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ABSTRACT 

Cao, Yunfeng. Ph. D, Purdue University, December 2015. Ablation and Plasma Effects 
during Nanosecond Laser Matter Interaction in Air and Water. Major Professor: Yung C. 
Shin, School of Mechanical Engineering. 
 

Despite extensive research work, a clear understanding of laser matter interaction in 

the high energy nanosecond laser ablation process is still lacking, which may differ 

significantly depending on surrounding medium, laser parameters, and target material 

characteristics. The mechanical and thermal effects of the confined plasma and water 

breakdown plasma during laser ablation in water have not been fully investigated as well. 

 In this work, nanosecond laser ablation of metal targets in air and water is 

investigated through a self-contained hydrodynamic model under different laser fluences 

with the consideration of phase explosion. In case of nanosecond laser ablation of aluminum 

in water, deeper crater depths are found in all the conditions studied in this work. The 

analysis of the shock compression in air and water indicates that the shock compression is 

mainly responsible for this enhancement of ablation in water. 

 The mechanical effects of confined plasma is also investigated, including the target 

surface integrity change and induced residual stresses in the Laser shock peening (LSP) 

process and shock wave propagation and spallation behavior in LSP. By combining a 3-D 

finite element model with a previously developed confined plasma model, the residual 



 xiii 

stresses induced in the substrate material as well as the indentation profile on the substrate 

surface are predicted for both single shot and overlapping LSP. The spallation induced by 

shock wave propagation in targets during the laser shock peening process is also investigated 

in this work. The spallation zone location is calculated for various materials with different 

thickness of foils and various laser shock peening parameters and validated against with 

previously reported experimental results. 

The melt ejection behavior during nanosecond laser ablation with phase explosion is 

successfully predicted by combined molecular dynamics (MD) and smoothed particle 

hydrodynamics (SPH) simulations and validated against the experiments. The commonly 

adopted 0.9 Tc (critical temperature) criterion for phase explosion boundary is also assessed 

with the prediction of the ablation depth for both aluminum and copper, and it is found that 

the 0.9 Tc criterion does not always work. 

 Laser induced water breakdown plasma, which is generated by the strong interaction 

between nanosecond laser and water, is used in this work to etch the surface layer of a 

carbon fiber reinforced composite sample. It is found that the polymer layer can be 

effectively removed by the plasma while the carbon fiber remains almost intact. 
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CHAPTER 1. INTRODUCTION 

 
1.1 Background 

 A sudden removal of material from a surface due to irradiation by a pulsed laser 

beam is generally called laser ablation. During a nanosecond (1 ns = 10-9 s) laser ablation 

process, the interaction between a high energy laser beam and the target material will lead to 

the strong ablation of the target and consequently the formation of a crater on the target 

surface (Von Allmen, 1987). A lot of research work has been devoted to the investigation of 

ablation behavior in the nanosecond laser ablation process, which may differ significantly 

depending on surrounding medium, laser parameters, and target material characteristics. 

Most investigations on nanosecond laser ablation fall into two categories: in air (Porneala 

and Willis, 2006; Miotello and Kelly, 1999; Gusarov and Smurov, 2003; Fishburn et al., 2000; 

Gristoforetti et al., 2008; Vladoiu et al., 2008; Gragossian et al., 2009; Lu, 2003; Domer and 

Bostanjoglo, 2003) or in liquid (typically water) (Nichols et al., 2006; Kang et al., 2008; 

Mahdieh et al., 2010; Kim and Lee, 2001; Dupont et al., 1995; Kang et al., 2006; Mariella et 

al., 2010; Chen et al., 2006; Ohara et al., 1997). 

Figure 1.1 is a schematic diagram for nanosecond laser matter interaction in air and 

water. When the surrounding medium is air, as shown in Figure 1.1 (a), a short pulse laser 

(typically about 1- 20 ns) is focused directly onto a solid workpiece. If the laser beam is 

intense enough, the strong interaction between the laser pulse and the workpiece will 



 2 

evaporate and also ionize the workpiece to form a high temperature plume and plasma near 

the target surface, which will expand into the air along with a shock wave. Under higher 

fluence, some liquid melts and droplets might be ejected explosively from the melt pool after 

the initial ablation by evaporation and ionization as depicted in Figure 1.1 (a), which is 

usually referred to as phase explosion or explosive boiling (Miotello and Kelly, 1999).  

 

 
(a)      (b) 

Figure 1.1. Schematic diagrams for laser matter interaction in (a) air and (b) water. 
 

When the surrounding medium is water, as shown in Figure 1.1 (b), a short pulse 

laser is irradiated through the water layer onto the workpiece surface. Under this 

configuration, the strong interaction between the laser pulse and the workpiece will ionize 

both the workpiece and water vapor immediately above the workpiece surface, which will 

finally form the so-called “confined plasma”. The expansion of the produced confined 

plasma is suppressed by the confinement layer, thus creating a high magnitude (in the order 

of ~ GPa) recoil pressure pulse that may last longer than the laser pulse duration, which will 

send a shock wave into the workpiece. When the pressure of the shock wave exceeds the 
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dynamic yield strength of the metal workpiece, plastic deformation occurs and residual 

stresses are induced, which will modify the near-surface microstructure and mechanical 

properties (Charles et al., 2002). In a closely-related process, laser shock peening, a coating 

layer is applied on the surface of the workpiece to protect the surface from the thermal 

damage due to the laser-coating interaction. In the laser shock peening process, the confined 

plasma and its expansion as a shock wave into the workpiece clearly play a very important 

role in the residual stress generation and plastic deformation in the sub-surface region of the 

workpiece. 

 A water layer is generally transparent to a laser beam. However, when the laser 

power density is above certain thresholds, water breakdown may occur, and the “breakdown 

plasma” is generated, by which a significant amount of incident laser energy will be 

absorbed. It should be noted that the plasma initially forms at the laser focal spot (dashed 

ellipse in Figure 1.1 (b)) if the laser power density at the focal spot just exceeds the 

breakdown threshold. If the laser power density is much higher than the water breakdown 

threshold, the laser power density at the air–water interface may be high enough to break 

down the water at the air–water interface. Therefore, the water breakdown plasma could be 

observed in any region from the focal spot (dashed ellipse in Figure 1.1 (b)) to the air–water 

interface (solid ellipse in Figure 1.1 (b)) depending on the laser power density. The optically 

opaque water breakdown plasma is usually considered to be detrimental for the laser ablation 

process since it blocks the laser-target interaction. However this extremely hot plasma could 

be useful in certain applications by effectively utilizing the plasma-matter interaction from 

the thermal point of view. This thermal effect has rarely been reported in literature. 
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As laser ablation is finding new applications in numerous manufacturing processes, a 

thorough understanding of laser matter interaction becomes more critical. During the laser 

matter interaction in air and water as shown in Figure 1.1, there are still lots of phenomena 

that are not completely understood. When the laser fluence is high enough during laser 

ablation in air, explosive ejection of melt and liquid droplets has been observed. However, 

the detailed mechanism of this phenomenon is not fully understood and theoretical 

investigations of this phenomenon are missing. The ablation rate was also found to be 

higher in the water than in the air (Kang et al., 2008; Mahdieh et al., 2010; Kim and Lee, 

2001; Dupont et al., 1995; Kang et al., 2006). However, there are no satisfactory explanations 

for this material behavior due to the lack of understanding of laser ablation mechanism. The 

mechanical and thermal effects of the confined plasma and the water breakdown plasma are 

not fully understood as well and deserve more in-depth investigations.  

 This study seeks to investigate the nanosecond laser ablation process in air/water 

and the plasma effect during the laser matter interaction to obtain a better understanding of 

the process shown in Figure 1.1. 

 

1.2 Literature Review 

1.2.1 Nanosecond Laser Ablation Mechanism 

 Depending on the laser parameters, the absorption of laser energy may induce 

melting, normal evaporation, normal boiling, and eventually phase explosion if the laser 

fluence exceeds a certain threshold. No mass removal is involved during the melting process. 

Therefore it will not be discussed here. 
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A) Normal Evaporation 

Normal evaporation is the escape of the molecules or atoms from a liquid surface to 

the ambient gas, which will occur whenever the saturation vapor pressure at the liquid 

surface temperature is higher than the pressure of the ambient gas (Xu and Willis, 2002). In 

nanosecond laser ablation on metal targets, material evaporation is the major ablation 

mechanism in the low fluence range (typically less than several J/cm2), where the target 

material vaporizes directly from the surface of the liquid melt pool.  

During normal evaporation the vapor particles leaving the surface have velocity 

components in the direction away from the surface and develop to an equilibrium normal 

velocity distribution over the distance of several mean free paths (known as Knudsen layer) 

due to collisions among particles (Wu and Shin, 2006c). The vapor above the Knudsen layer 

experiences an adiabatic expansion and eventually forms a shock wave, which could be 

considered as a gas dynamic flow with the continuum approximation (Wu and Shin, 2006c).  

B) Normal Boiling 

Another possible mass removal mechanism is normal boiling. Similar to the 

evaporation, boiling also involves the liquid-vapor phase change. However, during boiling 

the development of the vapor bubbles occurs below the liquid surface, while during 

evaporation the vapor escapes from the liquid surface. The boiling process heavily relies on 

the presence of heterogeneous nucleation sites (such as solid impurities or solid/liquid 

interface). Miotello and Kelly (1995) suggested that the density of heterogeneous bubble 

nucleation sites is too small to induce a significant boiling process capable of producing the 

high rates of material removal achieved in most nanosecond laser ablation processes. Also, 

the time for growth of heterogeneous nuclei is too long compared to the time scale of 



 6 

heating process (Miotello and Kelly, 1999). Therefore, the effect of normal boiling is 

considered negligible in this work. 

C) Phase Explosion 

With the increase of laser fluence, the surface temperature of the target material may 

rise close to 90% of the critical temperature or even higher (Porneala and Willis, 2006; 

Miotello and Kelly, 1999). Under this condition, phase explosion will occur and may start to 

dominate the ablation process. An observable jump in the ablation rates has been reported in 

literature (Gragossian et al., 2009; Lu et al., 2002; Porneala and Willis, 2006) when the laser 

fluence reaches a threshold value, which marks the transition from normal evaporation to 

phase explosion.  

 The existence of phase explosion has been reported in literature for nanosecond 

laser ablation both in air (Porneala and Willis, 2006) and in water (Nichols et al., 2006). For 

laser ablation of aluminum in air, time-resolved shadowgraph images (Porneala and Willis, 

2006) indicate that the phase explosion occurs at around 52 ns after the laser pulse under the 

laser fluence of 5.2 J/cm2. Nichols et al. (2006) investigated the nanosecond laser ablation on 

a platinum target in water, and found small droplets with sizes ranging from 100 nm to 1 µm 

inside the crater formed by laser ablation under the laser fluence of 11 J/cm2, which 

indicates that molten droplets were ejected from the target and then fell into the crater after 

laser ablation.  

 Phase explosion can affect the resultant crater shape and the amount of material 

removed from the target. However, the detailed mechanism of phase explosion is not fully 

understood and theoretical investigations on the evolution of phase explosion are still 

missing. 
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1.2.2 Melt Ejection during Phase Explosion 

  It is generally known that the laser ablated material consists not only of evaporated 

atoms, but also particles or droplets formed, either directly by the laser–solid interaction, or 

later, through condensation (smaller particles condense onto the larger particles), collision 

between particles, or hydrodynamic sputtering (large particles) in the expanding plume. 

  In the low laser power density regime, the particles/droplets are mainly in the nano 

or sub-micron scale, which are formed mainly through laser evaporation (Becker et al., 

1998). A number of models have been reported to describe particle formation and growth in 

the expanding vapor plume, based on condensation and nucleation theories (Kar and 

Mazumder, 1994; Gnedovets et al., 1999 & 2000; Gusarov et al., 2000; Blair et al., 2001). In 

general, condensation droplets are typically formed in long-pulse (ms) and low-intensity 

(104–105 W/cm2) regimes (Gnedovets et al., 1999); however, they can also be generated at 

higher laser intensity and shorter pulse (e.g. 108–1010 W/cm2 and few ns pulse) under the 

slow expansion of the vapor plume into the background gas (Brailovsky et al., 1995). 

  With the increase of laser fluence, the surface temperature of a target material may 

rise close to 90% of the critical temperature or even higher (Porneala and Willis, 2006; 

Miotello and Kelly, 1999). Under this condition, phase explosion will occur and may start 

dominating the ablation process. In this high fluence regime, larger particles/droplets may 

form with different mechanisms depending on target material and laser conditions. It was 

proposed based on experimental observation that the vaporized atoms and ions condense as 

tiny particles on the ejected larger droplets, forming an outer layer and even larger particles 

(Liu et al., 2005). For metals, particles are assumed to be formed by liquid (large droplet) 

ejection, which can be the result of several processes. Large droplets can be ejected as a 
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result of transient melting and motion of a liquid caused by steep pressure gradients and the 

vapor plume recoil pressure (Muhammad et al., 2013; Tong and Browne, 2011; Von Allmen, 

1987; Bennett et al., 1995). The formation of large droplets is assumed to be from the 

collision between small particles. According to Hergenroder (2006), hydrodynamic 

sputtering may also play a very important role on the large particle formation in a laser 

ablation process. 

  At high laser power density, the particle size was measured to have a bimodal size 

distribution (Hergenroder, 2006). Clearly, there are two mechanisms for the particle 

generation. One is the evaporation induced by laser ablation, which corresponds to the lower 

peak in the particle size distribution. The other one is due to either condensation, collision 

between small particles, or hydrodynamic sputtering, which corresponds to the higher peak. 

  It still remains a difficult challenge to capture the ejected droplets during the material 

removal by conventional modeling methods (for example, Hydrodynamics model) using 

generated mesh. The meshes need to be several times smaller than the ejected molten 

materials, which require massive computing resources. Lu (2003) proposed a one-

dimensional fluid model to describe the thermodynamic evolution during phase explosion. 

However, Lu’s model couldn’t predict the melt ejection behavior and the resulting ablation 

depth. As a work-around, most researchers use 0.9 Tc (critical temperature) as the ablation 

depth prediction criterion when handling phase explosion (Yoo et al., 2000; Lu et al., 2002; 

Gragossian et al., 2009). In the authors’ previous work (Cao et al., 2013), 0.9 Tc as the 

ablation depth prediction criterion was shown to yield good accuracy when predicting the 

ablation depth for aluminum with phase explosion. However, it was found that 0.9 Tc 

doesn’t work when dealing with a copper target. 
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  There are some numerical methods proposed in literature to capture these nonlinear 

phenomena, such as molecular dynamics (MD) and smoothed particle hydrodynamics 

(SPH). Molecular dynamics (MD) simulation provides an explicit atomistic representation of 

material heating, vaporization, and plume expansion, and solves problems that cannot be 

accounted for by continuum models, such as highly non-equilibrium states and fast phase 

transformations induced by high fluence laser irradiation (Zhigilei and Ivanov, 2005). The 

interatomic potential V is one of the most important parameters governing MD simulation 

of a certain material, because this potential defines the interactions among atoms that the 

material consists of and dominates the properties of the material (Allen and Tildesley, 1989).  

The force exerted on each atom by other atoms is also determined by the interatomic 

potential.  Therefore, once the interatomic potential is given, MD can be used to simulate 

many problems with their specific external forces, initial conditions and boundary 

conditions. 

  MD simulation work reported in literature is mainly focused on the femto- or 

picosecond laser ablation, where a relatively short laser heating makes it possible for atomic 

scale modeling. Very few reports are available on the nanosecond laser ablation with MD 

simulation. Perez et al. (2006) investigated the nanosecond laser ablation of molecular solids 

with MD. However the approach is not expandable to metal targets since metals have much 

higher melting temperature than the molecular solids and therefore require much longer 

heating time. Zhang and Wang (2008) proposed a hybrid model to investigate the long-time 

phase change in nanosecond laser-material interaction. In their approach, MD domain is 

used to capture the laser heating, while the finite difference domain is used to consider the 
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heat conduction in the deeper region. The time scale is still limited to around 60 ns in this 

hybrid method and therefore it is not possible to predict the phase explosion process. 

  SPH is a meshless computational method represented by a set of particles where 

each particle moves according to the governing dynamics (Manenti, 2009). In SPH, 

differential equations are therefore solved by a Lagrangian technique. The basic concept of 

SPH is that continuous media are represented by discrete particles with volume, density and 

mass. The particles have a kernel function to define their range of interaction, and the 

hydrodynamic variables are approximated by integral interpolations. Meshes are not needed 

in the simulation, which is a major advantage of SPH over Eulerian methods for complex 

geometries. However, since SPH is a mesoscale method (Manenti, 2009) that deals with the 

particle size in the sub-micron to micron range, SPH alone can’t predict the initial particle 

formation in the laser ablation process, where the initial particle size could be far less than 1 

micron. 

