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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52707912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00002757


EXACTLY SOLVABLE MODELS : A SOLUTION FOR 

DIFFERENT PROBLEMS OF LASER MATTER INTERACTION 
 

By : Guillaume PETITE
 (1) 

and Alexander B. SHVARTSBURG
(2)
 

 

(1) Laboratoire des Solides Irradiés, CEA/DSM, CNRS (UMR 7642) and Ecole Polytechnique, 

91128, Palaiseau CEDEX, France. tel : 33-1 69 33 44 96, fax : 33-1 69 33 30 22, 

email :guillaume.petite@polytechnique.fr 

(2) Central Design Bureau for Unique Instrumentation of the R A S, Butlerov Str. 15,  Moscow, 

Russia 

tel: 095 334 83 49, fax: 095 334 75 00, email:  
 

 

ABSTRACT  
With the increasing use of ultrashort laser pulses and nanoscale-materials, one is regularly confronted to situations in 

which the properties of the media supporting propagation are not varying slowly with time (or space). Hence, the usual 

WKB-type approximations fail, and one has to resort to numerical treatments of the problems, with a considerable loss 

in our insight into the physics of laser-matter interaction. We will present a new approach which allows a fully 

analytical solution of such problems, based on a transformation of the propagation equations into a new space where 

phase accumulation is linear with either time or space, which greatly simplifies their treatment. Though this method is 

restricted to some special models of the time or space varying dielectric constant, those are however general enough to 

encompass practically all experimental situations. It allows to introduce the concept of  “non-stationarity induced (or 

“inhomogeneity induced”) dispersion. We will analyse the problem of reflection and propagation in two types of media 

whose dielectric constant vary rapidly at either the laser period or the laser wavelength scale. Extension of such 

techniques to the case of arbitrarily high non linearities will be considered too. 

KEYWORDS : Non-stationary optics, Optics of inhomogeneous media, Strongly non-linear optics, Analytical models of 

propagation. 

1. Introduction 
The increasing use in the past few years of both nanoscale optical materials and of femtosecond laser pulses, including 

ultra high intensity ones, has brought back to the forefront a number of problems which, if not overlooked, were not 

considered as crucial ones. Whether one considers the space-like or the time-like problems, it was a quite common 

attitude to keep working in the frame of the so called “slowly varying envelope approximation”  (or any other WKB-

type one) even though acknowledging the fact that one was close to its limits, if not beyond. One now faces so often 

cases where substantial variations ( of the order of 100%) of the material properties (that will take the form of a space- 

or time-dependent dielectric constant) over length scales well below the wavelength or times scales of the order of the 

light period that time has come to seek new approaches in order to investigate such situations keeping as much as we 

can of our insight into physics, which fully numerical treatments (another tentative solution to such problems) do not do 

best.  Two typical examples concern the use of the so-called “index gradient ” layers1,2, in which the refractive index 

can vary by as much as 60% over typically 100 nm (space-like case), or the reflection of a high intensity laser pulse on 

a typical optical material like SiO2, where due to free-carrier injection, the material can transit from a transparent state 

to a quasi-metallic one (except for details about the degenerate character of the electron distribution) in one or a few 

laser periods (time-like case)3.  

In this paper, we will describe a new method by which it is possible to tackle such problems by completely analytical 

methods : with a varying dielectric constant, phase accumulation is no longer linear with space (or time), with the 

consequence that the propagation equation becomes unsolvable. Therefore, we propose to restore this linearity through 



a transformation of the space in which the equations are written. By doing so, one recovers analytical simplicity, and the 

solution of the propagation equation in the new space so defined may even, under some restrictions, express under the 

classical form of progressive sinusoidal waves. It is important that the above mentioned restrictions do not affect the 

generality of the types of variation of the dielectric constant we can consider (monotonous or not, increasing or 

decreasing...), which happens to be the case. This method, to which we will refer as to the “phase coordinate method”, 

keeps unharmed our physical insight into the physics of propagation, allowing us to reveal a new type of dispersion 

induced by the material inhomogeneity (depending directly on the gradients of the dielectric constant rather than on its 

local value) or non stationarity. In the following, we will exemplify this method through the investigation of two types 

of media, namely with space and time varying dielectric constant, of which the reflection properties will be studied. 

