x, u, c′) 6= ⊥. According to Def. 4, we only need
to show df

(
S/be(K)

)
for any controller K for S.

By definition of be (K) (Eq. (9) notably), one has
∀(x, u, c) ∈ O (S) × DU × DC , [S](x, u, c) 6= ⊥ ⇒
[S/be(K)](x, u, c) 6= ⊥ (≡ R1). Noting that O

(
S/be(K)

)
⊆

O (S) as be (K) is also a controller for S, then R1
⇔ ∀(x, u, c) ∈ O

(
S/be(K)

)
× DU × DC , [S](x, u, c) 6= ⊥ ⇒

[S/be(K)](x, u, c) 6= ⊥ ≡ df
(
S/be(K)

)
.



Authors’ version 6

Transformation Towards Best-effort Recovery In addition
to the above relaxation of control for strict desirable κ-
paths Rκ, one can design controllers that also recover
from failures to stay in safe states w.r.t. Rκ under some
non-controllable input in case values for non-controllable
variables permit such a recovery. Notice we expose here a
way to implement recovery using a single step lookahead,
yet this approach can be extended to further steps ahead.

We denote by Safe (K)
def
=
{
x ∈ DX

∣∣∀u ∈ DU ,∃c ∈
DC , (x, u, c) |= K

}
the set of states from which a controller

K is satisfiable whatever the valuation for the non-
controllable variables.

Definition 13. A recovering controller re (K|Rκ) for S
obtained from a controller K and a strict controller Kκ

for desirable κ-paths Rκ such that Kκ ⇒ K, behaves as
S/K in all states Safe (Kκ), or reaches such a state in one
step whenever possible.

Theorem 14. re (K|Rκ) = (@IE ∧K) ∨ (∃UE ∧A) with
E = A ∧ ¬prefix0

c (Kκ) ∧ prefix0
c (Kκ)|1.

Proof. Note that
{
x ∈ DX

∣∣x |= prefix0
c (Kκ)

}
=

Safe (Kκ). Hence, E represents all 1-paths starting in
unsafe states w.r.t. Kκ and reaching safe ones in one
step (¬prefix0

c (Kκ) ∧ prefix0
c (Kκ)|1) that are admissible

by S. Further, ∃IE denotes all unsafe states that are also
direct predecessors of safe ones, so @IE exactly denotes
all states that behave according to K in S/re(K|Rκ). Also,
∃UE represents all transitions for which some value for
non-controllable variables exist to reach a safe state w.r.t.
Rκ. At last, K is a controller for S, hence re (K|Rκ)⇒ A
by construction, and re (K|Rκ) is a controller for S.

3.4 Control for Bounded-safety

Given the tooling listed above, computing a bounded-safety
controller enforcing some invariant Φ over a sliding window
of κ steps, boils down to build a κ-lookahead predicate
encoding all κ-paths traversing states satisfying Φ.

Definition 15. Given a predicate Φ ∈ PX , a strict bounded-
safety controller KΦ,κ is a strict controller for the desirable
κ-paths Rκ =

{
∈ DX ×DκI

∣∣ |= ∧i∈{1,...,κ}Φ|i
}

.

Example 5. Considering S′rh from Example 2, assume that,
for availability purposes, or to accommodate a limited
number of hardware resources, one wants to bound the
number of already started request handlers at any time.
The associated invariant is, e.g., Φ (X) = (w + a 6 42).
Enforcing Φ over a two-step window using a strict controller,
one obtains R2 =

∧
i∈{1,2} (w + a 6 42)|i = (w + a + s −

e 6 42) ∧ (w + a + s + s2 − e − e2 6 42). The controller is
then KΦ,2 = A ∧ prefix1

c (R2) = A ∧ s + w + a− e 6 42. /

Best-effort and recovering versions of such controllers can
be built using KΦ,κ as described in Section 3.3.

3.5 Control for κ-optimization

We now briefly address the control of S for the minimization
of some accumulated valuation of a guarded arithmetic
expression on state variables over a finite number of steps.

Enforcing some optimization objectives over κ steps ahead
actually boils down to build the appropriate set of κ-paths
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Fig. 4. Example execution trace of S′rh/Kω (built in Exam-
ple 6). Each step consists in: values for variables in U
are randomly picked so that ∃CA is satisfied; in turn,
values for s and r are also randomly picked so that
Kω is satisfied.

Rκ ensuring the “best” choice of values for controllable
variables at the current step w.r.t. the potential values for
the current and future non-controllable ones.

A κ-optimization objective min(Σe)@κ for a guarded linear
arithmetic expression e ∈ LPX targets the minimization of
its sum over κ steps. In terms of κ-lookahead expressions,
the value to be minimized is then Eκ =

∑
i∈{1,...,κ} e|i, and

the set Y ⊆ DX ×DκI of κ-paths for which all valuations of
controllable variables are guaranteed to minimize Eκ can
be defined symbolically as

Y def
=
{
∈ DX ×DκI

∣∣ |= @C′
1;κ

(Aκ ⇒ (A′κ ∧ E′κ < Eκ))
}

with Aκ =
∧
i∈{1,...,κ}A|i and e′ = e[C1;κ/C

′
1;κ], where

V ′ = {v′ | v ∈ V } is the set of primed versions of a vector of
variables V . In plain words, all paths in Y are the admissible
ones for which there does not exist alternative valuations
for current and future controllable variables (C1;κ) such
that Eκ evaluates to a strictly greater value (i.e., they give
the lowest possible value for Eκ).

