165,294 research outputs found

    The covert set-cover problem with application to Network Discovery

    Full text link
    We address a version of the set-cover problem where we do not know the sets initially (and hence referred to as covert) but we can query an element to find out which sets contain this element as well as query a set to know the elements. We want to find a small set-cover using a minimal number of such queries. We present a Monte Carlo randomized algorithm that approximates an optimal set-cover of size OPTOPT within O(logN)O(\log N) factor with high probability using O(OPTlog2N)O(OPT \cdot \log^2 N) queries where NN is the input size. We apply this technique to the network discovery problem that involves certifying all the edges and non-edges of an unknown nn-vertices graph based on layered-graph queries from a minimal number of vertices. By reducing it to the covert set-cover problem we present an O(log2n)O(\log^2 n)-competitive Monte Carlo randomized algorithm for the covert version of network discovery problem. The previously best known algorithm has a competitive ratio of Ω(nlogn)\Omega (\sqrt{n\log n}) and therefore our result achieves an exponential improvement

    Electrochemical Redox Cycling Realized by Chromatography Paper-based Sensor

    Get PDF
    In this work, we demonstrated that enhancement of electrochemical current due to redox cycling could be accomplished by paper-based biosensor without any expensive micro-fabrication process. The paper-based sensor had layered structure to generate higher current than a conventional one. We took advantage of the fact that the paper thickness was micrometer-sized (180um), and it defined the distance between two electrochemical electrodes on both sides of the paper. Experimental results showed signatures of the redox cycling, where the electrochemical current from low concentration molecules could be arbitrarily increased by decreasing the distance between electrodes. Such a structure was advantageous for detecting target molecules at very low concentration, proposing a low-cost highly-sensitive biochemcal sensor.

    Shortest Path Discovery in the Multi-layered Social Network

    Full text link
    Multi-layered social networks consist of the fixed set of nodes linked by multiple connections. These connections may be derived from different types of user activities logged in the IT system. To calculate any structural measures for multi-layered networks this multitude of relations should be coped with in the parameterized way. Two separate algorithms for evaluation of shortest paths in the multi-layered social network are proposed in the paper. The first one is based on pre-processing - aggregation of multiple links into single multi-layered edges, whereas in the second approach, many edges are processed 'on the fly' in the middle of path discovery. Experimental studies carried out on the DBLP database converted into the multi-layered social network are presented as well.Comment: This is an extended version of the paper ASONAM 2011, IEEE Computer Society, pp. 497-501 DOI 10.1109/ASONAM.2011.6

    Optimal Embedding of Functions for In-Network Computation: Complexity Analysis and Algorithms

    Full text link
    We consider optimal distributed computation of a given function of distributed data. The input (data) nodes and the sink node that receives the function form a connected network that is described by an undirected weighted network graph. The algorithm to compute the given function is described by a weighted directed acyclic graph and is called the computation graph. An embedding defines the computation communication sequence that obtains the function at the sink. Two kinds of optimal embeddings are sought, the embedding that---(1)~minimizes delay in obtaining function at sink, and (2)~minimizes cost of one instance of computation of function. This abstraction is motivated by three applications---in-network computation over sensor networks, operator placement in distributed databases, and module placement in distributed computing. We first show that obtaining minimum-delay and minimum-cost embeddings are both NP-complete problems and that cost minimization is actually MAX SNP-hard. Next, we consider specific forms of the computation graph for which polynomial time solutions are possible. When the computation graph is a tree, a polynomial time algorithm to obtain the minimum delay embedding is described. Next, for the case when the function is described by a layered graph we describe an algorithm that obtains the minimum cost embedding in polynomial time. This algorithm can also be used to obtain an approximation for delay minimization. We then consider bounded treewidth computation graphs and give an algorithm to obtain the minimum cost embedding in polynomial time

    Nanoscale Voltage Enhancement at Cathode Interfaces in Li-ion Batteries

    Full text link
    Interfaces are ubiquitous in Li-ion battery electrodes, occurring across compositional gradients, regions of multiphase intergrowths, and between electrodes and solid electrolyte interphases or protective coatings. However, the impact of these interfaces on Li energetics remains largely unknown. In this work, we calculated Li intercalation-site energetics across cathode interfaces and demonstrated the physics governing these energetics on both sides of the interface. We studied the olivine/olivine-structured LixFePO4/LixMPO4 (x=0 and 1, M=Co, Ti, Mn) and layered/layered-structured LiNiO2/TiO2 interfaces to explore different material structures and transition metal elements. We found that across an interface from a high- to low-voltage material the Li voltage remains constant in the high-voltage material and decays approximately linearly in the low-voltage region, approaching the Li voltage of the low-voltage material. This effect ranges from 0.5-9nm depending on the interfacial dipole screening. This effect provides a mechanism for a high-voltage material at an interface to significantly enhance the Li intercalation voltage in a low-voltage material over nanometer scale. We showed that this voltage enhancement is governed by a combination of electron transfer (from low- to high-voltage regions), strain and interfacial dipole screening. We explored the implications of this voltage enhancement for a novel heterostructured-cathode design and redox pseudocapacitors

    Optimized Network-coded Scalable Video Multicasting over eMBMS Networks

    Get PDF
    Delivery of multicast video services over fourth generation (4G) networks such as 3GPP Long Term Evolution-Advanced (LTE-A) is gaining momentum. In this paper, we address the issue of efficiently multicasting layered video services by defining a novel resource allocation framework that aims to maximize the service coverage whilst keeping the radio resource footprint low. A key point in the proposed system mode is that the reliability of multicast video services is ensured by means of an Unequal Error Protection implementation of the Network Coding (UEP-NC) scheme. In addition, both the communication parameters and the UEP-NC scheme are jointly optimized by the proposed resource allocation framework. Numerical results show that the proposed allocation framework can significantly increase the service coverage when compared to a conventional Multi-rate Transmission (MrT) strategy.Comment: Proc. of IEEE ICC 2015 - Mobile and Wireless Networking Symposium, to appea

    High-Rate Regenerating Codes Through Layering

    Full text link
    In this paper, we provide explicit constructions for a class of exact-repair regenerating codes that possess a layered structure. These regenerating codes correspond to interior points on the storage-repair-bandwidth tradeoff, and compare very well in comparison to scheme that employs space-sharing between MSR and MBR codes. For the parameter set (n,k,d=k)(n,k,d=k) with n<2k1n < 2k-1, we construct a class of codes with an auxiliary parameter ww, referred to as canonical codes. With ww in the range nk<w<kn-k < w < k, these codes operate in the region between the MSR point and the MBR point, and perform significantly better than the space-sharing line. They only require a field size greater than w+nkw+n-k. For the case of (n,n1,n1)(n,n-1,n-1), canonical codes can also be shown to achieve an interior point on the line-segment joining the MSR point and the next point of slope-discontinuity on the storage-repair-bandwidth tradeoff. Thus we establish the existence of exact-repair codes on a point other than the MSR and the MBR point on the storage-repair-bandwidth tradeoff. We also construct layered regenerating codes for general parameter set (n,k<d,k)(n,k<d,k), which we refer to as non-canonical codes. These codes also perform significantly better than the space-sharing line, though they require a significantly higher field size. All the codes constructed in this paper are high-rate, can repair multiple node-failures and do not require any computation at the helper nodes. We also construct optimal codes with locality in which the local codes are layered regenerating codes.Comment: 20 pages, 9 figure
    corecore