Finally, we will show that at the expense of a “hodagraph” transform (by which the time and space become the 

variables depending on electric and magnetic fields as coordinates) the problem of an arbitrary high non linearity can be 

cast under an equivalent analytical form as the two problems above, and can thus be treated equivalently. 

2. Inhomogeneous media : “ index gradient ” nanolayers 
Let us consider an inhomogeneous dielectric film as a plane dielectric layer with thickness d and dielectric susceptibility  

ε(z), 0 ≤ z ≤ d. This susceptibility will be cast under the form : 

 

( ) ( )2 2
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A linearly polarized EM wave, that we assume to  propagate in the z-direction (normal incidence conditions), is 

described by Maxwell equations, linking  the Ex  and Hy  components of the wave : 
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The EM field in normal incidence can be described with help of a single component vector-potential cast under the form 

A (z,t) = A0 ψ(z,t), where ψ is a scalar function such that (for convenience, we put A0=1) 

1
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which allows to reduce the system  (1)-(2) to the single equation 
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Clearly, if U was constant this would be the traditional propagation equation in an optically transparent medium, 

admitting the well known propagating wave solutions. In general, equation (4) with a space varying U(z) is unsolvable. 

However, using a new function F and a new variable η 
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transforms eq.(4) into a new equation 
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We will use the following model of dielectric susceptibility  profile   ε(z) 
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Here n0  is the refractive index value on the interface z = 0; the distribution (7) is considered in the region z ≥ 0. The 
characteristic spatial scales L1 and L2  as well as the values s1  and s2  are the free parameters of model (7). Note that the 

well known Rayleigh profile – U(z)=Az-2 , the only case where a general solution of eq (4) was known -  corresponds to 

the limit of U(t) when the scale L2→∞, so that we are in fact generalizing this profile, with the important result that 

practically all variations of the dielectric can be at least qualitatively represented with such a model, due to the 

increased number of free parameters. With such a model, eq (6) now has constant coefficients, writing :  
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with 
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A solution of eq.(8) can be built by superposition of  waves with wavenumber q, travelling in the η  - direction 
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We note that solutions in the form of travelling waves are obtained only if the  expression under the radical is positive. 

This is always the case if p²<o, i.e. for s2=+1, if L2>2L1. In the opposite case (p²>0), the availability of travelling wave 

solutions is subject to a condition concerning ω, which writes 
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so that such films possess a cut-off frequency. Combining (10) and (5), we obtain the function ψ determining the vector-

potential; whose substitution into (4) brings the explicit expressions for the field components 
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with 
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Thus we found an exact solution describing the EM wave in an inhomogeneous layer (7). At this point, let us consider 

the dispersion relation q(ω) given in eq. 10. It can be described as “waveguide-like” or “plasma-like”, the equivalent 

“plasma frequency” being the quantity cp/n0. Now it is essential to remark the parameter p depends only on the 

characteristic lengthscales of the layer’s index variation. This thus allows to introduce the concept of “inhomogeneity-

induced” dispersion, which has nothing to do with the “natural” (local) dispersion of the material (contained, eventually 

in n0). The same can be said about the cut-off frequency, when it exists. 

Another comment concerns the “phase coordinate” which has here a quite simple meaning: from the definition (5), it is 

obvious that it is simply the optical path. 