 

1.2.3 Mechanical Effects of Confined Plasma 

 As discussed in the previous section, confined plasma will play an important role in 

the laser shock peening (LSP) process, where high energy laser irradiated on the target 

surface can generate high-pressure plasma in the water confinement regime (Berthe et al., 

1997; Wu and Shin, 2005). When the pressure wave propagates into the substrate material as 

a shock wave, compressive residual stresses can be imparted into the surface region (Braisted 

and Brockman, 1999), which in turn can improve the material’s fatigue properties and wear 

resistance. To protect the surface from the thermal damage that may occur in the process of 
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LSP, a coating layer of black paint or aluminum tape is usually applied on the surface of 

substrate material.  

 Fabbro et al. (1990) proposed a very straightforward 1-D analytical model to 

consider the physics of the confinement of laser-generated plasmas by a transparent overlay 

(glass). The ratios of plasma thermal energy to internal energy and laser-plasma absorption 

coefficient were treated as free variables that have to come from experimental 

measurements. This model was later improved by Sollier et al. (2003) and Zhang et al. 

(2004).  However, the laser-plasma absorption coefficient remains a constant in these 

models. Wu and Shin (2005) proposed a self-closed thermal model to consider the LSP 

under water confinement, which has no free variables and has considered most of the 

important physical phenomena, including the laser ablation of the coating layer, water 

evaporation, plasma ionization and expansion, laser-plasma interaction, etc. 

 The finite element simulation of laser shock peening and induced residual stress has 

been reported in the literature (Braisted and Brockman, 1999; Ding and Ye, 2003a; Ding and 

Ye, 2003b). In their approaches, the ABAQUS/Explicit and ABAQUS/Standard were 

combined to simulate the short duration shock wave propagation and the resulting residual 

stresses in the target material. The target material was considered as perfectly elastic-plastic 

even under very high strain rates and the dynamic yield strength was connected with 

Hugoniot Elastic Limit (HEL) and Poisson’s ratio by a simple expression. Peyre et al. (2003; 

2007) employed a Johnson-Cook type model to describe the dynamic behavior of target 

materials during LSP. Warren et al. (2008) simulated the multi-pass LSP on AISI 52100 steel 

without a coating layer. The overlapping effect of laser shock peening of AISI 1045 steel was 

investigated by Hu and Yao (2008). The changes of mechanical properties of the specimen 
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treated by different overlapping rates were investigated by both experiments and FEM 

simulation. Voothaluru et al. (2012) also investigated the overlapping effect of laser shock 

peening using FEM simulation. Vasu and Grandhi (2013) studied the effect of curved 

geometry on residual stress in laser shock peening with FEM. By using either a concave or a 

convex geometry, the residual stress induced by laser shock peening could be altered. 

However, the inputs of these finite element models, the confined plasma pressure, mostly 

come from the simple analytical model proposed by Fabbro et al. (1990), which has two free 

variables.  

 A considerable amount of experimental work on single shot LSP has been reported 

(Berthe et al., 1997; Sollier et al., 2003; Hill et al., 2005), most of which is related to the 

residual stress measurement and the effect of LSP parameters on the induced residual 

stresses in the target material. For single-track and multi-track overlapping LSP, only a 

limited amount of work is available in literature. Zhang and Yao (2002) investigated the 

micro scale laser shock processing on a copper foil of thickness 90 µm. The laser beam 

employed in their work is only 6 µm in radius. They concluded that it is possible to impart 

desirable residual stress distribution into micro scale metallic components by properly 

choosing laser intensity, number of pulses and overlapping ratio. Rubio-Gonza´lez et al. 

(2006) conducted a multi-pass LSP on 6061-T6 aluminum alloy with non-bright black paint 

coating. They examined the effect of absorbent coating on the residual stress induced by 

LSP. Dorman et al. (2012) investigated the effect of LSP on residual stress and fatigue life of 

clad 2024 aluminium sheet. The induced residual stress field was measured using incremental 

hole drilling and synchrotron X-ray diffraction techniques. They found out that the 

overlapping of laser shot results in the large compression strains.  
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 Despite the abundant work in this area as reviewed in this section, complete 

predictive modeling on the change of target surface integrity and residual stresses by single 

shot and overlapping LSP has rarely been reported, which must take into account of the 

accurate laser-induced plasma pressure with strict physics-based theories. 

The confined plasma model developed earlier by Wu and Shin (2005) can be used to 

calculate the plasma pressure generated during LSP in a water confinement regime. In their 

model, the plasma expansion was treated as a one-dimensional phenomenon because the 

two-dimensional effects are important only when the laser beam diameter is very small.  Wu 

and Shin (2007b) further demonstrated that the 1-D assumption is valid when the laser beam 

diameter is equal or larger than 300 µm. Wu and Shin (2007c) also developed a FEM model 

and combined with the confined plasma model to predict the residual stress generated in 

LSP. This is a complete and self-closed model which requires only the laser parameters and 

material properties to model the LSP process. Both the FEM model and the confined 

plasma model (Wu and Shin, 2005) will be employed in this work as a foundation to 

investigate the mechanical effects of confined plasma in LSP process. 

 

1.2.4 Shock Wave Induced by Confined Plasma and Its Propagation 

 As reviewed in the previous section, high energy laser irradiated on the target surface 

can generate high-pressure plasma in the LSP process, (Berthe et al., 1997; Wu and Shin, 

2005), which will propagate into the substrate material as a shock wave. If  the shock wave 

amplitude and the duration of  this shock wave are sufficient, spallation will take place at the 

interface or inside the bulk material. 
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 Laser induced spallation is an experimental technique developed in the last several 

decades to understand the adhesion of  thin films with substrates (Cottet and Boustie, 1989). 

A high energy pulsed laser (typically Nd:YAG) is used to create a compressive stress pulse in 

the substrate. This compressive stress wave propagates into the film and reflects as a tensile 

wave at the boundary. If  the amplitude of  the tensile stress wave is greater than the interface 

bonding strength, this tensile stress pulse spalls the thin film while propagating inside the 

substrate. Using the theory of  wave propagation in solids it is possible to model the laser 

induced spallation process. The stress pulse created in this fashion is usually around 3-8 

nanoseconds in duration while its magnitude varies as a function of  laser fluence (Cottet and 

Boustie, 1989).  

 A typical laser spallation setup is shown in Figure 1.2. The constraining material is 

transparent to the laser pulse (usually water or glass). The expansion of  laser ablation-

induced plasma under the confinement generates a compressive stress pulse propagating 

toward the test coating, which is deposited on the substrate’s back surface. When this shock 

wave reaches the interface, it is partially transmitted and then reflected in a release wave on 

the free surface of  the coating. Since the loading has a short duration, the incident shock is 

also rapidly followed by another release wave and the crossing of  both generates a tensile 

stress at the interface, which will finally lead to spallation (complete removal). 

 The critical stress at the interface can be calculated by measuring the transient 

displacement history of  the coating’s free surface, which is induced during pulse reflection, 

by using an optical interferometer in the single shot mode. Gupta et al. (1994) related the 

measured free surface velocity to the local interface stress via wave mechanics-based 

simulation. 
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Figure 1.2. Scheme of laser spallation with water confinement (Gupta et al., 1994). 

 

 In Auroux et al.’s (2001) work, the laser beam was focused on the bare face of  the 

substrate to create a plasma whose expansion induced a shock wave into the target. The 

target was placed in a vacuum chamber to avoid air breakdown because the laser intensity 

used in the experiment was extremely high. They found that the laser intensity required to 

spall the coating from the substrate is highly dependent on substrate thickness and laser 

pulse duration. One interesting observation from their work is that the spallation can occur 

in the substrate instead of  at the interface if  the laser pulse is long enough, as shown in 

Figure 1.3. 
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Figure 1.3. SEM observation of a cohesive rupture into Hastelloy X coated with diffused Pt 
and irradiated on the opposite surface with an intensity of 0.8 TW/cm2 (Auroux et al., 2001). 

 

 Cottet and Boustie (1989) first introduced hydrodynamic equations and an 

elastoplastic model to simulate the shock wave propagation induced by laser irradiation. 

They also employed a cumulative damage criterion to describe the spallation process. Their 

model can predict the general behavior of  spallation, including the spall thickness and 

spallation threshold in different conditions. Fortov and Kostin (1991) modified the above 

model by introducing a continuous kinetic model of  spallation, which took into account the 

duration of  loading and effective stress. Once the maximum tensile stress reaches the 

threshold value, the spallation process starts and the voids inside the material begin to grow. 

The stress relaxation after the crack was also considered in this model. It should be 

mentioned that the pressure wave input for the above two models were both from the 

simple analytical scaling law, which generates significant errors in the pressure wave 

predictions. 

 To avoid this input error, Tollier et al. (1998) measured the rear free surface velocity 

using the velocity interferometer system for any reflector (VISAR) and estimated the 
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pressure loading based on their measurement. By applying the continuous kinetic model, 

they also investigated the spallation process for aluminum and copper films. Using a same 

approach, Bolis et al. (2007) studied the coating/substrate adhesion strength.  

 The direct laser irradiation configuration used by all of the above works has 

disadvantages compared with those using a confinement regime for the study of laser 

spallation process. In the case of LSP in a confinement regime, plasma expansion is 

suppressed by the confining medium (usually water or glass), which leads to the generation 

of pressure waves higher and longer than those in the direct regime under the same laser 

parameters (Berthe et al., 1997; Wu and Shin, 2005; Bolis et al., 2007). Therefore, it is 

desirable to investigate the laser spallation process under a confinement regime by predictive 

modeling. 

 

1.2.5 Thermal Effects of Laser-Induced Plasma - Etching 

 Carbon fiber-reinforced plastic (CFRP) is a composite material made of a polymer 

matrix reinforced with carbon fibers, which is widely used in aerospace, automotive, and civil 

industries due to their superior material properties and light weight (Hull and Clyne, 1996). 

Under excessive tensile force, however, shear failure can occur at the interface between the 

fibers and polymer matrix (Puck and Schurmann, 2002). As the application of composite 

materials becomes more extensive, the need for repair of damaged composite parts grows. 

 Conventional repair of the composite structures (Armstrong, 1997) is done by 

grinding the damaged part manually using a diamond angle grinder and then refilling the 

cavity with preimpregnated (“pre-preg”) plies. Finally the whole system must be cured with 

the vacuum bag technique. This mechanical grinding process is time-consuming and highly 
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depends on the expertise of the repair personnel. Furthermore, mechanical stresses could be 

introduced into the workpiece. Laser-based repair of composite materials was proposed 

recently (Fisher et al., 2010), where direct laser ablation was utilized to remove the damaged 

part to obtain a cavity for further refilling. The major disadvantage of the method proposed 

by Fisher et al. (2010) is that both the polymer matrix and the carbon fibers were completely 

removed by direct laser ablation under high laser fluence, which will significantly affect the 

material strength of the repaired patch since the fibers were broken. 

 One of the better alternatives to repair the damaged composite material is to etch the 

polymer matrix only and then refill the polymer to generate a new bond between the 

polymer and the carbon fibers. This method appears to be cost-effective but has never been 

reported in literature. Etching by laser induced water breakdown plasma, which is generated 

by the strong interaction between nanosecond laser and water (Horvat et al., 2010; Berthe et 

al., 1998; Saarela et al., 2010; Berthe et al., 1997; Kudryashov and Zvorykin, 2008), is 

therefore proposed in this work to remove the polymer matrix from a carbon fiber 

reinforced composite sample more effectively based on the state-of-the-art of the composite 

material repair.   

 By focusing an incident high power laser beam in water, extremely high peak power 

density can be generated at the focal spot. When the peak power density exceeds the 

ionization threshold of the water, the strong laser-water interaction will result in the 

generation of free electrons at the focal spot through multi-photon ionization. The cascade 

ionization process then becomes dominant for the fast growth of free electrons via inverse 

bremsstrahlung absorption. When the free electron density exceeds the critical value of 
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1020/cm3, optical breakdown of water occurs, leading to the formation of dense and optically 

opaque plasma at the focal spot (Berthe et al., 1999). 

 The etching (material removal) by the laser induced water breakdown plasma starts 

with laser-water interaction and then becomes a thermal-kinetic process, which can be 

explained by the plasma-matter interaction (Pallav et al., 2011). From the thermal point of 

view, heat energy is transmitted from the extremely hot plasma to the workpiece through 

conduction (if the plasma touches the workpiece surface) and/or radiation (if the plasma is 

away from the workpiece surface) over a relatively small area of the workpiece during the 

plasma-matter interaction. As a result, the local temperature of the workpiece will experience 

a sudden increase. When the temperature exceeds the boiling point, the high temperature 

region of the workpiece will be melted or even vaporized. From the kinetic point of view, 

the plasma also occupies the initial water region (see Figure 1.1 (b) for more details about the 

plasma position) and applies a large pressure on the workpiece surface, which holds back the 

molten material. As soon as the plasma collapses at the end of the laser pulse, the water 

flows back rapidly to fill the void. The sudden decrease in pressure due to the plasma 

collapse also results in an instantaneous expulsion of the molten and vaporized material 

from the workpiece surface, thus resulting in material etching (Pallav et al., 2011). Since the 

polymer matrix has a lower boiling temperature (in the order of several hundred Kelvins 

(Wolynski et al., 2011)) than the carbon fibers (in the order of several thousand Kelvins 

(Wolynski et al., 2011)), the polymer matrix will be vaporized first. 
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1.3 Research Objectives 

 In the review above, some important issues that remain unsolved have been 

identified for laser-matter interaction in air/water. The objective of this research work is to 

address these issues via numerical modeling and experiments: 

 1. Investigate the nanosecond laser ablation mechanism in air and water, specifically 

the enhancement of ablation rate in water and with phase explosion; 

 2. Study the melt ejection behavior during phase explosion through experiments and 

numerical modeling; 

 3. Explore the mechanical effects of confined plasma in LSP on various metal 

samples through predictive modeling and experimental studies, especially in the target 

surface integrity change and induced residual stresses in terms of laser parameters and 

overlapping ratio; 

 4. Develop a complete and general model for the confined plasma induced shock 

wave propagation and spallation during the laser shock peening process; 

 5. Investigate the thermal effects of a laser-induced water breakdown plasma for 

selective etching of the polymer from the composite material. 

 

1.4 Thesis Outline 

 Research background, literature review, and research objectives have been presented 

in this chapter.   

 Chapter 2 will describe in detail the nanosecond laser ablation of metal targets in air 

and water through a self-contained hydrodynamic model under different laser fluences 

involving no phase explosion and phase explosion. The ablation depths and profiles are 
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predicted and validated against the literature data and experiments. In case of nanosecond 

laser ablation of aluminum in water, deeper crater depths are found in all the conditions 

studied in this work, which may be attributed to the combination effects of laser ablation 

and shock compression.  

Nanosecond laser ablation of metal targets with phase explosion is studied in 

Chapter 3 through a multi-scale model and experimental verification. The melt ejection 

behavior during phase explosion is successfully predicted by combined molecular dynamics 

and smoothed particle hydrodynamics simulations and validated against the experiments. 

The commonly adopted 0.9 Tc (critical temperature) criterion for phase explosion boundary 

is also assessed with the prediction of the ablation depth for both aluminum and copper, and 

it is found that the 0.9 Tc criterion does not always work for all materials. 

 The mechanical effects of confined plasma are presented in Chapter 4, including the 

target surface integrity change and induced residual stresses in the LSP process and shock 

wave propagation and spallation in LSP. To gain a better understanding of the laser-coating 

interaction in the LSP process, a series of experiments, including single shot, single-track 

overlapping, and multi-track overlapping LSP, have been carried out on various metals with 

different coatings. A 3-D finite element model has also been developed to simulate the LSP 

process. Combining this with the previously developed confined plasma model, which has 

been verified by the experimental data from literature, a 3-D finite element model is used to 

predict the residual stresses induced in the substrate material as well as the indentation 

profile on the substrate surface. The model prediction of indentation profiles is compared 

with the experimental data. The residual stresses in the depth direction are also validated 

against the X-Ray diffraction (XRD) measurement data for 4140 steel and Ti-6Al-4V. The 
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effect of process parameters on the residual stress is also investigated both experimentally 

and theoretically.  