Example 6. We continue building up on Example 5. In
addition to the limit on started requests, we now consider
minimizing the number of handlers waiting to be started,
and arbitrarily choose a sliding window of one step for
this objective. This previous statement translates into the
optimization objective ω = min(Σi)@1 on S′rh/KΦ,2

(i.e.,
now, A = KΦ,2). The arithmetic 1-lookahead expression
to minimize is E1 =

∑
i∈{1} i|i = i − s + c. From

E1, one has E′1 < E1 = s ′ > s, and then Y =
@{r ′,s′} (A1 ⇒ (A′1 ∧ s ′ > s)) . In the end, the obtained
controller is Kω = KΦ,2 ∧ ((s = i ∧ i + w + a − e 6 41) ∨
(s 6 i ∧ s + w + a− e = 42)), that actually starts as many
allocated handlers (in state I) as possible, as long as the
resulting number of started handlers does not exceed 42.
We show in Fig. 4 an execution trace of the resulting
controlled system. Remark the value chosen for s always
equals that of i (which is indeed minimized), except during
the two last steps where the value of w + a = 42. /
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The set Y above can actually be empty, if no choice of values
for controllable variables at any instant is guaranteed to
lead to the minimal outcome after κ steps w.r.t. values
for non-controllable variables. In such a case, the resulting
system induces deadlocks; yet, a transformation for best-
effort control still suffices to eventually obtain a deadlock-
free controlled system.
Other sets of κ-paths can also be considered to extend
the set of desirable κ-paths. One can for instance consider
building a controller for desirable κ-paths Y ∪ Z, where

Z def
=
{
∈ DX ×DκI

∣∣ |= @U ′
2;κ

(Aκ ⇒ (A′′κ ∧ E′′κ < Eκ))
}

with e′′ = e[U2;κ/U
′
2;κ]. Z as defined above consists of

the κ-paths for which no future non-controllable input
(U2;κ) exist that lead to a lower value for Eκ.

4. IMPLEMENTATION IN REAX & EVALUATIONS

We have implemented all the algorithms detailed in this pa-
per in ReaX [Berthier and Marchand, 2014, 2015] 1 , that is a
framework suitable for the symbolic manipulation of logico-
numerical systems like ASTSs. We use a combination of
(multi-terminal) binary decision diagrams [Billon, 1987] and
disjunctions of convex polyhedra [Cousot and Halbwachs,
1978] as symbolic representations of sets of linear arithmetic
constraints. This representation allows to implement exact
universal and existential eliminations of finite and infinite
variables on predicates involving such constraints. Note
that our tool fully supports linear logico-numerical systems
(i.e., linear ASTSs also involving variables defined on
finite domains like Booleans and other enumerated types),
although as presented above our quantitative modeling
technique does not require this feature. Yet, additional
finite-state automata can easily be composed with resource
families to model a finite number of elements that are
deemed relevant w.r.t. control objectives in the computing
system to manage.

We now give some performance evaluation results based
on example models of RAs to assess the practicality of
our modeling approach and algorithms. Exploiting the
scalability of our RA of Fig. 1, we first constructed a series
of “Parallel” systems built by assembling N controllable
ASTSs S′rh using parallel composition, for N ∈ {2, 3, 6, 9} 2 .
The resulting systems model as many “kinds” of request
handlers to be managed. We also built a second series
“Alt” obtained by modeling the RA of Fig. 1 with N states
Ai and associated additional input/output transitions ri,
yi and ei, again for N ∈ {2, 3, 6, 9}. For “Parallel”, our
example objective is to balance the number of active request
handlers of each kind. For “Alt” models on the other hand,
our objective is to impose an upper-limit on the number
of non-started request handlers, similarly to Example 5.
We use best-effort control in all cases, and exercise the
recovering synthesis for “Alt”.
We show in Fig. 5 a simulated execution trace for the

1 http://reatk.gforge.inria.fr/
2 Building the parallel composition of ASTSs essentially boils down
to concatenating their vectors of variables and transition functions;
in our case, we obtain systems with variables of S′

rh suffixed with
indexes corresponding to their respective family of request handlers.
3 All results are obtained on a desktop computer equipped with
a quad-core Intel i5 (3.3GHz), 16GB of RAM, and a standard
GNU/Linux operating system.
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Fig. 5. Example execution trace for two distinct families of
request handlers (Parallel, κ=1, N = 2). Each column
shows the input values at step i along with the new
values (for step i + 1) for the state variables a1, a2,
i1, i2, w1, and w2 (all null initially).