From the field expressions in the inhomogeneous material one can, using the standard method of the field continuity at 

the interfaces, calculate the reflection coefficient of a wave on such a layer deposited on a substrate. The calculations 

are not specially difficult, though somewhat heavy, and we just give here the essential and typical results, the reader 

being referred to the original publication4 for their complete derivation. We consider first the case of a film presenting a 

cut-off frequency Ω1 (p²>0, here s2<0). Figure 1a shows the reflection coefficient of such a film “stand alone” as a 

function of the scaled frequency ω/Ω1. One sees that such a film has antireflection properties which extend over a 

considerable frequency range. Figure 1b shows the reflection coefficient of such a film deposited on an absorbing 

substrate with a complex refractive index equal to 3.5+i 0.7, which would otherwise have an intensity reflection 

coefficient of 0.32. 

 
 

Figure 1,a: Antireflection properties of thin inhomogeneous 

dielectric film in the case s2 <0 and  p² > 0. The reflection 

coefficient |R|² is plotted  vs the normalized frequency  

1 1x ω= Ω  for n0  = 1.73, and for different values of the 

parameter α = d/L2.  

Figure 3 : Broadband antireflection properties of a thin 

inhomogeneous  film, coating a lossy dielectric with n2 = 3.5, χ2 

= 0.7; the dependence of the reflectivity |R|² upon the normalized 

frequency 1 1x ω= Ω , relating to the case y = 0.25, n0 = 1.6, 

p²>0, s2 <0, is represented for different values of the parameter α 
= d/L2. The same dielectric without coating has a reflection 

coefficient |R|² = 0 .32 

 

Let us note here that the scaling frequency depends only on geometrical parameters so that, by changing the geometric 

characteristics of the coating (length scales of the inhomogeneity) one could achieve antireflection coatings of this type 

in almost any wavelength range (of course there will be a natural limitation in the XUV due to the only assumption 

here, which is that the film index varies continuously). Other films can show a quite different behavior, as shown on 



figure 2, which presents the case of a “stand alone” film with p² < 0 and s2>0. Such films do not posses a cut-off 

frequency, and the scaling frequency is in this case defined as : 
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Figure 2 : Spectra of reflectivity of inhomogeneous film in a case 

s2>0 and p² < 0; The reflection coefficient |R|² is plotted vs. the 

normalized frequency  2 2x ω= Ω  for n0 = 1.73, and for different 

values of the parameter α = d/L2. The inhomogeneity induced 

frequency Ω2 is given in (29). 

 

One sees that such films have a quite different behavior 

from those described above. In particular (as it can be 

clearly seen in the case of α=1 on fig 2, such films have a 

dichroic character. 

To summarize this first application of our method to the 

case of a space dependent dielectric constant, transforming 

the wave equation into a space where the optical path is the 

space-like variable we can, under some restriction 

concerning the type of variation – which do not preclude 

the possibility of encompassing many different types of 

dependencies - obtain analytical solutions for the fields in 

this space under the form of progressive waves, from 

which the behavior in the normal space can be recovered, 

and allowing to compute different properties such as the 

reflection coefficients of such films. We find that they 

present a plasma-like dispersion law, which is completely 

determined by the geometrical constants defining the space 

dependence of the media dielectric constant. Depending of 

such parameters, the film can present a cut-off frequency 

of not and different reflection properties.  

3. Non-stationary media 
Let us now consider a case in which the dielectric constant depends on time instead of space. The same method can be 

applied in the following way5: we consider here the case of transverse electric wave (z being the propagation direction). 

One starts from the Maxwell equations for such a case : 
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using the generating function 
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one obtains the following wave equation 
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which is also not solvable as this. We then make the following transformation : 
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by which the wave equation becomes  
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(Ut and Utt represent the first and second time-derivatives of U). Once again, with some restriction on the analytical 

form of U, which is still flexible enough to account for any typical variation  ε(t) (monotonous or not, increasing or 

decreasing..), plane wave solutions to the propagation equation in this space are available : 

 

( )
2

2 2 2 20

2

2

2

exp

;

1

S

S

S
S

F i k z k y

n
k k k N

c

p
N

ωτ

ω

ω

⊥ ΙΙ

⊥ ΙΙ= + −

 = + =  
 

= −

         (22) 