 The spallation induced by shock wave propagation in targets during the laser shock 

peening process is also investigated in Chapter 4. Physical aspects concerning laser-matter 

interaction, shock wave propagation, and spallation are considered. A continuous kinetic 

model for the spallation process is included in a one-dimensional finite difference 

hydrodynamic code using Lagrangian coordinates in order to calculate the laser-induced 

spallation phenomena. Shock wave propagation in solids is calculated and validated against 

experimental data. The spallation zone location is then calculated for various materials with 

different thickness of foils and various laser shock peening parameters.   

Chapter 5 introduces the thermal effects of water breakdown plasma. An etching 

process by water breakdown plasma is used in this work to etch the surface layer of a carbon 

fiber reinforced composite sample. It is found that the polymer layer can be effectively 

removed by the plasma while the carbon fiber remains almost intact. The dependence of the 

etching depth on the laser power density, laser focus position, and the number of shots are 

also investigated in this work.  

 The conclusions and proposals for future study are discussed in Chapter 6. 
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CHAPTER 2. NANOSECOND LASER ABLATION IN AIR AND WATER 

2.1 Introduction 

 As reviewed in Chapter 1, phase explosion (PE) can affect the resultant crater shape 

and the amount of material removed from the target during nanosecond laser ablation. 

However, the occurrence of phase explosion is usually neglected when dealing with laser 

ablation due to its complexity, which could lead to incorrect understanding of the laser 

ablation process, especially in the high fluence range. 

 In this chapter, the nanosecond laser ablation rate of metal targets is investigated 

from low fluence to high fluence in air and water. Especially, the enhancement of ablation 

rate in water is investigated with the consideration of phase explosion. For nanosecond 

pulses with irradiances of several GW/cm2, the plasma induced by laser ablation of metal 

targets can be described by the hydrodynamic (HD) equations for the whole physical domain, 

where the condensed phase contributes a mass to the plasma region mainly through 

hydrodynamic expansion. The laser-matter interaction and the plasma expansion can be 

treated as either one-dimensional (1D) (Wu and Shin, 2007a) or two-dimensional (2D) (Wu 

and Shin, 2007b) phenomenon depending on the laser beam diameter. Wu and Shin (2007b) 

demonstrated that the 1D assumption is valid only when the laser beam diameter is larger 

than 300 µm. Since the laser-beam diameter used in this work is around 100 µm, it is 

necessary to use the 2-D model to describe the interaction between the laser and target 

material. 



 24 

2.2 Experiments and Simulation Methods 

2.2.1 Experimental Setup 

The experimental setup used in this study is shown in Figure 2.1. An Nd-YAG laser 

(wavelength 1064 nm) is used to generate a laser beam, which passes through a half-wave 

plate, polarizer, three high reflecting mirrors and a focus lens, and finally focuses on the 

surface of workpiece. The workpiece is placed into a water tank. The movement of 

workpiece in X and Y direction is controlled by two linear motion stages. With this setup, 

the laser power density can be easily adjusted by fine-tuning the orientation of the half-wave 

plate. The laser beam diameter focused on the workpiece surface can also be changed by 

varying the distance between the focus lens and the surface of the workpiece. The beam 

profile used in this work is nearly top-flat spatially. For laser ablation in air, the target will be 

simply put on the linear motion stage without the water tank. 

 

 
Figure 2.1. Experimental setup of laser ablation in water. 
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2.2.2 Two-Dimensional Hydrodynamics Model 

The 2-D model set-up for the interaction of laser radiation with a target surface in a 

medium (air or water) is shown in Figure 2.2. At the beginning of calculation, the top half of 

the calculation domain is filled with the surrounding medium, while the aluminum target is 

located in the bottom half. Laser radiation comes from the top of the domain and 

propagates towards the aluminum target. For this system, the 2-D hydrodynamic (HD) 

equations can be expressed as (Wu and Shin, 2007b): 
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where 1ρ and 2ρ  are the densities of the metal and air (or water), respectively. ρ  is the total 

density defined as 1 2ρ ρ ρ= + . u and v are the velocities in r and z direction, respectively, P 

the pressure, E the volumetric internal energy, I the net flux in laser radiation in the z 

direction, qr and qz the heat flux of thermal conduction in r and z direction, respectively, and 

Qr and Qz the radiative heat flux in r and z direction, respectively.  

 The dynamic change of the whole system, including the water/air medium and target 

material, can be captured by this 2D HD model. The evolution of the target to evaporated 

material and to ionized material (plasma) can be calculated according to the laser energy 
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inputs (Wu et al., 2007c). A recoil pressure (plasma pressure) is generated as the by-product 

of laser ablation and can also be calculated from this 2D HD model (Wu and Shin, 2007b). 

 

Figure 2.2. Schematic diagram of the 2-D model setup. 
 

To solve the hydrodynamic equations, appropriate equations of state (EOS) must be 

employed. For the aluminum targets, the quotidian equation of state (QEOS) (Wu and Shin, 

2007b; More et al., 1988) is applied, which is an EOS model for the hydrodynamic 

simulation of high-pressure phenomena. For water, the EOS table developed by Ree (1976) 

is applied, which covers a very wide range of density (0.002 Kg/m3 ~ 4.0×105 Kg/m3) and 

temperature (290 K ~ 2.9×105 K). For air, the ideal gas EOS is adopted when the air is not 
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obtaining the electron number density through Saha equations (Wu et al., 2007c).  

The 2D HD equations are solved using a non-oscillatory central finite difference 
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mass transfer from the material into the surrounding medium through laser ablation. More 

details of the numerical method can be found in (Wu and Shin, 2007b; Wu et al., 2007c). It 

should be noted the code used in this work is mainly developed by Wu and Shin (2007b). 

Certain modifications have been made to extract the temperature information and therefore 

to predict the ablation depth under different laser conditions. 

2.3. Results and Discussion 

 To validate the capability of the 2D HD code in the prediction of ablation depth, 

several laser ablation cases were first calculated in the air without phase explosion. The laser 

fluence was then further increased to investigate the transition from evaporation to phase 

explosion in nanosecond laser ablation. At the end, the laser ablation of aluminum in water 

under high fluence was also investigated both experimentally and numerically. The target 

material used in this work is aluminum. The evaporation and critical temperatures of 

aluminum are 2793 K and 5410 K (Fishburn et al., 2000), respectively. The laser parameters 

used in the calculation in this work are listed in Table 2.1. It should be noted that the laser 

beam diameter is measured at the full width at half maximum (FWHM) location. 

Table 2.1. Laser parameters for laser ablation on aluminum. 

Case 
Number 

Ablation 
Medium 

FWHM 
Diameter 

(µm) 

Wavelength 
(nm) 

Pulse 
Duration (ns) 

Fluence 
(J/cm2) 

PE 
Threshold 

(J/cm2) 
1 

Air 
120 266 6.0 10~25 30.0[1] 

2 150 532 40.0 20~100 150.0[2] 
3 100 1064 10.0 1~5 7.5[3] 
4 

Air 

100 1064 10.0 1~20 7.5[3] 
5 100 1064 5.0~35.0 5~35 7.5[3] 
6 100 266~1064 10.0 5, 15 7.5[3] 
7 1000 1064 6.0 24 5.2[4] 
8 Water 1000 1064 6.0 10~50 5.2[4] 

Note: [1] Data taken from Gusarov and Smurov, 2003; [2] Data taken from Fishburn et al., 
2000; [3] Data taken from Fishburn et al., 20001; [4] Data taken from Porneala and Willis, 
2006. 
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2.3.1 Laser Ablation in Air without Phase Explosion  

 Evaporation temperature was used as the ablation criterion in this low fluence 

condition by assuming all the materials with temperature higher than evaporation 

temperature will be ablated. To compare with published data (Gusarov and Smurov, 2003; 

Fishburn et al., 2000; Gristoforetti et al., 2008), the calculation domain is chosen to be 500 

µm in depth and 500 µm in radius. The lower half of the calculation domain is filled with 

target metal, while the upper half is air. The laser beam irradiates the target surface in the 

center of the calculation domain. In all three cases (case 1-3 in Table 2.1), the laser fluences 

used were below the phase explosion threshold values. 

 The crater profile of laser ablation of aluminum in air is calculated by the 2D HD 

model. Figure 2.3 shows several typical crater profiles after single shot laser ablation. The 

comparison of predicted ablation depth with experimental data under different laser fluence 

is shown in Figure 2.4. Good agreements are obtained for all three cases, which indicate that 

the ablation criterion (evaporation temperature) works well for the low fluence range.  Only 

exception is case 2 with the longest laser pulse (40.0 ns), where the simulation results are 

much smaller than the experimental data in ablation depth. In this case, the experimental 

data were taken as the average ablation depth from a multiple-pulse laser ablation 

experiment, where the so called “incubation effects” (Ashkenasi et al., 1999) may have 

lowered the ablation threshold and therefore increased the average ablation depth. Also, the 

discrepancy between the experimental data and the simulation results is getting larger with 

the increase of the laser fluence, which implies that a different ablation mechanism might 

take place with higher laser intensity. 
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Figure 2.3. Crater profile after laser ablation of aluminum in air (laser pulse duration 10.0 ns, 

laser wavelength 1064 nm, beam diameter 100.0 µm, top-hat beam, single shot ablation). 

 
(a)  

Figure 2.4. Comparison of ablation depth under different laser fluence with different laser 
system (a) Case 1, top-hat beam, experimental data from Gusarov and Smurov (2003) (b) Case 

2, Gaussian beam, experimental data from Fishburn et al. (2000) (c) Case 3, top-hat beam, 
experimental data from Gristoforetti et al. (2008). 
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(b) 

 

 
(c) 
 

Figure 2.4. Continued. 
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For case 1 to 3 investigated here, the ablation depth shows a near linear dependence 

on the laser fluence in the low fluence range, where no phase explosion occurs. 

 

2.3.2 Laser Ablation in Air with Phase Explosion 

 The laser ablation of aluminum in air with higher fluence is calculated by the 2D HD 

model. In this case, the phase explosion will occur and the ablation criterion is defined as the 

90% of the critical temperature (0.9 Tc) (Gragossian et al., 2009). 

 The ablation depth of aluminum under different laser fluence is shown in Figure 2.5 

for Case 4. In this case, the laser fluence is more than 10 J/cm2, which is higher than the 

threshold for phase explosion (7.5 J/cm2) as listed in Table 2.1. The agreement between the 

model prediction and the data from Gragossian et al. (2009) is very good in the fluence range 

between 10 and 20 J/cm2, which is a strong validation of the 2D HD model in the high 

fluence range. To show the trend of the ablation depth with the increase of laser fluence, the 

ablation depth in the lower laser fluence range is also calculated and plotted in Figure 2.5. 

Clearly, there is a sharp increase of ablation rate around 10 J/cm2, which indicates that a 

transition from evaporation to phase explosion occurs above this threshold laser fluence. 



 32 

 

Figure 2.5. Comparison of ablation depths of aluminum under different laser fluence (Case 4: 
laser pulse duration 10.0 ns, wavelength 1064 nm, beam diameter 100.0 µm, Gaussian beam, 
single shot ablation, experimental data from Gristoforetti et al., 2008 and prediction at high 

fluence range from Gragossian et al., 2009). 
 

 The dependence of ablation depth on the laser pulse duration is then investigated. In 

case 5, the laser beam diameter is around 100 µm. The laser beam wavelength is 1064 nm 

and the laser pulse duration changes from 5.0 to 35.0 ns. The laser fluence is first fixed at 

15.0 J/cm2. The ablation depth under different laser pulse duration is shown in Figure 2.6. 

Almost same ablation depths are obtained for laser pulses with different duration, which 

indicates that the ablation depth is nearly independent of the laser pulse duration with fixed 

laser fluence. Similar findings (Laville et al., 2002; Colina et al., 2011) have been reported for 
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indicates that the ablation depth depends strongly on the laser fluence when other laser 

parameters (for example, laser wavelength, laser beam diameter, etc) are kept fixed.  

 

 
Figure 2.6. Ablation depth dependence on laser pulse duration (Case 5: laser wavelength 1064 

nm, beam diameter 100.0 µm, Gaussian beam, single shot ablation). 
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dominate, the ablation depth decreases from around 9.3 µm at 266 nm to around 6.8 µm at 

1064 nm monotonically. When the laser fluence is fixed at 5.0 J/cm2, where the evaporation 

will dominate, the ablation depth decreases from around 4.3 µm at 266 nm to around 3.7 µm 

at 1064 nm. However, the decrease in this case is not as steep as in the case with higher 

fluence due to the fact that the absorption coefficient is relatively close under different laser 

wavelength at the evaporation temperature (Ehrenreigh et al., 1963).  

To explain the ablation behavior of aluminum at high laser fluence shown in Figure 

2.7, the absorption coefficient of aluminum under different wavelength near the critical 

point is calculated with Drude model (Wu and Shin, 2006a). At critical state, the density of 

aluminum is around 300 Kg/m3 (Wu and Shin, 2006a). The absorption coefficients of 

aluminum near the critical state are shown in Figure 2.8. Clearly, the absorption coefficient is 

the highest at 266 nm among the four wavelengths at all temperatures investigated here. 

Also, the absorption coefficient decreases with the increase of laser wavelength. This is a 

clear indication that the largest ablation depth at 266 nm is mainly because the absorption 

coefficient is the largest at this wavelength. Due to the better laser absorption in the UV 

region, more laser energy is absorbed by the target material and more material is ablated at 

266 nm. 
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Figure 2.7. Dependence of ablation depth on the laser wavelength (Case 6: laser pulse duration 

10 ns, beam diameter 100.0 µm, laser fluence fixed at 15 J/cm2, Gaussian beam, single shot 
ablation). 

 

 
Figure 2.8. Absorption coefficient of aluminum under different laser wavelength at three 

different temperatures calculated from Drude model (ρ = 300 Kg/m3). 
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 It is well known that the absorption of aluminum is enhanced at 800 nm and the 

laser beam can couple with the material more effectively at room temperature. The enhanced 

absorption is due to an interband contribution to the dielectric function of the material 

around 800 nm (Ehrenreigh et al., 1963). However, recent ab-initio calculations (Benedict et 

al., 2005; Ogitsu et al., 2009) revealed that the peak value of absorption around 800 nm 

disappeared if the temperature exceeds the melting point (950 K). As a result, the absorption 

coefficient of aluminum should decrease monotonically with the laser wavelength at the 

evaporation temperature (2793 K) and critical temperature (5410 K) as seen in Figure 2.8.  

 Laser ablation experiments with higher laser fluence were conducted to obtain the 

laser ablation crater profile in air. The target material is aluminum, which was carefully 

polished before the experiments. The laser beam wavelength is 1064 nm and the beam 

diameter is around 1.0 mm. The comparison of the predicted and experimentally measured 

crater profiles under laser fluence of 24.0 J/cm2 is shown in Figure 2.9 for case 7. The 

experimental crater profile is measured with an optical 3D surface profilometer (KLA-

Tencor, MicroXAM-100), which has a good resolution in depth measurement (in nm level). 

In the laser ablation experiment, the energy loss due to the optics absorption is around 3%, 

which is taken into account in the code. The only other possible source for measurement 

uncertainty is the laser beam diameter, which is measured by a laser beam profiler (Spiricon 

LW130). The measurement error for laser beam diameter is estimated to be less than 5%. It 

can be seen from Figure 2.9 that the simulated crater profile is relatively close to the 

experimentally obtained one according to the above analysis of measurement uncertainties. 
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Figure 2.9. Comparison of crater profile from simulation and experiment after a single laser 
shot in air (Case 7: laser pulse duration 6 ns, wavelength 1064 nm, beam diameter 1.0 mm, 

laser fluence 24.0 J/cm2, top-hat beam profile). 
 

2.3.3 Laser Ablation of Aluminum in Water  

 A very limited amount of data has been reported in the literature on the laser 

ablation of aluminum in water in the high laser fluence range. Therefore, some experiments 
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J/cm2. It can be seen that very smooth crater was generated after laser ablation. The 
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 The laser ablation depth was calculated by the 2D hydrodynamics code. The 

contribution from shock compression cannot be neglected due to the long pulse and the 

high magnitude of the pressure wave (several GPa) generated during laser ablation in water. 

Therefore, the indentation depth generated by shock compression is also calculated using a 

previously-developed FEM model (Cao et al., 2010). The indentation depth increases from 

around 2.5 µm in the case of 12.0 J/cm2 to around 6.0 µm in the case of 42.0 J/cm2, as 

shown in Figure 2.11. 
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Figure 2.10. Crater profile after a single shot laser ablation in water (laser pulse duration 6 ns, 
wavelength 1064 nm, beam diameter 1.0 mm, laser fluence 24.0 J/cm2, top-hat beam profile). 
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Figure 2.11. Indentation depth from shock compression (laser pulse duration 6 ns, wavelength 

1064 nm, beam diameter 1.0 mm, top-hat beam profile, single shot laser ablation). 
  