Table 1. Synthesis Times (in Seconds)

N : 2 3 6 9

Parallel, κ=1 0.04 0.04 0.28 1.03
Alt, κ=1 0.03 0.04 0.06 0.12
Alt, κ=2 0.10 0.15 0.49 41.28
Alt, κ=1, 1-step recovery 0.05 0.09 0.31 0.16
Alt, κ=2, 1-step recovery 0.14 0.22 0.90 41.32

“Parallel” system with N = 2 controlled κ=1-step ahead.
Focusing on the 5th execution step, one observes that 3
handlers of type 1 are active, 2 are ending their executions,
and none yields (a1 = 3, e1 = 2, and y1 = 0); meanwhile,
none of the 3 active handlers of type 2 terminates nor
yields (a2 = 3, e2 = 0, and y2 = 0). Yet with no handler of
type 1 in waiting stage (w1 = 0), no suitable values for the
controllable variables (s1, r1, s2 and r2) exist to achieve the
safety objective at this execution step (i.e., balancing the
number of handlers in active stage). Therefore, the best-
effort controller admits any values that allow the system to
progress, and the safety objective is thus not considered for
this particular instant: 8 handlers of type 1 and 3 handlers
of 2 are started (s1 = 8 and s2 = 3). The failure to strictly
impose the safety objective occurs only once in this trace.
We report synthesis times in Table 1 3 . Observe that ReaX’s
core symbolic manipulation engine may be less suited for
performing the computations required by our algorithms
than state-of-the-art SMT solvers for instance. Still, these
performance results and our simulations show us that ReaX
is able to compute controllers imposing useful objectives on
system featuring dozens of numerical variables in reasonable
time. Therefore, these preliminary experiments convince us
that best-effort control and recovery are worth investigating
for dynamic computing resource management, in cases
where enforcing strict control objectives is not necessary.

5. RELATED WORKS

The control of infinite systems has been subject to several
studies based on various models: Timed Automata [Cassez
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et al., 2005], Vector of Discrete Events Systems [Li and
Wonham, 1994], Petri Nets [Kumar and Garg, 2005;
Holloway et al., 1997] or symbolic transition systems
with variables [Kalyon et al., 2011]. Inspired by the work
of Chung et al. [1992], we provide here some symbolic
devices to compute limited lookahead controllers for logico-
numerical reactive systems.
Regarding symbolic modeling for resource control, our
quantitative modeling method is loosely related to the one
used by Fei et al. [2015] for modeling Resource Allocation
Systems: they handle a specific class of RASs where
“process types” (that loosely correspond to resource families
in our work) are acyclic, and “resource types” required
for the execution of processes, are of finite capacity and
constant. They seek maximally permissive non-blocking
supervisors for deadlock avoidance by modeling the RASs
using Extended Finite Automata [Skoldstam et al., 2007].
Although their approach is well suited for controlling plants
and discrete systems that can be modeled using finite-
state automata and where limited amounts of resources
are involved, this modeling method is not fit for systems
featuring dynamic amounts of such resources. Lennartson
et al. [2014] support dynamic aspects through an encoding
similar to ours, and address synthesis for performance
optimization (in the sense of make span minimization for
Petri Nets), though with a finite alphabet of events and
state variables defined on finite domains only.

Few approaches involve discrete event control for self-
adaptive computing systems. Dumitrescu et al. [2010] focus
on finite-state systems equipped with cost functions and
final states, and advance an algorithm for multi-criteria
optimal discrete controller synthesis; they practice their
approach towards fault-tolerance. Berthier et al. [2015]
explore the capabilities of over-approximating symbolic
DCS algorithms to introduce quantitative aspects into
models involved in the control of dynamically partially
reconfigurable architectures investigated by An et al.
[2016]. A common issue of these approaches is the need
to enumerate the automata of all individual resource to
manage: this aspect challenges the computational cost of
DCS algorithms involved, and the modeling task w.r.t. the
control problems at hand. We overcome these limits by
allowing more powerful models (e.g., involving numerical
controllable variables) and relaxing the control objectives
(e.g., accommodating non-strict safety with best-effort
control, recovery, and limited lookahead optimization).

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we have exploited the expressivity of logico-
numerical models to solve resource management problems
occurring in computing systems. Our solution alleviates
the need to enumerate the automata of every managed
resource, and permits the expression of a wide range of
control objectives. To enforce the latter on such systems
with infinite control means, we focus on the control over a
finite sliding window. We provide exact, effective algorithms
for bounded safety and optimization, and illustrate them
on an example. We also give means to relax such strict
objectives for best-effort control and recovery. We exercise
our implementation of the algorithms on some benchmarks.
We plan to reuse the resource models put forward in this
paper to validate the practicality of the technique, and to

transfer them in the framework of ongoing research: on the
one side, as a follow-up of the work of An et al. [2016]
in model-based control of reconfigurable FPGA-based
architectures; on the other side, in control of middleware-
level redeployment of computations and reconfigurations
of heterogeneous architectures in the context of smart
buildings [Sylla et al., 2016]. Further, best-effort and
recovery control on finite sliding windows provides a good
trade-off in terms of expressiveness of the models and
achievable control objectives, these techniques are thus
especially interesting in the case of non-critical systems.
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