 

where 2

sp  is here determined only by the time constants of the function U, obtained here in the τ-space as (depending 
on the sign of 2

sp ) : 
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or 
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The case of  a transverse magnetic wave can be treated in a similar way. It should be noted that the analytical 

dependencies of U(t) obtained in both cases are different, but that once fixed the essential parameters (amplitude of the 

variation and characteristic time) the difference between both functions are negligible5. Now, looking at eqs. (22), one 

sees that the same remark as in the space-dependent case can be made : the dispersion law for the wave in the non-

stationary medium is plasma-like, and is determined by the time constants of the dielectric function’s variations (we 

will speak here of a “non-stationarity induced dispersion”). 

The fields in the medium can be calculated from eqs (18), (20) and (22) : 
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where we see that, due to the derivative of U in factor of i, the electric field and the vector potential (which is here also 

the convenient generating function) are not in quadrature. One also sees that the fields do not depend sinusoidally of  t, 

so that some significant reshaping of the wave in the medium will occur5. Rather than going into such details, we would 

like to show some important physical effects occurring in the reflection of light on such a non stationary media. Once 

again the traditional method of fields continuity at the interfaces can be used, and one so obtains the laws of reflection 

of light on such a medium as a combination of a “generalized Descartes law” : 

 

,sin sinS Pnγ β=            (27) 

 

where nS,P is a complex refractive index  
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S and P referring to the incident wave (and corresponding respectively to the cases of  a TE/TM waves in the medium 

mentioned above). The incidence angle γ being real, it follows that the refraction angle β is complex, a situation which 

is not uncommon since it is encountered in the optics of metals6 and will have similar consequences (inhomogeneous 

wave inside the medium with different equal intensity and equal phase planes). However here, the origin of this quite 

different here : it arises because of the non stationarity, no matter whether the dielectric constant is positive or negative. 

Also note that the refractive index is here quite different from the index characterizing the dispersion in the medium. 

The “generalized Fresnel laws” can also be obtained as 
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It is quite instructing to consider the very simple case of a linear U dependence (which happens to be valid for both 

incident polarizations) like  
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even though it is too limited for many experimental situations, since it allows easy calculations. Writing the 

instantaneous value of the material optical index (in this framework, the word “refractive is inadequate) n(t)=n0U(t), and 

restricting ourselves to the case of a normal incidence, one obtains for the reflection coefficient (RP and RS coincide in 

this case) : 
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which we should compare to the values that one would obtain from a “quasi-stationary” approximation, that is applying 

the normal Fresnel laws using the instantaneous value of the optical index n(t) : 
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which is essentially different from expressions (32), to begin with through the fact that this quasi-stationary value has 

no imaginary part, contrary to the real one. One thus does an essential mistake by applying such an approximation, 

which can be traced back to the fact that one neglects the non-stationarity induced dispersion (implicitly setting Ut=0, 

even though one could think that the time dependence of n is accounted for). This is illustrated on figure 3 showing the 

behavior of these different quantities. 
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Figure 3 : Reflection coefficient of a non stationary dielectric corresponding to ε variations of eq (31), for different values of the 
parameter φ0=2ωt0, compared to the result of a "quasistatic" approximation using the instantaneous value of the standard Fresnel 

coefficient (a) Intensity reflection coefficient (b) phase. The beam is at normal incidence  

 

From figure 3, one deduces that if for the intensity reflection coefficient, the differences are minor as soon as the time 

constants for the dielectric constant variations exceed a few laser periods, the phase appears to be much more sensitive 

to such effects (and therefore constitutes a much better test). Other effects in the reflected fields can be calculated 

simply from the above method, such as for instance frequency shifts in the reflected field arising from a time dependent 

reflection phase shift5. 

 

As a conclusion to this part, we note that for the optics of non-stationary media, very specific effects occur that can be 

calculated and, probably more important, understood using our “phase coordinate method”. In many respects the space-

dependent and time-dependent cases appear to be similar. 