 
Figure 2.12. Crater depth under different laser fluence in water with contribution from laser 
ablation and shock compression (Case 8: laser pulse duration 6.0 ns, wavelength 1064 nm, 

beam diameter1.0 mm, top-hat beam, single shot laser ablation). 
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Figure 2.13. Crater profile and indentation, ablation profile after a single laser shot in water 
(laser pulse duration 6 ns, wavelength 1064 nm, beam diameter 1.0 mm, laser fluence 24.0 

J/cm2, top-hat beam profile). 
  

 The effect of shock compression in air is also investigated. Figure 2.14 shows the 

plasma pressure generated in the laser ablation in air and water. The maximum magnitude of 

the shock wave pressure in air is around 1.6 MPa as shown in Figure 2.14, which is far less 

than the plasma pressure generated in water (around 3.5 GPa) and thus will generate almost 

no indentation on the target surface. Therefore, the shock compression effect can be 

neglected in the case of laser ablation in air. 
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duration, while it decreases with the increase of laser wavelength. Deeper crater depths in 

water found in all the conditions studied in this work are due to the high-magnitude shock 

compression. 

 

 
Figure 2.14. Plasma pressure generated in the laser ablation in air and water (laser pulse 

duration 6 ns, wavelength 1064 nm, beam diameter 1.0 mm, laser fluence 42.0 J/cm2, top-hat 
beam profile, single shot laser ablation). 
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CHAPTER 3. MULTI-SCALE MODELING OF MELT EJECTION IN PHASE 
EXPLOSION 

3.1 Introduction 

 As reviewed in Chapter 1, it still remains a difficult challenge to capture the ejected 

droplets during the material removal by conventional modeling methods (for example, HD 

model). To correctly model the laser ablation process with high laser intensity, particle 

formation inside the melt pool is simulated by a molecular dynamics model, and the particle 

movement and the further ejection are described by a smoothed particle hydrodynamic 

(SPH) model, while all the other parts of the target are modeled by hydrodynamics (HD) 

equations. Such a coupled HD-MD-SPH model is proposed in this work. 

 

3.2 Numerical Model 

A multi-scale model has been developed in this work to tackle the challenges 

presented earlier. In the initial stage of the laser ablation process, no particle is formed. 

Therefore the whole domain is described by the HD model. Then in the later stage, some 

particles will be generated inside the melt pool and the expanding vapor due to either 

evaporation, condensation (smaller particles condense onto the larger particles), collision 

between particles, or hydrodynamic sputtering (large particles). At this point, two calculation 

domains are formed. One is the particle domain (SPH domain) and the other is the HD 

domain. To obtain the initial particle distribution for the SPH calculation, MD simulation is 
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employed from the beginning of the laser-matter interaction. The HD calculation is based on 

the model developed earlier in the authors’ group (Wu and Shin, 2007b), while the MD/SPH 

calculation is conducted with the LAMMPS package (lammps.sandia.gov; Ganzenmuller et 

al., 2011). 

Figure 3.1 shows the relative position of the MD domain in the multi-scale model, 

which is right under the laser beam and taken directly from the HD domain. The left and 

right sides of the MD domain are set with periodic boundary conditions. Figure 3.2 shows 

the calculation flow chart for the coupled model. Clearly, the pressure, temperature, and 

velocity of the interface cells in HD domain need to be passed to SPH domain. In Figure 

3.2, the heat flux (q″) at the interface is calculated based on the temperature gradient at the 

boundary in MD/SPH domain. The force at the interface is calculated based on the pressure 

gradient at the boundary in HD domain. The mass transfer rate m′ is calculated from the 

mass conservation equation at the interface region. 

 

 
Figure 3.1. Calculation domain for multi-scale model. 
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Figure 3.2. Calculation flow chart for multi-scale model. 

 

 In the nanosecond laser ablation process, the laser beam diameter is usually in the 

range of  100 µm to 10 mm, which is much larger than the normal MD simulation size. To 

consider a larger non-uniform beam used in the experiment as shown in Figure 3.1, multiple 

representative MD cells are taken from the target surface based on the laser intensity 

distribution to obtain a more accurate initial particle distribution from MD calculation, as 

seen in Figure 3.3. Based on the given beam profile, multiple calculations with different laser 

fluences are conducted to obtain the particle distribution. 

 

Figure 3.3. Laser beam distribution and MD cells. 
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In the MD calculation, the atom number is about 12.5 million in the initial 

computation domain of 20 nm × 20 nm × 32 µm. The dimension of the domain is chosen 

with the consideration of the ablation depth of metal targets (around 5.0 µm, Cao et al., 

2013) and the plume expansion. The interaction between the atoms of the system was 

governed by the modified embedded atom method (MEAM) potential (Baskes, 1992), which 

has been widely used in the MD simulation for face centered cubic (fcc) metal targets, such 

as aluminum, copper, silver, etc. In the MEAM formulation, the total energy E of a system 

of atoms is given by (Baskes, 1992) 

 

𝐸 =  ∑ �𝐹𝑖(𝜌𝑖) + 1
2
∑ ∅𝑖𝑗(𝑟𝑖𝑗)𝑖≠𝑗 �𝑖     (2) 

 

where F is the embedding energy which is a function of the atom electron density ρ, and ϕ is 

a pair potential interaction. The pair interaction is summed over all neighbors j of atom i 

within the cutoff distance. MEAM potential is applied in this calculation and the parameters 

for both aluminum and copper are taken from Baskes’ work (1992). 

 The instability of the liquid between the binodal and spinodal line is considered by 

addressing the density/thermal fluctuations for the atoms in the surface region (Linhart et 

al., 2005). If the liquid is in the superheated state (between the binodal and spinodal) and 

close to the binodal line, the density fluctuation could push the liquid phase to the spinodal 

line or pull back to the binodal line. With the increase of superheating, the free energy 

barrier separating the liquid and vapor states becomes lower. Under this condition, the 

thermal fluctuation could easily cross the barrier and facilitate the phase separation. This will 

be further analyzed in the thermodynamic trajectory later in the results section. 
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Figure 3.4 shows the atom distribution at different time for the laser fluence of 12 

J/cm2. The initial solid target is located at the bottom half (z <= 15 µm) of the calculation 

domain. With the laser energy coming from the top, the surface region is melted and the 

atoms begin to move upwards. Also some large clusters of atoms are formed in the region of 

8 to 16 µm. Figure 3.5 shows the atom distribution prediction at t = 60 ns from MD 

simulation under different laser fluences. Clearly with different laser energy input, different 

numbers of clusters are formed with different size. 

 

  
Figure 3.4. Atom distribution at different time (laser fluence 12 J/cm2, wavelength 1064 nm, 

pulse duration 6 ns). 
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Figure 3.5. Atom distribution at t = 60 ns from MD simulation under different laser fluences. 
 

 The initial atom distributions obtained from MD simulation can be combined 

according to the beam profile to get an atom distribution in a larger domain size using the 

periodic boundary assumption. By combining the MD simulation results, one can obtain the 

initial SPH particles distribution, as shown in Figure 3.6. In this step, the initial SPH particles 

are assumed to be in the spherical shape. The location of the SPH particles in each large cell 

is determined by the initial atom positions and the mass distribution in the large cell. The 

temperature and velocity information of all the atoms can also be transferred to the 

corresponding SPH particles using the same method. 
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Figure 3.6. Mapping of particles predicted by MD to SPH particles. 
 

 The SPH calculation then starts with the input from MD model. Figure 3.7 shows the 

initial configuration of SPH calculation. The close-up view shows the particle distribution 

from the MD calculation, where particles are formed with different sizes. The bottom of the 

whole calculation domain is set to be stationary in the SPH calculation. With the above 

procedure, the SPH model should be able to calculate the temperature evolution inside the 

molten pool, the large particle movement, and eventually the melt ejection. 
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Figure 3.7. Initial configuration of SPH calculation. 
 
 

3.3 Experimental Setup and Procedures 

 A probe beam-pump beam technique is used in this work to observe the phase 

explosion. Figure 3.8 shows the experimental setup. The pump beam is produced by the Nd-

YAG nanosecond laser (Continuum Surelite) operating at 1064 nm with a pulse duration of 

6 ns. The Nd-YVO4 picosecond laser (Lumera Rapid) is used to provide the green probe 

beam (532 nm, a pulse duration of 10 ps). Two photo detectors (with photodiode inside, 

ThorLabs, DET200) are used in the experimental setup to synchronize the probe beam (ps 

laser) and pump beam (ns laser). To control the exposure time accurately and obtain the 

images at different time, the CCD camera (Imaging Source, DFK 42BUC03) needs to be 

externally triggered and synchronized to work with the probe beam/pump beam together. 

  

 

Boundary

Particle Distribution from MD
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Figure 3.8. Schematic drawing of the experimental setup. 
 

The probe beam laser, the pump beam laser, and the CCD camera are triggered 

externally by the delay pulse generator (BNC 555). The time sequence of the triggering 

signals is shown in Figure 3.9. For the ps laser, the 1120 ns is the default delay time before a 

laser pulse could be generated when a trigger signal is sent to the laser. Similarly, 137 µs and 

240.1 µs are the default delay time for the CCD camera and the ns laser, respectively. To 

precisely determine when the CCD images are taken, the ps laser and ns are synchronized 

first and then the CCD camera is added later. It should be noted that the delay time between 

the trigger signals are carefully controlled to make sure that the probe ps beam illuminates 

the ns laser ablation site during the CCD exposure period. To eliminate the effect of 

background light, the experiments are conducted in a dark environment. By changing the 

Nd-YAG ns Laser
1064 nm, 6 ns

Nd-YVO4 ps Laser
532 nm, 10 ps

Oscilloscope

Delay Pulse
Generator

Target

Photo Detector

Photo Detector

Wave
Plate Polarizer

Beam
Splitter

Mirror Mirror

Focus
Lens

Objective
Lens

Bandpass
Filter

CCD
Camera

Mirror

Pump Beam, 1064 nm Probe Beam, 532 nm Trigger Signal



 51 

delay time between the nanosecond laser pulse and the picosecond laser, one can capture the 

images at different time instants after the nanosecond laser pulse irradiates the target surface. 

 

 

Figure 3.9. Time sequence of triggering signals. 
 
 
3.4 Results and Discussion 

3.4.1 Laser Ablation of Aluminum 

 To compare the experiment results with the simulation data, the MD/SPH 

simulation of the laser ablation process was conducted under the same condition. The melt 

ejection could be calculated using the SPH model with the initial particle distribution from 

MD calculation. 
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Case A: Laser Fluence at 12 J/cm2 

 The laser fluence in this case is right above the phase explosion threshold according 

to the previous HD calculation (Cao, Zhao, and Shin, 2013). Figure 3.10 shows the 

calculation results at different time instants for this case. In all the CCD images and 

prediction results shown in this work, time 0 is defined as the instant when the ns laser beam 

irradiates the target surface. Some large particles can be observed to being ejected from the 

melt pool at 72 ns, as seen in Figure 3.10 (b). Therefore, the starting time of melt ejection 

(phase explosion) is around 72 ns after the ns laser beam irradiates the target surface. The 

experimental results from Porneala and Willis (2006) indicated a starting time between 52 

and 114 ns under the similar condition.  

   
(a)      (b)  

     
(c)      (d)  

Figure 3.10. Modeling results of melt ejection after laser ablation (a) 66 ns (b) 72 ns (c) 78 ns 
(d) 84 ns (laser fluence 12 J/cm2, pulse duration 6 ns, 1064 nm, beam diameter 200 

µm). 
 
 

 Figure 3.11 shows the experimental observation under the same condition. In the CCD 

images shown, the bottom boundary is the target surface. The center region is the ns laser 
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ablation site. The laser beam irradiates the target surface from the top of the image. At 

around t = 70 ns, some particles (black dots) can be observed in the bottom-center region. 

With the increase of time, more particles are ejected from the melt pool. The particles move 

vertically first and then expands in the radial direction, which is very similar to the model 

prediction shown in Figure 3.10. One of the possible reasons behind this particle movement 

behavior is that the pressure gradient inside the melt pool may have a radial component. In 

the later stage of the phase explosion, this component becomes significant and therefore 

affects the direction of the particle ejection. Further analysis about the particle size 

distribution at different time will be shown later. 

 
 

   
(a)    (b)    (c)  

    
(d)    (e)    (f)  

Figure 3.11. Experimental observation of melt ejection under laser fluence 12 J/cm2 (a) 60 ns 
(b) 65 ns (c) 70 ns (d) 75 ns (e) 80 ns (f) 85 ns (laser beam coming from the top of the 

image, pulse duration 6 ns, 1064 nm, beam diameter 200 µm). 
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Case B: Laser Fluence at 24 J/cm2 

 In this test case, the laser fluence is 24 J/cm2. Phase explosion will occur in this case. 

Figure 3.12 shows the calculation results of the melt ejection from t = 66 ns to t = 84 ns. 

Figure 3.13 shows the experimental observation under the same condition. 

 Similar to the previous case, the particle ejection starts at around t = 70 ns in both the 

model prediction and experimental observation. Due to the higher laser fluence than that in 

Case A, stronger ejection can be observed at the later stage in this case. Both the model 

prediction and the experimental observation indicate that the particles move up first and 

then expand to the radial direction later. Also, the model prediction shows that more 

particles are ejected from the melt pool than that in the experimental observation, especially 

in the later stage. This observation will be further analyzed in the next section. 

 

 
(a)                 (b)  

 
(c)      (d)  

Figure 3.12. Modeling results of melt ejection after laser ablation (a) 66 ns (b) 72 ns (c) 78 ns 
(d) 84 ns (laser fluence 24 J/cm2, pulse duration 6 ns, 1064 nm, beam diameter 200 

µm). 
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(a)    (b)    (c)  

    
(d)    (e)    (f)  

Figure 3.13. Experimental observation of melt ejection under laser fluence 24 J/cm2 (a) 60 ns 
(b) 65 ns (c) 70 ns (d) 75 ns (e) 80 ns (f) 85 ns (laser beam coming from the top of the 

image,pulse duration 6 ns, 1064 nm, beam diameter 200 µm). 
 

Case C: Laser Fluence at 36 J/cm2 

 Figure 3.14 shows the melt ejection predicted by the SPH calculation under laser 

fluence of 36 J/cm2. Figure 3.15 shows the experimental observation under the same 

condition. With the highest laser fluence, much stronger particle ejection can be observed in 

this case. The average particle size is also larger than the previous two cases. The ejection 

starting time is a little earlier this case, which is around t = 65 ns. The ejected particles move 

up first in the vertical direction and then expand to the radial direction at the later stage. 

 

 

0.3 mm 
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(a)     (b)  

     
(c)     (d)  

Figure 3.14. Modeling results of melt ejection after laser ablation (a) 66 ns (b) 72 ns (c) 78 ns 
(d) 84 ns (laser fluence 36 J/cm2, pulse duration 6 ns, 1064 nm, beam diameter 200 

µm). 
 

   
(a)    (b)    (c)  

   
(d)    (e)    (f)  

Figure 3.15. Melt ejection under laser fluence 36 J/cm2 (a) 60 ns (b) 65 ns (c) 70 ns (d) 75 ns (e) 
80 ns (f) 85 ns (laser beam coming from the top of the image,pulse duration 6 ns, 1064 

nm, beam diameter 200 µm). 
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 In all three cases, the particle movement can be clearly seen in the figures, expanding 

vertically first and then radially in the later stage in both simulation and experimental 

observation. With the increase of the laser fluence, more particles could be observed with 

the CCD camera and also in the simulation. The average particle size tends to be larger in 

the case of higher laser fluence as well, due to the stronger laser-matter interaction at the 

high fluence. 

 To quantitatively compare the simulation results with the experimental observation, the 

particle size distributions are extracted from both figures under the laser fluence of 36 J/cm2. 

Figure 3.16 shows the comparison of particle size distributions at different time in a three-

dimensional waterfall plot. It can be seen in Figure 3.16 that both the distributions show a 

bi-modal shape at different time, especially at the later stage. Also with the increase of the 

time, the particle size tends to increase in both plots. Overall the two distributions are very 

close. 

 
(a) 

Figure 3.16. Particle distribution from (a) simulation (b) experiment  and (c) mass removal at 
different time (laser fluence 36 J/cm2, pulse duration 6 ns, 1064 nm, beam diameter 200 µm). 
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(b) 

 
(c) 

Figure 3.16. Continued. 
 

