2,218 research outputs found

    "Single-cycle" ionization effects in laser-matter interaction

    Get PDF
    We investigate numerically effects related to ``single-cycle'' ionization of dense matter by an ultra-short laser pulse. The strongly non-adiabatic response of electrons leads to generation of a megagauss steady magnetic field in laser-solid interaction. By using two-beam interference, it is possible to create periodic density structures able to trap light and to generate relativistic ionization frontsComment: 12 pages, 6 figures, to be published in Laser and Particle Beam

    Laser matter interaction in the bulk of transparent dielectrics: Confined micro-explosion

    Get PDF
    We present here the experimental and theoretical studies of drastic transformations induced by a single powerful femtosecond laser pulse tightly focused inside a transparent dielectric, that lead to void formation in the bulk. We show that the laser pulse energy absorbed within a volume of less than 1ÎĽm3 creates the conditions with pressure and temperature range comparable to that formed by an exploding nuclear bomb. At the laser intensity above 6 Ă— 1012 W/cm2 the material within this volume is rapidly atomized, ionized, and converted into a tiny super-hot cloud of expanding plasma. The expanding plasma generates strong shock and rarefaction waves which result in the formation of a void. Our modelling indicates that unique states of matter can be created using a standard table-top laser in well-controlled laboratory conditions. This state of matter has temperatures 105 K, heating rate up to the 1018 K/s, and pressure more than 100 times the strength of any solid. The laser-affected sites in the bulk were detected ("read") by generation of white continuum using probe femtosecond pulses at much lower laser intensity of 1010 W/cm 2 - 1011 W/cm2. Post-examination of voids with an electron microscope revealed a typical size of the void ranges from 200 to 500 nm. These studies will find application for the design of 3D optical memory devices and for formation of photonic band-gap crystals

    Exactly solvable models : a solution to different problems of laser matter interaction

    Get PDF
    With the increasing use of ultrashort laser pulses and nanoscale-materials, one is regularly confronted to situations in which the properties of the media supporting propagation are not varying slowly with time (or space). Hence, the usual WKB-type approximations fail, and one has to resort to numerical treatments of the problems, with a considerable loss in our insight into the physics of laser-matter interaction. We will present a new approach which allows a fully analytical solution of such problems, based on a transformation of the propagation equations into a new space where phase accumulation is linear with either time or space, which greatly simplifies their treatment. Though this method is restricted to some special models of the time or space varying dielectric constant, those are however general enough to encompass practically all experimental situations. It allows to introduce the concept of "non-stationarity induced" (or "inhomogeneity induced") dispersion. We will analyse the problem of reflection and propagation in two types of media whose dielectric constant vary rapidly at either the laser period or the laser wavelength scale. Extension of such techniques to the case of arbitrarily high non linearities will be considered too

    Ablation and Plasma Effects during Nanosecond Laser Matter Interaction in Air and Water

    Get PDF
    Despite extensive research work, a clear understanding of laser matter interaction i

    Stepwise Precession of the Resonant Swinging Spring

    Full text link
    The swinging spring, or elastic pendulum, has a 2:1:1 resonance arising at cubic order in its approximate Lagrangian. The corresponding modulation equations are the well-known three-wave equations that also apply, for example, in laser-matter interaction in a cavity. We use Hamiltonian reduction and pattern evocation techniques to derive a formula that describes the characteristic feature of this system's dynamics, namely, the stepwise precession of its azimuthal angle.Comment: 28 pages, 10 figure

    Alternative gauge for the description of the light-matter interaction in a relativistic framework

    Get PDF
    We present a generalized velocity gauge form of the relativistic laser-matter interaction. In comparison with the (equivalent) regular minimal coupling description, this new form of the light-matter interaction results in superior convergence properties for the numerical solution of the time-dependent Dirac equation. This applies both to the numerical treatment and, more importantly, to the multipole expansion of the laser field. The advantages of the alternative gauge is demonstrated in hydrogen by studies of the dynamics following the impact of superintense laser pulses of extreme ultraviolet wavelengths and sub-femtosecond duration
    • …
    corecore