 

4. Application to non-linear optics 
We illustrate in this part how a similar method can be used to study the interaction of a linearly polarized EM transient 

with an isotropic nonlinear dielectric. Assuming the nonlinearity relaxation time to be shorter than the transient’s 

duration, one can represent the electric displacement D as a continuous function of the electric field E: D = D(E). We 

consider a linearly polarized EM field (E along the x direction, H along the y direction, propagation in the z direction, 

the indexes being omitted hereafter for lightness in the notations). The Maxwell equations for the field travelling in this 

medium (assumed to be non-magnetic) can then be written as:  
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We will rewrite this system using the hodograph transform7 and treating the functions E and H as new independent 

variables and the variables z and t as new unknown functions z = z(E,H), t = t(E,H). The fundamental system (34) then 

becomes  
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It is remarkable that the system (35), unlike the system (34), is linear, and the function D E∂ ∂ , connected with the 

nonlinear response of the medium, may be considered as some inhomogeneity in the (E,H) space. Thus, the system (35) 

is formally analogous to the Maxwell equations with a coordinate – dependent velocity. The system (35) can be reduced 

to one equation by two approaches, related respectively to two different models of nonlinearity. The first approach is 

based on the expression of quantities t and z via some generating function F 
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Using (36) one can transform the first equation in the system (35) into an identity, meanwhile the function F is 

governed by the second equation. Examining the media with 0D E∂ ∂ > , and putting thus  
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where n0  is the linear value of refractive index, one can present the equation governing the function F in a 

dimensionless form (with 0,c cE E x H E n h= = ): 
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Considering the case ( ) ( )2 2
1 1cU E E x

− −= + = + , introducing a new function  f  and a new variable ϕ , one can rewrite 
eq. (38) as 
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This simple wave equation describes the EM field propagation in a medium with the nonlinearity, defined due to 

substitution of function ( ) 2
1 cU E E

−= +  , used above, into eq. (4):   
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The second approach for transforming the pair (35) to one equation is based, unlike (36), on the presentation of 

generating function F by means of correlations 
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 Introducing the new function f F U= , using the variable ( ) 131 1cE Eϕ = + −  and supposing in this case 

( ) 2
1U ϕ −= + , one can see, that the function f is governed by the same equation (39). The electric displacement D(E), 

related to this model of U, being 
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         (42) 

 

Formulae (40) and (42) present models related respectively to “fast” and “slow” saturation of the nonlinearity. In the 

limit of a weak pulse field (E<<Ec ), one obtains from both (40) and (42) the linear limit: 2

0D n E= . As in the cases 

considered in sections 2 and 3, we have, through a set of transformations cast our problem in a form admitting simple 

analytical solutions. 

5.Conclusions 
In this paper, we have shown that the problem of the optics of  inhomogeneous or non-stationary media could be 

formally simplified by moving into a space where phase accumulation recovers linearity with either space of time (the 

“phase coordinate method”). Under some restrictions concerning the analytical forms used to represent the variations of 

the dielectric constant, which do not however preclude the possibility of representing all types of variations, one is then 

able to obtain complete analytical solutions with the essential advantage that one imposes no restriction concerning how 

fast and how large the variations are, and that one keeps a real physical insight into the optics of such materials. We 

found that the dispersion laws that are plasma- (or waveguide-) like, the dispersion being essentially determined by the 

spatial or temporal characteristic scales of the variations (“inhomogeneity or non-stationarity induced dispersion”). We 

showed that some important consequences can derive from this special type of dispersion, e.g. on the reflection 

properties of such media, and were able to evaluate at which stage, e.g., quasi-stationary approximations become 

dangerous and why. Finally we showed that such a method can be applied to other problems, in particular indicating 

how, with the help of a hodograph transform, the case of an arbitrarily high non-linearity could be approached. 

It is also worth mentioning that optics is not the only field in which such methods could be applied. The Schroedinger 

equation would for instance be relevant of the same methods, yielding solutions to many unsolved problems (or at least 

solved in the framework of disputable approximations) such as that of the “split-potential”. 
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