 The mass removal at different time instants is also plotted in Figure 3.16 for both 

experimental data and the model prediction, which clearly indicates that the mass removal 

rate increases rapidly in the later stage due to the presence of the larger particle.  
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 To further understand the mechanism of the phase explosion, the temperature 

distribution inside the melt pool at different time is carefully investigated. Figure 3.17 shows 

the initial temperature and subsequent temperature distributions inside the aluminum target 

at different time instants. The high temperature region inside the melt pool generally 

propagates into the deeper region with time. The temperature information at 65 ns indicates 

that the temperature at the bottom of the crater (around -4 µm) is around 5500 K, which is 

close to the 0.9 Tc value for aluminum (around 5600 K). The prediction of the ablation 

depth from the HD model using the 0.9 Tc criterion is also around 4 µm. This confirms that 

the 0.9 Tc criterion is reasonable for predicting ablation depth with the occurrence of phase 

explosion in the HD calculation for aluminum. 

    Since the critical temperature is very important in the current work, its value is further 

analyzed with MD simulation following the method developed in Cheng and Xu’s work 

(2007). By calculating multiple isotherms near the critical point,  as seen in Figure 3.18, the 

critical temperature is predicted to be around 5950 ± 20 K, which is close to the value (6200 

K) used here for aluminum.  The literature reported values for the critical temperature of 

aluminum are in the range of 5400-9500 K (Morel et al., 2009). However, recent estimates of 

the value are in the low end of the range, for example, 6700 ± 800 K (Morel et al., 2009), 

6300 K (Bhatt et al., 2006). Therefore the value used in this work (6200 K) is in the 

reasonable range. 
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(a) 

 
(b) 

  
(c) 

Figure 3.17. Temperature distribution inside the aluminum target at different time (a) Initial 
temperature distibution at t = 35 ns for SPH calcualtion (b) t = 50 ns (c) t = 65 ns 

(laser fluence 36 J/cm2, pulse duration 6 ns, 1064 nm, beam diameter 200 µm). 
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Figure 3.18. Calculated isotherms from MD simulation for aluminum near the critical point. 

 
 
 The thermodynamic trajectories of the different aluminum particles at different regions 

are further analyzed and shown in Figure 3.19. In this figure, the spinodal and binodal curves 

are marked as well as the super-heated liquid (SHL) region. The numbers marked along the 

thermodynamic trajectory are the time instants (in ns) in the calculation. Clearly, the 

aluminum particles at 4.0 microns below the original surface will enter the unstable zone and 

go through the spinodal decomposition process (Sokolowski-Tinten et al., 1998). As a result, 

these particles will be ejected from the melt pool, as observed in both the model prediction 

and experimental observation in Case C. The particles in the deeper zone will solidify back 

to the bulk solid state as indicated by the thermodynamic trajectories in Figure 3.19. 
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Figure 3.19. Thermodynamic trajectory of the aluminum inside the melt pool (laser fluence 36 

J/cm2, pulse duration 6 ns, 1064 nm, beam diameter 200 µm). 
 

3.4.2 Laser Ablation of Copper  

 To evaluate the validity of 0.9 Tc criterion during phase explosion, laser ablation of 

copper is also investigated numerically with the MD/SPH model under different laser 

fluences and experimentally with the experimental setup shown in Figure 3.8. According to 

Tavassoli and Khaaji (2008) and Liu et al. (2004), phase explosion should occur when the 

laser fluence is greater than 30 J/cm2 for copper for a nanosecond laser operating at 1064 

nm and a pulse duration of 6 ns. In this experiment, the laser fluences are chosen to be 36 

J/cm2 or higher to make sure that the phase explosion could be observed by the CCD 

camera. Figure 3.20 and Figure 3.21 show the experimental observation at different delay 

time under laser fluence of 36 and 48 J/cm2, respectively. 
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(a)    (b)    (c)  

   
(d)    (e)    (f)  

Figure 3.20. Experimental observation of melt ejection under laser fluence 36 J/cm2 (a) t = 50 
ns (b) t = 55 ns (c) t = 60 ns (d) t = 65 ns (e) t = 70 ns (f) t = 75 ns (copper target, 
laser beam coming from the top of the image, pulse duration 6 ns, 1064 nm, beam 

diameter 100 µm). 
 

   
(a)    (b)    (c)  

   
(d)    (e)    (f)  

Figure 3.21. Experimental observation of melt ejection under laser fluence 48 J/cm2 (a) t = 50 
ns (b) t = 55 ns (c) t = 60 ns (d) t = 65 ns (e) t = 70 ns (f) t = 75 ns (copper target, 
laser beam coming from the top of the image, pulse duration 6 ns, 1064 nm, beam 

diameter 100 µm). 
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 Similar to the case of aluminum, the melt ejection starts at around 50 to 55 ns under 

both laser fluences. The ejected particles move upwards first and then expand to the radial 

direction. With the increase of time, some larger particles can be observed in the CCD 

images, mostly residing in the region close to the target surface. Also stronger melt ejection 

can be observed in the higher laser flucnece case, as seen in Figure 3.21. The major 

difference between the aluminum and copper case is that a smaller beam diameter (100 µm 

vs. 200 µm) was used in the copper case. According to the experimental observation, the 

average particle size in the copper case is a bit smaller than that in the aluminum case. Based 

on the kinetic theory (Lu, 2003; Yoo et al., 2000; Lu et al., 2002), phase explosion occurs 

when the vapor bubbles generated in the superheated liquid grow to a critical radius and 

expand spontaneously, which depends on the surface tension, critical temperature, pressure 

of superheated liquid, etc. The critical radius is estimated to be 0.5 µm for copper and 0.7 

µm for aluminum. If one can assume that the ejected particle size is closely related to the 

critical radius of vapor bubble, this might explain the smaller particle observation seen in 

Figure 3.20. Considering a relatively larger amount of ejected particles in the same volume, 

one can expect a higher ablation depth in the copper case. The ablation profile is then 

measured with an optical 3D surface profilometer (KLA-Tencor, MicroXAM-100), as seen 

in Figure 3.22. Based on the ablation profile, the ablation depth is estimated to be around 5.0 

µm under laser fluence of 36 J/cm2, which is indeed higher than that for aluminum (4.0 µm) 

under the same laser fluence. 
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Figure 3.22. Ablation profile for copper under laser fluence 36 J/cm2 (laser beam pulse 

duration 6 ns, 1064 nm, beam diameter 100 µm). 
 

 With the MD/SPH model, the liquid ejection from the melt pool could be predicted, as 

shown in Figure 3.23. It can be clearly seen that the melt ejection starts at around 50 ns and 

reaches its peak at around 80 ns, which agrees well with the experimental observation shown 

in Figure 3.20. The temperature evolution inside the melt pool and the ejected particle is also 

shown in Figure 3.23. The ablation depth is predicted to be around 4.6 µm with this 

MD/SPH model, which again agrees well with the experimental data. 

 More experimental observations and MD/SPH predictions are listed in the Appendix 

section. 
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Figure 3.23. SPH calculation results showing the melt ejection for copper (laser fluence 36 

J/cm2, wavelength 1064 nm, pulse duration 6 ns, beam diameter 100 µm). 
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 The critical point temperature for copper reported in literature is around 8280 K 

(Tavassoli and Khalaji, 2008; efunda.com), 8000 K (Autrique et al., 2012), and 7800 K 

(Sugioka and Cheng, 2013), 7625 K (Young and Alder, 1971), 8900 ± 900 K (Cahill and 

Kirshenbaum, 1962), 5330 K (Martynyuk, 1977a), 5450 K (Martynyuk, 1977b), 5400 ~ 6000 

K (Kelly and Miotello, 1996; Martynyuk, 1983), 5890 K (Martynyuk, 1992), 7696 K (Hess, 

1998), and 8650 K (Singh et al., 2006). It should be noted that all the reported values lower 

than 6000 K are estimated by Martynyuk (1977 to 1992), which are based on the 

extrapolation of measurement data for discharging a copper wire until electrical explosion. 

The measurements were made at the initial point of melting and the initial point of electrical 

explosion. And then the values above normal boiling point were extrapolated. As 

acknowledged by Martynyuk (1992), the error of this estimation could be as high as 15%. All 

the other reported values are in the range of 7600 to 8900 K. Due to this large discrepancy 

between the two groups of values, it is imperative to determine which group of the value 

should be used for this work. Similar to the aluminum case, the critical temperature for 

copper is also predicted by the MD simulation to be 7900 ± 30 K. Based on this calculation, 

the critical temperature of copper should be in the group with higher values. In this work, Tc 

value is taken to be 8000 K since it is in the middle of the reported values and also close to 

the predicted value by MD calculation. If 0.9 Tc is used as the criterion for the ablation depth 

prediction for this phase explosion process, the ablation depth should be around 3.0 µm 

based on the calculation from the HD model, which is almost 40% lower than the 

experimental measurement. A further investigation indicates that the predicted ablation 

depth would increase to around 5.0 µm if 0.8 Tc is used instead as the criterion. 
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 More cases with different laser flucences are also tested. The melt ejection is calculated 

with MD/SPH model and compared with the HD model prediction and experimental data, 

as seen in Figure 3.24. In all the cases shown in Figure 3.24, the MD/SPH prediction show 

better agreement with the experimental data than the HD prediction based on 0.9 Tc as the 

criterion for the ablation depth prediction. Also if 0.8 Tc is used as the ablation depth 

prediction criterion, the HD prediction is closer to the experimental data. If 0.75 Tc is used 

as the ablation depth prediction criterion, the HD prediction is overestimating the ablation 

depth. Another comparison to the literature data (Fishburn et al., 2000) is shown in Figure 

3.25. Similarly, the HD prediction based on 0.8 Tc criterion shows better agreement with the 

experimental data and MD/SPH prediction than the 0.9 Tc does. 

  

 
Figure 3.24. Comparison of ablation depth under different laser fluences for copper. 

Simulation data are from the HD model (laser wavelength 1064 nm, pulse duration 6 
ns, beam diameter 100.0 µm, single shot laser ablation). 
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Figure 3.25 Comparison of ablation depth under different laser fluences for copper. 

Experimental data are from Fishburn et al. (2000), simulation data are from the HD 
model (40.0 ns, 532 nm, beam diameter 150.0 µm, Gaussian beam, single shot laser 

ablation). 
 

Therefore, these comparisons further confirm that the 0.9 Tc criterion doesn’t always 

work for all materials. At least for copper, 0.75 to 0.8 Tc might be more appropriate to be 

used as the ablation depth prediction criterion for the HD model in the cases considered in 

this work. On the other hand, the MD/SPH model could predict the ablation depth and the 

associated ablation behavior well. 

  Due to the uncertainty of the critical temperature of copper, it is better to investigate 

the effect of the picked value. If Martynyuk’s estimated value (around 5800 K) is used in this 

work, 0.9 Tc would yield a temperature of 5220 K and the ablation depth prediction would 

be over 10 µm, which would significantly overestimate the copper ablation even under the 

highest laser fluence shown in Fig. 25. As a result, 0.9 Tc criterion would not work in all the 
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the ablation depth would be significantly underestimated. This simple analysis indicates that 

both Martnyuk’s estimation and the higher values reported by Cahill and Kirshenbaum, 

(1962) and Singh et al. (2006) are not applicable for the laser ablation of copper when phase 

explosion occurs. Based on the value used in this work (8000 K), 0.9 Tc yields a temperature 

of 6300 K. To make the 0.9 Tc criterion work in this temperature,   one would need a critical 

temperature of 7100 K for copper. To the best knowledge of the author, there is no critical 

value reported in this range in the literature. This again verifies that the value used in this 

work is reasonable for the analysis of phase explosion for copper. 

 
 
3.5 Summary 

Nanosecond laser ablation of aluminum and copper with phase explosion was 

investigated through a multi-scale model and experimental verification. The model 

prediction of the melt ejection behavior agrees well with the experimental observation in 

terms of the phase explosion starting time, particle expansion characteristics, and ablation 

depth. The commonly used ablation depth prediction criterion of 0.9 Tc is found to be not 

correct for copper when phase explosion is involved, while it is reasonable for aluminum. In 

the cases considered in this work, 0.75 ~ 0.8 Tc is found to be a better criterion for copper.  

The model developed in this work has been shown to provide better capability of predicting 

the ablation depth and the associated ablation behavior with phase explosion. 



 71 

CHAPTER 4. MECHANICAL EFFECT OF CONFINED PLASMA 

 The mechanical effect of  confined plasma is investigated in this chapter, including 

the target surface integrity change and induced residual stresses in the Laser shock peening 

(LSP) process and shock wave propagation and spallation behavior in LSP. 

 

4.1 Single Shot and Overlapping Laser Shock Peening 

4.1.1 Introduction 

 As reviewed in Chapter 1, despite the extensive experimental and theoretical work on 

laser shock peening (LSP), rather little work has been reported on the change of target 

surface integrity and residual stresses by single shot and overlapping LSP while taking into 

account of the accurate laser-induced plasma pressure with strict physics-based theories. The 

objective of this work is to explore LSP potential on various metal samples through 

predictive modeling and experimental studies, especially in the target surface integrity change 

and induced residual stresses in terms of laser parameters and overlapping ratio.   

 

4.1.2. Experimental Setup and Procedure 

The same experimental setup shown in Figure 2.1 is used in this study. A frequency-

doubled Nd-YAG laser (wavelength 532 nm) is used to generate a laser beam, which passes 

through a half-wave plate, polarizer, three high reflecting mirrors and a focus lens, and



 72 

finally focuses on the surface of workpiece. The workpiece is placed into a water tank to 

produce a water-confinement regime. The movement of workpiece in X and Y direction is 

controlled by two linear motion stages. With this setup, the laser power density can be easily 

adjusted by fine-tuning the orientation of the half-wave plate. The laser beam diameter 

focused on the workpiece surface can also be changed by varying the distance between the 

focus lens and the surface of the workpiece. The beam profile used in this work is shown in 

Figure 4.1, which is nearly top-flat spatially.  

 
 

  
(a)                                               (b)  

Figure 4.1. Measured beam profile (a) 2-D (b) 3-D. 
 

To fully explore the LSP potential on different substrate materials, different sets of 

LSP conditions were designed for the investigation of target surface integrity change and 

induced residual stresses in LSP, as listed in Table 4.1. The substrate materials used in this 

work include 4140 steel, 12 Cr stainless steel, 316L steel, and Ti-6Al-4V (Ti64). Black paint, 

aluminum tape, and vinyl tape of prescribed thickness were applied as coating materials on 

the sample surface under different LSP tests. 
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Table 4.1. LSP conditions used in this work. 

Substrate 
Material 

Coating 
Material 

Coating 
Thickness 

(μm) 

Pulse 
Duration 

(ns) 

Beam 
Diameter 

(mm) 

Power 
Density 

(GW/cm2) 

Laser 
Wavelength 

4140 steel 

Black 
Paint 38 ~ 100 6 0.3 3 ~ 7 532 

Vinyl 
Tape 100 20 5.0 7 1064 

12 Cr 
stainless 

steel* 
Al Tape 70 3 6.0 10 1064 

316L steel* Al Tape 70 10 6.0 7 1064 

Ti64 Black 
Paint 100 6 1.2 4, 7 1064 

Note: * LSP conditions taken from Peyre et al., 2007. 

 

Single shot LSP was chosen as the starting point because it is easy to implement both 

in experimental and modeling work. In the experiment, a single pulse laser beam irradiates a 

specific position of the workpiece surface. An indentation is generated with this method and 

can be measured after removing the coating material from the substrate. Different levels of 

laser power density and coating thickness were used to investigate the effect of these 

parameters on the residual stresses and indentation generated in this process. 

 Single-track overlapping LSP experiments were also performed on the 4140 steel 

substrate with black paint coating. Figure 4.2 (a) shows the schematic of single-track 

overlapping LSP. By controlling the distance between two consecutive laser shots, the 

overlapping ratio can be precisely controlled. 
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(a) Single-track 

 
(b) Multi-track 

Figure 4.2. Schematic of Laser traveling scheme for overlapping LSP. 
 
 

To generate a larger area with nearly uniform residual stresses on the sample surface, 

multi-track overlapping LSP was used. The laser traveling scheme is shown in Figure 4.2 (b) 

for the multi-track LSP. Laser travels along the solid line from left to right, and the arrow 

shows the direction of laser traveling along each track. Once finishing traveling along all the 

solid lines, the laser moves back to the leftmost position and travels along the dashed line, 

and then in the order of dashdot line, dashdotdot line, and long dashed line to generate a 

multi-track pattern on the coating surface. By using this scheme, the possibility of coating 

cracking could be minimized. The number in the scheme with a box indicates the different 

regions of the shock peened area, where measurements of indentation profile and residual 

stresses were taken after the experiment.  

1 32

Laser travel direction  
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To reduce the effect of pre-existing residual stresses, the sample was carefully 

prepared with the following procedures: the sample was first polished with sand papers (360 

grit and 600 grit). Then it was heat treated to relieve the residual stress generated by the 

previous cutting and/or machining process. The sample was then gently polished with 

diamond tape and alumina. Finally the sample surface was etched to further reduce the 

residual stress to be very close to 0. After the above procedures, the effect of pre-existing 

residual stresses is significantly minimized and the sample preparation process will not 

induce further residual stresses on the sample.  

 

4.1.3. Theoretical Model 

4.1.3.1. Confined Plasma Model 

The confined plasma model developed earlier by Wu and Shin (2005) can be used to 

calculate the plasma pressure generated during LSP in a water confinement regime. In their 

model, the plasma expansion was treated as a one-dimensional phenomenon because the 

two-dimensional effects are important only when the laser beam diameter is very small.  Wu 

and Shin (2007b) further demonstrated that the 1-D assumption is valid when the laser beam 

diameter is equal or larger than 300 µm. Since the laser beam diameter used in this work is at 

least 300 µm, it is sufficient to use this 1-D model in this work to describe the confined 

plasma behavior under water.  

The major energy transport processes related to confined plasma in LSP are shown 

in Figure 4.3. Since water is transparent to laser and plasma radiation, the water-plasma-

coating system gains energy through absorbing the incoming laser beam by plasma and 

coating surface. Part of laser energy is reflected at water-plasma interface. The confined 
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plasma is formed through the ionization of coating and water vapor. The evaporation and 

ionization of coating layer is attributed to the laser energy reaching the coating surface 

directly, and the energy conducted and radiated from the plasma. The energy conducted 

from the plasma to the water is the main energy source for water evaporation. The plasma 

gains energy mainly by absorbing the laser beam passing through it and loses energy due to 

its spatial expansion and through thermal conduction and radiation to water and coating 

surface. The vaporized water and coating will also bring their internal energy into the plasma.  

 

Figure 4.3. Major energy transport processes related to confined plasma in LSP (Wu and Shin, 
2005). 

 

In this model, the reflectivity at the water-plasma interface was calculated through 

Drude model. The total absorption coefficient of plasma was the sum of the electron-ion 

and electron-atom inverse-bremsstrahlung absorption coefficient and of photo-ionization 

absorption coefficient. The electron number density was connected to the electron 

temperature through Saha equation. This model considered most of the important physical 

processes of LSP, including the laser ablation of the coating layer, water evaporation, plasma 
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ionization and expansion, energy loss of plasma through radiation and electron conduction, 

laser absorption by plasma through inverse bremsstrahlung effect and photo-ionization, 

reflection of laser beam at the air-water interface and plasma-water interface, etc. Solving this 

confined plasma model, one can obtain the plasma pressure history in LSP applications. This 

model was validated successfully against the available experimental results in literature (Wu 

and Shin, 2005). The code used in this part of the work is taken from Wu and Shin (2005). 

Figure 4.4 shows the plasma pressure predicted by this model for the laser beam of 6 

ns FWHM with 50 µm black paint on the 4140 steel substrate. Generally, maximum plasma 

pressure increases with the laser power density. The pulse duration for pressure wave is 

about two times the laser pulse duration (FWHM). 

 
Figure 4.4. Plasma pressure history for laser shock peening of 4140 steel (laser wavelength 532 

nm, FWHM 6 ns, 50 µm black paint). 
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4.1.3.2. 3-D Finite Element Model 

 A 3-D finite element model (FEM), as shown in Figure 4.5, has been developed to 

calculate the shock wave propagation and the resultant residual stresses on the target 

material with the confined plasma pressure as input. The load shown in Figure 4.5 is 

modeled as a distributed pressure in ABAQUS and its distribution is controlled by a user 

subroutine VDLOAD. The bottom surface of the sample (XY plane) is considered to be 

fixed. 

 

Figure 4.5. Scheme of 3-D FEM model. 
 

The structural coupling between the coating layer shock wave pressures and the 

substrate structural displacements at their common surfaces (the interface) was accomplished 

with the TIE constraint option in ABAQUS (ABAQUS Documentation, 2006). With this 

constraint, the displacements of the nodes in load direction (Z direction in Figure 4.5) on 



 79 

slave surface (coating layer) will be kept the same as that of the closest nodes on the master 

surface (substrate).  

It should be noted that the dynamic behavior of substrate material plays an 

important role in the development of residual stress. In the LSP process, the typical strain 

rate is as high as 107 s-1. Thus, the dynamic yield strength of substrate material is significantly 

increased due to the work hardening and strain rate hardening effect. In this work, the 

dynamic behavior of substrate material was described by Johnson-Cook model (Johnson and 

Cook, 1983): 

𝜎 = (𝐴 + 𝐵𝜀𝜀𝑛) �1 + 𝐶𝑙𝑛 � �̇�
𝜀0̇
��, where 𝜀𝜀0̇=1 s-1    (3) 

where 𝜀𝜀̇ represents strain rate and ε is strain, A, B, C, and n are constants. Due to the use of 

coating material as a thermal protection layer, the increase of temperature in the substrate 

material is negligible and thus the temperature softening effect in Johnson-Cook model is 

not considered. The Johnson-Cook model constants for all the four substrate materials used 

in this work are listed in Table 4.2. 

 

Table 4.2. Johnson-Cook model constants for substrate materials. 

 A (MPa) B (MPa) C n Reference 

4140 Steel 792 510 0.014 0.26 Johnson and Cook, 1983 

12 Cr 870 400 0.015 0.4 Peyre et al., 2007 

316L 300 600 0.045 0.35 Peyre et al., 2007 

Ti64 840 550 0.064 0.812 Meyer, 2006 

 

 For the coating material, black paint is treated as pure carbon since the major 

component of black paint is carbon. The coating layer is assumed to be elastic-perfectly 
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plastic material. The mechanical and physical properties of all the materials can be obtained 

from reference (matweb.com; Urech et al., 2007; Borsenberger and Weiss, 1998). 

 To obtain the indentation depth information on the substrate surface and in-depth 

residual stress, two paths are defined in ABAQUS as shown in Figure 4.6. Path 1 represents 

the interface between the coating material and substrate material. Path 2 extends from the 

surface of substrate to the depth of several mm.  

 
 

Figure 4.6. Path definition in 3-D FEM model. 
 

4.1.3.3. Calculation Procedure 

The FEM calculation procedure is shown in Figure 4.7. With this procedure, both 

single shot and overlapping LSP can be handled successfully. The computational cost will 

also be reduced significantly by combining ABAQUS/Explicit and ABAQUS/Standard 

(Braisted and Brockman, 1999). 
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Figure 4.7. FEM calculation procedure (Wu and Shin, 2007c). 
 

4.1.4. Results and Discussion 

4.1.4.1. Single Shot LSP 

A. Indentation Profile 

The effects of coating thickness and laser power density on the indentation profile 

and residual stresses were investigated with single shot laser shock peening. In this case, the 

substrate material was 4140 steel and the coating material was black paint. As mentioned in 

Table 4.2, the laser power density varied from 3 to 7 GW/cm2 and the coating thickness 

varied from around 35 to 70 μm. The laser beam used in this experiment had the pulse 

duration of 6 ns and wavelength of 532 nm. The laser beam diameter was around 300 µm.  

 By using an optical profilometer, the indentation profile after LSP was measured. 

Following the calculation procedures in Section 4.1.3.3, the indentation profile after LSP can 
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be calculated along path 1 as defined in Figure 4.6. Figure 4.8 shows the comparison of 

indentation depth from simulation results and experimental data with the coating thickness 

of 50.8 µm. A reasonable agreement can be observed between the predicted and measured 

indentation depths under several laser power densities. 

 
Figure 4.8. Comparison of indentation depth under different laser power densities (substrate: 

4140 steel, coating: black paint, coating thickness 50.8 µm). 
 

The variation of indentation depth of three samples with the coating thickness of 

38.1, 50.8, and 66.0 µm under different laser power densities are shown in Figure 4.9. It can 

be seen from Figure 4.9 that the indentation depth increases with laser power density nearly 

linearly. A larger indentation depth is expected if a higher laser power density is used. 

However, water breakdown may occur in the higher power density range (Wu and Shin, 

2006b). Thus, the highest power density used in this work was chosen to be less than 8 

GW/cm2. Under this limit, no water breakdown was observed during the experiments. The 

indentation depth also decreases with coating thickness as seen in Figure 4.9, which is caused 
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by the dissipation of energy into the coating layer when the pressure wave propagates into 

the coating/substrate system. With thicker coating, more energy dissipates into coating and 

less energy can be used to generate the indentation on the substrate surface. 

 
 

Figure 4.9. Indentation depth under different LSP conditions. 
 

B. Validation of Residual Stress 

To validate the residual stress prediction, two benchmark cases for which 

experimental data are available in literature were calculated using the aforementioned LSP 
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material were kept same as in the first case. The dynamic behavior of both materials under 

very high strain rate was modeled by Johnson-Cook model (Peyre et al., 2007). 

The simulation results and comparison with experimental data are shown in Figure 

4.10. It can be seen from Figure 4.10 (a) that the simulation results from the current model is 

closer to the experimental data in the region of depth less than 0.4 mm compared with Peyre 

et al.’s results (Peyre et al., 2007). The residual stress prediction in the second case is also 

very close to the experimental data, as shown in Figure 4.10 (b). This is attributed to the 

more accurate pressure history input that is obtained from the confined plasma model in the 

FEM calculation. Overall, reasonable predictions of residual stresses were obtained in both 

cases, which validated the efficacy of the aforementioned model. 

 

C. Prediction of Residual Stress for 4140 Steel 

After the validation of indentation depth and residual stress, it is expected that the 

current model can predict residual stresses reasonably well for 4140 steel under typical LSP 

conditions. Figure 4.11 (a) shows the in-depth residual stress distribution for 4140 steel 

under different laser power densities. As the power density increases from 3 GW/cm2 to 7 

GW/cm2, the maximum compressive residual stress also increases from about 250 MPa to 

600 MPa. In all of these cases, the maximum residual stress occurs at the region around 50 

µm below the substrate surface. 
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(a) 

 

(b) 

Figure 4.10. In-depth residual stress distribution of benchmark cases (a) 12 Cr, laser power 
density 10 GW/cm2, pulse duration 3 ns, Al coating (b) 316L steel, laser power density 7 

GW/cm2, pulse duration 10 ns, Al coating. 
 

Depth (mm)

R
es

id
ua

lS
tr

es
s

(M
Pa

)

0 0.2 0.4 0.6 0.8 1 1.2-1000

-800

-600

-400

-200

0

200

XRD Data (Peyre et al., 2007)
Peyre et al.'s Results (2007)
Current Simulation Results

12 Cr

Depth (mm)

R
es

id
ua

lS
tr

es
s

(M
Pa

)

0 0.5 1 1.5 2-300

-250

-200

-150

-100

-50

0

50

XRD Data (Peyre et al., 2007)
Peyre et al.'s Results (2007)
Current Simulation Results

316L



 86 

 
 

(a) 
 

 
 

(b) 
 

Figure 4.11. Prediction of in-depth residual stress for 4140 steel (a) In-depth residual stress 
distribution (b) Comparison of compressive zone depth after LSP (Laser pulse duration 6 ns, 

beam diameter 300 µm, coating thickness 50 µm). 
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 The compressive zone depth (CZD) is defined as the depth of the region which has 

compressive residual stresses after LSP. Peyre et al. (1998) proposed an empirical equation of 

CZD given by 

 max

2
el pl

el pl

C CPCZD
HEL C C

τ
 

=   − 
 (4)  

where Pmax is the laser-induced peak pressure; HEL is Hugoniot elastic limit of the substrate 

material; Cel and Cpl are elastic and plastic wave velocity in the substrate material, respectively 

(6000 m/s and 4500 m/s for 4140 steel); τ is the pressure wave duration (FWHM, about 12 

ns for a 6 ns laser pulse). The CZD values obtained from Figure 4.11 (a) are compared with 

the values calculated from the above empirical expression, as shown in Figure 4.11 (b). A 

reasonably good agreement was obtained for the conditions investigated in this work. 

 

4.1.4.2. Single-Track Overlapping LSP 

A. Experimental Results 

 Several overlapping ratios and laser power densities were chosen to investigate the 

single-track overlapping LSP. The substrate material was still 4140 steel and the coating 

material was black paint. The coating thickness used in this section was chosen to be 65 µm 

to sustain multiple impacts in the overlapping region. The shock peened samples were 

measured by using an optical profilometer and the 3-D indentation profiles along laser 

traveling direction are shown in Figure 4.12.  

 With the power density of 6 GW/cm2 and overlapping ratio of 38%, the indentation 

profile shown in Figure 4.12 (a) is not uniform along the laser traveling direction. From the 

3-D profile, the variation of indentation depth can be clearly seen. When the overlapping 
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ratio is increased to 58%, the indentation depth becomes more uniform along the laser 

traveling direction, as shown in Figure 4.12 (b), and hence more uniform surface residual 

stress can result. 

 For the power density of 5 GW/cm2, two overlapping ratios were used in the 

experiments. Nearly uniform indentation depth can be observed in both cases, as shown in 

Figure 4.12 (c) and (d). Clearly the indentation depth is more uniform in the higher 

overlapping ratio case (68%) than in the lower overlapping ratio case (58%). Under the same 

overlapping ratio (58%), higher laser power density can generate more uniform indentation 

depth along laser traveling direction, which can be seen from Figure 4.12 (b) and (c). Thus, 

to generate uniform indentation depth on the substrate, it is preferable to use higher laser 

power density and larger overlapping ratio. However, as mentioned previously, too higher 

laser power density can lead to water breakdown (Wu and Shin, 2006b) and also may initiate 

cracks in the coating layer (Chai, 2003). The crack of coating layer was observed in this 

single-track overlapping experiment when the laser power density is 6 GW/cm2 with the 

overlapping ratio 68%. Therefore, an optimum value should be used under a certain coating 

condition to avoid both water breakdown and coating layer crack. 

 

B. Simulation Results of Indentation Profile 

 The indentation profile along laser traveling direction can be calculated by the 3-D 

FEM model. The comparison of average indentation depth is shown in Table 4.3, which 

shows some degree of discrepancy between experimental results and calculated values. It’s 

attributed to the substrate surface roughness and non-uniformity of coating thickness. 
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(a)      (b)  

  
(c)      (d)  

Figure 4.12. Indentation profile of single-track overlapping LSP on 4140 steel (a) overlapping 
ratio 38%, 6 GW/cm2 (b) overlapping ratio 58%, 6 GW/cm2 (c) overlapping ratio 58%, 5 

GW/cm2 (d) overlapping ratio 68%, 5 GW/cm2 (65 µm black paint coating, beam diameter 
300 μm, pulse duration 6 ns, wavelength 532 nm). 

 
Table 4.3. Comparison of average indentation depth. 

 Overlapping ratio 58% Overlapping ratio 68% 
Exp (µm) Cal (µm) Exp (µm) Cal (µm) 

6 
GW/cm2 1.5 2.2 N/A N/A 

5 
GW/cm2 1.1 1.6 1.5 2.1 

 

C. Prediction of Residual Stress 

 The residual stresses on the substrate surface and depth directions can also be 

calculated from the 3-D FEM model, as seen in Figure 4.13. The residual stress on the 

substrate surface was taken along the center line of the laser track. The in-depth residual 
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stress was obtained at the position directly under the 4th laser shot, which is at the center of 

the 7 shots simulated in the calculation. Under the same laser power density, the residual 

stresses on the substrate surface in larger overlapping ratio (68%) case are a little higher than 

that in the case of 58% overlapping ratio, while the in-depth residual stresses are greater in 

the subsurface region for the case with smaller overlapping ratio. Under the same 

overlapping ratio, both the residual stresses on the substrate surface and depth directions in 

higher power density (6 GW/cm2) case are a little higher than those in the case of 5 

GW/cm2 power density.  

   
(a)       (b) 

Figure 4.13. Residual stress profile after single-track overlapping LSP on 4140 steel with 
different laser power densities and overlapping ratios (a) residual stress on substrate surface                 

(b) in-depth residual stress (65 µm black paint coating, beam diameter 300 μm, pulse duration 
6 ns, wavelength 532 nm).  

  

 It should be noted that the peak residual stress is significantly increased from around 

-500 MPa to -800 MPa compared to the single shot case, as shown in Figure 4.11, which is 

mostly due to the overlapping effect. The compressive zone depth is kept at around 0.2 mm 

because the same coating material and laser parameters were used in both cases. This 

indicates that the overlapping ratio has almost no effect on the compressive zone depth. 
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 Another effect of overlapping is shown in Figure 4.14. The number (1 to 7) in the 

figure shows how many laser shots have been applied. It can be seen from Figure 4.14 that 

the peak residual stress increased through laser shot 1 to 5. However, it decreased 

considerably after shots 6 and 7 were applied, which indicates that there is a stress relaxation 

effect in the overlapping LSP process. The shock waves generated by laser shots 6 and 7 

significantly altered the existing stress state by pushing the peak residual stress to a deeper 

location and relaxing the peak residual stress to a smaller value. 

 

 

Figure 4.14. In-depth residual stress after single-track overlapping LSP on 4140 steel (65 µm 
black paint coating, beam diameter 300 μm, pulse duration 6 ns, wavelength 532 nm, 

overlapping ratio 58%, laser power density 5 GW/cm2). 
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first employed to investigate the indentation profiles generated by multi-track overlapping 

LSP. Then two pairs of substrate/coating systems (4140 steel/vinyl tape, and Ti64/black 

paint) were used to study the residual stresses induced in multi-track LSP.  

 

A. Indentation Profile 

For the multi-track overlapping LSP, the coating layer has to sustain higher impacts 

from multiple overlapping shots compared with the single shot and single-track LSP 

applications. Thus, to avoid the cracks of coating layer and generate observable indentation 

on the substrate material, the coating thickness was chosen to be 100 µm in all the cases. For 

the 4140 steel/black paint system, the laser power density used in the experiment was 5.8 

GW/cm2. The laser beam diameter was around 300 μm and the overlapping ratio was 39%.  

 To consider the repeatability of the multi-track LSP on 4140 steel, 5 samples were 

shock peened under the same conditions. The indentation depth at the left edge were 

measured and shown in Figure 4.15. It can be seen that the indentation depth is around 0.4 

to 0.5 µm in all the cases, which proves the repeatability of this process. 

 The indentation profile after multi-track LSP was also calculated using the model 

developed in this work. To reduce the computation cost, only 3 tracks were calculated. 

There are 7 shots along each track. The indentation profile along path 1 as defined in Figure 

4.7 is shown in Figure 4.16. The average indentation depth is around 0.55 µm, which is close 

to the experimental value of 0.4-0.5 µm. 
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Figure 4.15. Indentation depth of different sample under same LSP conditions (All indentation 
depths are measured at left edge of shock peened area. black paint coating thickness 100 µm, 
overlapping ratio 39%, power density 5.8 GW/cm2, beam diameter 300 μm, pulse duration 6 

ns, wavelength 532 nm). 

  

 
 

Figure 4.16. Indentation profile on 4140 steel surface (black paint coating thickness 100 µm, 
overlapping ratio 39%, power density 5.8 GW/cm2, beam diameter 300 μm, pulse duration 6 

ns, wavelength 532 nm). 
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B. Prediction of Residual Stress for Multi-track LSP 

 To investigate the residual stress induced in multi-track overlapping LSP, several 

4140 steel samples were shock peened by Laser Shock Peening Technology (LSPT) under 

different conditions. Then the residual stresses distribution after LSP were calculated using 

the model developed in this work and compared with the XRD measurement data.  

 The coating material used at LSPT was standard black polyvinyl tape with thickness 

of 100 μm. In all the cases, the laser beam diameter was 5.0 mm and the laser beam pulse 

was 20 ns. The laser beam wavelength was 1064 nm. The actual laser beam spatial profile is 

shown in Figure 4.17. Since the majority of the beam profile is uniform and the overall 

average is 7 GW/cm2, it is valid to assume the profile to be uniform (flat-top). Therefore, 

the calculation of plasma pressure using 1D confined plasma model is justified. 

 

 

Figure 4.17. Beam profile of LSPT laser. 
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 By utilizing a chemical etching technique (ASM Handbook, 2004), the residual 

stresses of a LSPT sample in the depth direction were measured to the depth of more than 1 

mm below the original surface using Cr Kα radiation source. The residual stresses after each 

etching were measured and shown in Figure 4.18 (a). It can be seen that the measured 

residual stress near the surface is close to the simulation results. In the subsurface region, the 

compressive residual stress becomes smaller first and then gets larger till around 0.5 mm 

below the surface. After 0.5 mm, the residual stress decreases with the depth. The measured 

data for another steel sample with overlapping ratio of 50% are also shown in Figure 4.18 

(b). In both cases, the simulation results agree reasonably well with the measured XRD data, 

which serves as a validation of our complete LSP model.  

 
(a) 

Figure 4.18. Comparison of measured XRD results and simulation results for multi-track 
LSPT 4140 steel samples with different overlapping ratio (a) Overlapping ratio 40% (b) 

Overlapping ratio 50% (laser power density 7 GW/cm2, beam diameter 5 mm, pulse duration 
20 ns, wavelength 1064 nm, vinyl tape coating). 
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(b) 

Figure 4.18. Continued. 
  

 The compressive zone depth in this multi-track LSP case is more than 2 mm, which 

is much higher than those in the single shot and single-track LSP case due to the longer laser 

pulse (20 ns v.s. 6 ns) according to Eq. (2). Certainly, the peak plasma pressure and coating 

material properties also contribute to this large increase in the compressive zone depth. The 

peak residual stress is also larger with higher overlapping ratio as indicated in Figure 4.18, 

which is similar to the single-track LSP case.  

 It should also be noted that the peak residual stress in this multi-track case is less 

than -600 MPa while it is around -800 MPa in single-track case as shown in Figure 4.13. One 

possible reason is that smaller overlapping ratios are employed in this case (40~50% v.s. 

58~68%). It may also due to the stress relaxation effect as discussed in single-track case. 

More neighboring shots are applied in this multi-track case compared with single-track LSP. 

Therefore, the stress relaxation may play a more important role in this case. 
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 Further residual stress prediction was carried out on a Ti64 sample. In this case, the 

coating material was black paint with thickness of 100 μm. The laser beam diameter was 1.2 

mm and the laser beam pulse was 6 ns. The laser beam wavelength was 1064 nm. The 

residual stresses of the laser treated Ti64 sample was measured using conventional XRD 

with Cu Kα radiation source. The depth characterization of residual stress was obtained by 

chemical etching method similarly as in previous 4140 steel case (ASM Handbook, 2004).  

 Figure 4.19 shows the simulation results and experimental data for residual stress 

distribution in the depth direction for Ti64 under different laser power densities. In both 

cases, the current 3D FEM model can accurately predict the residual stress distribution in 

subsurface region with slight difference in some locations. Overall, reasonable good 

agreements were obtained for both cases. As in the single shot case, higher laser power 

density can increase not only the peak residual stress but compressive zone depth. 

 
Figure 4.19. Residual stress distribution for laser shock peening on Ti64 under different laser 
power densities (beam diameter: 1.2 mm, pulse duration 6 ns, wavelength 1064 nm, coating: 

100 μm black paint, overlapping ratio: 50%). 
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4.1.5. Summary 

 A 3-D finite element model with a confined plasma model has been developed and 

used to simulate the LSP process. By using these combined models, the indentation depth 

and residual stresses could be accurately calculated under different LSP conditions. Single 

shot, single-track overlapping, multi-track overlapping LSP experiments have been 

performed on various metals under different LSP conditions. The model prediction of  

indentation profiles and residual stresses in the depth direction provided good agreement 

with experimental data. It was found that higher laser power density can increase not only 

the peak residual stress but compressive zone depth. The overlapping ratio contributed to 

the peak residual stress while showing almost no effect on the compressive zone depth. 

Longer laser pulse resulted in larger compressive zone depths. Stress relaxation effect was 

also observed in overlapping LSP process. 

 
 
 

4.2 Shock Wave Propagation and Spallation 

4.2.1 Introduction 

 In the laser shock peening (LSP) process, high energy laser irradiated on the target 

surface can generate high-pressure plasma in the water confinement regime (Berthe et al., 

1997; Wu and Shin, 2005). When the pressure wave propagates into the substrate material as 

a shock wave, compressive residual stresses can be imparted into the surface region (Braisted 

and Brockman, 1999). If  the shock wave amplitude and the duration of  this shock wave are 

sufficient, spallation will take place at the interface or inside the bulk material. The objective 

of  this work is to develop a complete and general model for the shock wave propagation and 

spallation in the laser shock peening process.  
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4.2.2. Theoretical Model 

4.2.2.1. Pressure Wave Prediction Model 

 The confined plasma model developed earlier by Wu and Shin (2005) can be used to 

calculate the plasma pressure wave generated during LSP in a water confinement regime. The 

details of  this model have been discussed in Section 4.1.3.1. 

 

4.2.2.2. Shock Wave Propagation in Solids 

 Based on the pressure pulse loading amplitude, the shock wave propagation in the 

solid requires the assumption that the solid body deforms either elastically or loses its rigidity 

and behaves like a liquid. Correspondingly, there are two model frameworks that can be used 

to simulate the above two conditions: the elasticity theory and the hydrodynamic theory. 

 In the elastic regime, the pressure pulse loading amplitude is less than the elastic limit 

of  the solid material.  If  the pressure pulse loading amplitude is much higher than the elastic 

limit of  the solid material, as is the case in LSP, the solid material will behave as a fluid. 

Under this regime, the shock wave propagation can be described by a hydrodynamics model. 

 The Lagrangian form of  the conservation equations leads to Lagrangian codes in 

which the mesh is determined by the material and deforms with it, whereas the Eulerian 

mesh is fixed in space (Meyers, 1994). Lagrangian codes are much more efficient to run (less 

computational time) and the interface of  two materials can be easily defined. The 

disadvantage of  Lagrangian code is that the mesh becomes excessively distorted after a 

critical plastic strain and the predictions can be inaccurate (Meyers, 1994). Eulerian codes can 

handle large deformations very well but present unique problems when two different 
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materials are present in the computational domain. Since the two materials have different 

constitutive equations, the same element will have different materials at different time, and 

thus it is difficult to track the material interfaces. 

 For the spallation process, it is important to track the interface of  two different 

materials. Since the plastic strain is also not high enough to reach the critical state, it is more 

convenient to use Lagrangian mesh to model the spallation process. 

 In Lagrangian coordinate system, the hydrodynamic equations are given by (Meyers, 

1994; Miklowitz, 1969; Kanel et al., 2004; Peikrishvili et al., 2000; Davidson, 2008; Antoun et 

al., 2003) 

Conservation of  mass: 0D U
Dt
ρ ρ+ ∇• =      (5) 

Conservation of  momentum: DU P
Dt

= −∇
ρ      (6) 

Conservation of  energy: 0dE dVP
dt dt

+ =      (7) 

where ρ is the density, U the particle velocity, E the internal energy, and P the pressure. In 

the energy equation, V is the specific volume (V=1/ρ). 

 In the above three equations, there are four unknown variables (ρ, U, E, and P), and 

thus an additional equation is needed to solve the problem. This additional equation is the 

constitutive relation for the material, which relates the stress to kinematic and 

thermodynamic variables. There are two conditions to consider depending on the material 

strength effects. 

i). Strength effects are neglected 
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 If  the strength effects are negligible, the constitutive relation is simply the equation 

of  state (EOS) of  the material. Under shock loading, the Mie-Gruneisen EOS is most widely 

used, which is valid for shock loading pressure up to a few hundred GPa (Meyers, 1994). In 

the shock regime, the Mie-Gruneisen EOS relates a (P, V, E) state to the pressure and 

internal energy at 0 K as follows: 

0 0( )P P E E
V

− = −
γ                            (8) 

where γ is the Gruneisen constant and V is the specific volume. It can also be related to 

another reference state, like a point on the Hugoniot plot. In this case 

( )H HP P E E
V

− = −
γ            (9) 

 Under the adiabatic shock loading condition, the internal energy in Mie- Gruneisen 

EOS is the sum of  potential energy and vibration energy of  atoms. The vibration energy of  

atoms will change during the shock wave propagation due to the vibrational frequency 

change, which occurs with the volume change of  the solid material. 

ii). Strength effects are important  

 When strength effects are significant, the stress-tensor components are divided into a 

hydrostatic pressure and a deviatoric stress component (Fan et al., 2005):  

ij h ijP S= − +σ      (10) 

 In this condition, the equation of  state for hydrostatic pressure Ph is supplemented 

with a constitutive relation for the yield strength, which is related to deviatoric stress ijS . 

According to von Mises yield condition, the material starts to yield and exhibits plastic 

behavior if  the following relationship holds (Fortov and Kostin, 1991):  
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2 2
12

22
3ijS S Y+ ≥∑      (11) 

where Y is the dynamic yield strength. The dynamic yield strength depends on strain, strain-

rate, and loading history. The constitutive relation can take a strain, strain-rate hardening 

form such as Johnson-Cook or others: 

𝑌𝑌 = 𝑓𝑓(𝜀𝜀, 𝜀𝜀̇,𝑃𝑃)     (12) 

4.2.2.3. Shock Wave Interaction at Interface of Different Media 

 For a double-layered target, the shock wave propagation becomes much more 

complicated due to the presence of  an interface between the two media. This case is 

especially important because the substrate/coating system has to be treated as a double-

layered target in the laser shock peening process. 

 When a shock wave propagates from medium A to medium B, a change in pressure, 

wave velocity, and density will take place. Figure 4.20 shows the schematic of  shock wave 

propagation and the relevant quantities. The subscripts used in Figure 4.20 indicate different 

stage of  shock wave propagation: I for incident wave, R for reflected wave, and T for 

transmitted wave. At the interface, the equilibrium of  pressure exists such that 

I R TP P P− =       (13) 

Also, the continuity condition at the interface (no gaps can be created and matters can’t 

superimpose each other) yields 

PI PR PTU U U+ =      (14) 

where UPI, UPR, and UPT are the particle velocities as shown in Figure 4.20. 
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Figure 4.20. Scheme of shock wave propagation in two different media. 
 

 In addition, the following relationships exist between the above quantities (Meyers, 

1994): 

I A SI PIP U U= ρ                                 (15) 

R A SR PRP U Uρ=                                                             (16) 

T B ST PTP U Uρ=                                                            (17) 

0SI A A PIU C S U= +                                                          (18) 

0SR A A PRU C S U= +                                                         (19) 

0ST B B PTU C S U= +                                                         (20) 

where USI, USR, and UST are the shock velocities corresponding to particle velocities UPI, UPR, 

and UPT, respectively; and C0A, SA, C0B, SB are material constants for shock wave propagation. 

Eqs. (15) to (17) represent conservation of  momentum for the incident shock wave, 

reflected shock wave, and transmitted shock wave, respectively.  Eqs. (18) to (20) are often 

known as the equation of  state (EOS) of  a material, where SA and SB are empirical 

parameters and C0A and C0B are the sound velocity in material A and B at zero pressure.  In 

the above equations, PI, C0, and S are known variables. Therefore, the 8 unknowns can be 

determined by solving the 8 equations simultaneously. 

A B 

Interface 

PI, UPI 

PR, UPR 
PT, UPT ρA ρ
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4.2.2.4. Spallation Prediction 

 For the failure mechanism used to predict the spallation, several models have been 

proposed in literature. The simplest one is based on an assumption that spallation will take 

place when the tensile stress is higher than a constant threshold value (Cottet and Boustie, 

1989). While spallation takes place, the stress in the damaged area will be zero. Therefore, 

the simple model can only predict the initiation of  spallation, but can’t predict the growth of  

the damage area. Also, the stress relaxation is not considered in the simple model. There are 

more physically accurate models that consider the nucleation and growth of  the voids and 

cracks in the damaged area. The continuous kinetic model of  spallation is the most widely 

used (Fortov and Kostin, 1991; Meyers, 1994; Antoun et al., 2003). In this model, the kinetic 

equation relates crack growth rate to the volume of  cracks formed and effective stress 

(Fortov and Kostin, 1991): 

max 1 max

max

1
0

1

( ) ( ) ( ),

0,                                             
e t t et

e

t
e

t t

k sign P V VdV
dt

V
V V

σ σ σ σ

σ σ

σ σ

− • • − • + ≥= 
<

=
+

                         (21) 

where Vt is the volume percentage of cracks inside the target, k is a constant depending on 

the viscosity, Vt1 is the critical value of Vt, and 0σ  is the initial threshold strength. When the 

maximum tensile stress reaches the threshold value 0σ , then the voids start to grow in the 

material. If the volume Vt exceeds the critical value Vt1, the growth rate of voids accelerates. 

The stress relaxation in the cracks is taken into account by corrections of yield strength and 

shear modulus (Fortov and Kostin, 1991): 

1 1
0 0

1 1

,t t

t t t t

V VY Y G G
V V V V

= =
+ +

                                             (22) 
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4.2.3. Numerical Method 

4.2.3.1. Finite Difference of Conservation Equations 

 As discussed in Section 4.2.2.2, Eulerian codes have a poor resolution of  interface 

tracking when two different materials are present in the computational domain.  Since it is 

very important to track the interface in spallation prediction, a Lagrangian coordinate system 

is thus employed.  

 To solve the governing partial differential equations, either the finite-difference or 

finite-element formulations can be used as the numerical algorithms. It is generally accepted 

that the finite-element and finite-difference methods give identical algorithms (Meyers, 1994) 

because the methods used in these two formulations to update the stress, shock viscosity, 

and energy calculations are virtually identical. The finite-difference method is chosen in this 

work since it is more straightforward conceptually. 

 To simplify the problem, the following assumptions are made to reduce the multi-

dimensional equations describing shock wave propagation into one-dimensional equations 

solved in this work: 

1. The particle velocity directs along and depends on the one-dimensional coordinate. 

2. Adiabatic conditions are assumed throughout the problem. 

3. An artificial viscosity is introduced to spread out the pressure and energy 

discontinuities that develop at the shock front. 

4. There is no body force. 

 In a Lagrangian coordinate system, the mass of  each cell remains fixed. The cell 

boundary position will change with time. The density of  a cell at time t is given by (Meyers, 

1994): 
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0
0

x
x

∂
=

∂
ρ ρ                                                             (23) 

where x0 and ρ0 are the initial position and density, respectively. In one-dimensional case, the 

conservation equations become: 

0

0

1 0

1 0

0

V u
t x
u P
t x
E VP
t t

∂ ∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂
∂ ∂

+ =
∂ ∂

ρ

ρ                                  (24) 

where V is the specific volume. 

 The finite difference form of  the conservation equations is: 

( )

1
1 1

0
1

1 1

0
1

1 1

1
2

1
2

2

n n n n
i i i i

n n n n
i i i i

n n
n n n ni i
i i i i

V V u u
t x

u u P P
t x

P PE E V V

+
+ −

+
+ −

+
+ +

− −
= −

∆ ∆

− −
= −

∆ ∆

+
− = − −

ρ

ρ
    (25) 

 In the energy equation of  Eq. (24), the energy at time tn+1 involves the pressure at 

tn+1, which is a function of  the energy at tn+1. The equation is therefore implicit and must be 

solved numerically with an additional constitutive relation of  the material, as discussed in 

Section 4.2.2.2. 

 At the shock front, there is a discontinuity in pressure (P) and energy (E), and the 

finite-difference method will break down. To overcome this deficiency and make the 

computation stable, an artificial viscosity is introduced (Meyers, 1994; Peikrishvili et al., 

2000) assume a finite thickness of  the shock wave, which is about 10-100 μm according to 
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(Thoma et al., 2005). This is done by adding a term to the pressure so that the pressure 

change is spread out over a few cells instead of  occurring discontinuously. The viscosity 

term has the form (Meyers, 1994): 

( )2

Q L
c x c xu u uQ

V x x V x

 ∆ ∆∂ ∂ ∂ = − +
 ∂ ∂ ∂
 

    (26) 

where ,  Q Lc c are constants and typical values for them are 1.5 and 0.06, respectively. It 

should be noted that Q is large only when there is a sharp change in particle velocity u. 

When u is a constant, Q vanishes. Therefore, Q acts only on the shock front. The 

conservation of  mass and energy equations need to be changed accordingly with the 

addition of  the artificial viscosity: 

0

1 ( ) 0

( ) 0

u P Q
t x
E VP Q
t t

ρ
∂ ∂ +

+ =
∂ ∂
∂ ∂

+ + =
∂ ∂

    (27) 

       In finite-difference form, 

 

( )

1
1 1 1 1

0
1 1

1 1

1
2

2

n n n n n n
i i i i i i

n n n n
n n n ni i i i
i i i i

u u P Q P Q
t x

P Q P QE E V V

ρ

+
+ + − −

+ +
+ +

− + − −
= −

∆ ∆

+ + +
− = − −

      (28) 

 

        For a double-layered target, the shock wave propagation through the media interface is 

handled with the model presented in Section 4.2.2.3. When the maximum tensile stress 
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reaches the threshold value in some region at certain moment, the continuous kinetic 

spallation model will take over and the voids will begin to grow in this damage zone. 

 

4.2.3.2. Stability Analysis  

 To make the computation stable, the time step should meet several requirements. 

First, the CFL number should be less than or equal to 1 (Bolis et al., 2007): 

1AC tCFL
x
∆

= ≤
∆

     (29) 

where CA is the local adiabatic sound speed. For a solid, the adiabatic sound speed is given 

by (Peters, 1978) 

2 2 2 2
0 0

3

0 0

( ) ( 1) 2
( )

1
2

n n
n ni i

A i in
i

c V V S c V V SC SV P
V S V V

S

+ −
= +

 − − 
+

=
γ

            (30) 

where c is the normal density speed of  sound in the material. 

 To avoid the overlapping of  cell boundaries in one time step, the following condition 

should also be met (Peters, 1978): 

( ) ( )1 1
1
2

n n n n
i i i iu u t x x+ +− ∆ < −              (31) 

 The time step is calculated at the beginning of  each iteration for all the cells in the 

computation domain. The smallest time step value is chosen for all mesh point calculations 

during the same iteration.  
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4.2.4. Results and Discussion 

4.2.4.1. Shock Wave Propagation in a Single Solid 

 The accuracy of  the numerical model was tested for the shock wave propagation in a 

single solid. As shown in Figure 4.21, a compressive pressure wave was applied on the right 

side of  the computation domain. Before time t1, there is no external load and the load is 

released at time t2. t1 and t2 are set to be 5 ns and 15 ns in the calculation, respectively, to be 

consistent with the experimental condition used in (Mitchell and Nellis, 1981). The left side 

of  the computational domain was fixed. In this testing case, the strength effect was neglected 

and the Mie-Gruneisen EOS for aluminum was used. 

 The comparison of  simulation results with experimental data (Mitchell and Nellis, 

1981) for aluminum compression under different shock pressures is shown in Figure 4.22. 

Good agreements were obtained in all the three quantities of  shock velocity, shock density, 

and particle velocity, thus validating the numerical model prediction for shock wave 

propagation in single solid. 

 Single layer aluminum and copper films were also chosen to test the prediction 

accuracy of  the shock wave propagation by the numerical model. A Gaussian pressure wave 

with peak Pmax was applied on the front surface of  the film with the pulse duration (FWHM) 

of  25 ns. The material properties of  Al and Cu are listed in Table 4.4 (Tollier et al., 1998; 

Bolis et al., 2007). 
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(a)      (b) 

Figure 4.21. (a) Scheme of shock compression of aluminum bar and (b) pressure input. 
 

  
(a)     (b)  

 
(c) 
 

Figure 4.22. Comparison of simulation results and experimental data (Mitchell and Nellis, 
1981) for shock compression of aluminum (a) shock velocity (b) shock density (c) particle 
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 For an aluminum film with thickness of  250 μm, the rear free surface velocity was 

calculated and shown in Figure 4.23. In this simulation, the peak pressure used is 2.0 GPa, 

which is a little higher than the spall strength for aluminum (1.6 GPa, Tollier et al., 1998). 

The experimental measurement of  rear free surface velocity by VISAR (Tollier et al., 1998) is 

also shown in Figure 4.23. A very good agreement was obtained between the experimental 

data and simulation results in this case. 

 

Table 4.4. Material properties of Al, Cu, and Ni (Tollier et al., 1998; Bolis et al., 2007). 
Material Al Cu Ni 

ρ0 (kg/m3) 2700 8930 8200 

Y0 (MPa) 300 120 1078 

G (GPa) 26.2 46.8 79.2 

γ 1.68 1.99 1.88 

C0 5386 3940 4119 

S 1.34 1.49 1.8 

 

 The shock wave propagation in a 150-μm copper film was also calculated. In this 

case, the peak pressure applied is 4.3 GPa, which is much higher than the spall strength (2.6 

GPa, Tollier et al., 1998). Therefore, a pull-back velocity peak can be observed in the plot 

(shown by a circle), which is an indication of  spallation. The experimental measurement by 

Tollier et al. (Tollier et al., 1998) is also plotted in Figure 4.24, which shows a similar pull-

back velocity peak. A very good agreement was also obtained between the experimental and 

simulation results in this case. 
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Figure 4.23. Comparison between experimental data (Tollier et al., 1998) and simulation results 
(250 μm Al foil, Gaussian pressure wave, Pmax = 2.0 GPa, pulse duration 25 ns). 

 

 

Figure 4.24. Comparison between experimental data (Tollier et al., 1998) and simulation results 
(150 μm Cu foil, Gaussian pressure wave, Pmax = 4.3 GPa, pulse duration 25 ns). 
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respectively. The pressure pulse used in the calculation is shown in Figure 4.25 and the peak 

pressure is 1.45 GPa. This pressure wave input is comparable to the pressure input used in 

(Bolis et al., 2007), which is generated by a laser power density of  79 GW/cm2 in a direct 

regime. 

 The stress history at the Cu/Ni interface was calculated and shown in Figure 4.26. 

The simulation results by Bolis et al. (2007) were also shown in the plot for comparison. It 

can be seen that the incident shock wave and reflected shock wave from free surface were 

successfully captured by the current model. This case also demonstrates that the water 

confinement regime has the significant advantage over direct regime because it requires 

much less energy than the direct regime. The peak stress amplitude, however, shows some 

discrepancy, which is mostly due to the difference of  the pressure input. 

 

 

Figure 4.25. Pressure pulse history (Laser pulse duration 10 ns, wavelength 1064 nm, power 
density 1.1 GW/cm2). 
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Figure 4.26. Calculated stress history at Cu/Ni interface. 
 

4.2.4.3. Spallation Prediction 
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duration is 25 ns. The calculation results indicate that the voids mainly form at the depth of  

around 150 μm. The maximum volume percentage of  voids is only 2.2%, which is an 

indication of  low level damage inside the foil. These predictions are consistent with the 

metallographical analysis conducted by Tollier et al. (1998) under the same conditions, as 

shown in Figure 4.27 (b). 
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(a) 

 

(b)  

Figure 4.27. Comparison of experimental and simulation results on voids distribution (a) 
Simulation of voids distribution Metallographical analysis of 250-μm Al foil (Tollier et al., 

1998) (250-μm Al foil, Gaussian pressure wave, Pmax = 2.8 GPa, pulse duration 25 ns). 
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 The void distribution was calculated by using the continuous kinetic model with the 

yield strength effect considered by the Johnson-Cook constitutive equations. Figure 4.28 (b) 

shows the void distribution of  a Cu/Ni (substrate/coating) system after the shock loading. It 

can be seen that the maximum volume percentage of  voids is only 0.18%, which is an 

indication of  negligible damage inside the substrate/coating system. Also the voids appear 

mainly around the depth of  90 μm, which is the interface location. Both of  these predictions 

are confirmed again in the metallographical analysis, as seen in Figure 4.28 (a), which 

validates the numerical model developed in this work for shock wave propagation and 

spallation. 

 

 

(a) 

 

(b) 

Figure 4.28. Comparison of experimental and simulation results on voids distribution (a) 
Experiment results after shock loading (Bolis et al., 2007) (b) Simulated void distribution in the 
depth direction (Cu/Ni system, Gaussian pressure wave, Pmax = 1.4 GPa, pulse duration 10 ns). 
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Case 3: Cu/Ni System with High Pressure Loading 

 In this case, the pressure loading is still a Gaussian pressure wave but the peak 

pressure is increased to 3.7 GPa, and the pulse duration of  the pressure wave is kept same as 

in the previous case. The thickness of  copper and nickel layer is 180 μm and 90 μm, 

respectively. The cross-sectional image of  the Cu/Ni system after the shock loading is 

shown in Figure 4.29 (a), where a spallation can be observed near the interface position. 

 The void distribution was also calculated and shown in Figure 4.29 (b). In this case, 

the maximum volume percentage of  voids is as high as 7.5%, which is an indication of  

higher level of  damage inside the substrate/coating system. The location of  interface 

position is also shown in Figure 4.29 (b). The left side of  the interface location is nickel layer 

with thickness of  90 μm, while the right side copper layer. It can be seen from Figure 4.29 

(b) that the voids are mainly present around the interface position with more voids located in 

the copper layer, thus showing an excellent agreement with the experimental result. This case 

validates again the numerical model developed in this work. 

 

 
(a)  

Figure 4.29. Comparison of experimental and simulation results on voids distribution (a) 
Experiment results after shock loading (Bolis et al., 2007) (b) Simulated void distribution in the 
depth direction (Cu/Ni system, Gaussian pressure wave, Pmax = 3.7 GPa, pulse duration 10 ns). 
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(b) 

Figure 4.29. Continued. 
 

4.2.5. Summary 

 This work presented a model that offers a more complete and general solution for 

shock wave propagation and spallation in the laser shock peening process. In addition to the 

pressure shock wave and its propagation inside the solid materials, the model is also capable 

of  calculating the transient stress history at the interface and the rear free surface velocity. 

The spallation threshold and damage zone location were also calculated for aluminum film 
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Cu/Ni system presented negligible and substantial spallation near the interface region under 

low (1.4 GPa) and high pressure (3.7 GPa) loading, respectively. Good agreement was 

obtained between experimental and simulation results for the void distribution for both 

single layer and double-layer targets. 
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CHAPTER 5. ETCHING BY NANOSECOND LASER INDUCED WATER 
BREAKDOWN PLASMA 

5.1 Introduction 

 The thermal effects of plasma is investigated in this work. As reviewed in Chapter 1, 

direct laser ablation in low fluence range can also be used to ablate the polymer material only 

(Wolynski et al., 2011) by properly controlling the laser fluence. However, the laser beam 

could be blocked by the carbon fiber significantly in the direct ablation mode. As a result, 

only a very thin layer of polymer can be ablated. If high laser fluence were used by direct 

laser ablation, both the polymer matrix and the carbon fibers could be completely removed, 

which will significantly affect the material strength since the fibers were broken. Therefore, 

the thermal effects of laser-induced water breakdown plasma for selective etching of the 

polymer from the composite material are investigated. 

 The dependence of the etching depth on the laser power density, laser focus 

position, and the number of shots are also investigated in this work to obtain a maximum 

possible etching depth.  

 

5.2 Experimental Procedures 

The experimental setup used in this study is shown in Figure 5.1. A frequency-

doubled Nd:YAG laser (wavelength of 532 nm) is used to generate a laser beam, which 

passes through a half-wave plate, polarizer, three high reflecting mirrors and a focus lens,
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and finally irradiates on the surface of workpiece. The laser beam profile is top-hat in spatial 

distribution and Gaussian in temporal distribution. The plano-convex focus lens has a focal 

length of 100 mm and a numerical aperture of 0.25. The laser beam is around 0.3 mm when 

in focus. The composite workpiece is placed into a water tank to produce a water-

confinement regime, as shown in Figure 5.2. The water layer depth is around 10 mm above 

the surface of the workpiece, which is maintained in this level during the experiment. The 

movement of the workpiece in X and Y directions is controlled by two linear motion stages. 

The distance between the focus point and the surface of the workpiece can also be changed 

by vertically varying the position of the focal lens. With this setup, the laser power density 

can be easily adjusted by fine tuning the orientation of the half-wave plate. 

 

 

Figure 5.1. Experimental setup for plasma etching. 
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 The laser induced water breakdown plasma is captured by the CCD camera. It 

should be noted that the plasma initially forms at the laser focal spot (dashed ellipse in 

Figure 5.2) if the laser power density at the focal spot just exceeds the breakdown threshold. 

If the laser power density is much higher than the water breakdown threshold, the laser 

power density at the air–water interface may be high enough to breakdown the water at the 

air–water interface. Therefore, the water breakdown plasma could be observed in any region 

from the focal spot (dashed ellipse in Figure 5.2) to the air–water interface (solid ellipse in 

Figure 5.2) depending on the laser power density. 

 

Figure 5.2. Close-up view of the air–water–workpiece system. 
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 The composite sample used in this study is preimpregnated (“pre-preg”) material. 

The polymer is epoxy resin and the carbon fiber is the intermediate modulus IM7. The 

sample thickness is around 3.4 mm. 

 A series of experiments of laser induced plasma etching were carried out to 

systemically investigate the etching behavior under the water breakdown plasma. According 

to Ref. (Sollier et al., 2001; Wu and Shin, 2006b; Feng et al., 1997), the water breakdown 

threshold for a 532 nm, 6 ns, around 300 µm laser beam is determined to be less than 30 

GW/cm2. In this work, the laser power density is chosen to be from 30 to 70 GW/cm2. 

Therefore, the water breakdown will certainly occur under this condition, which will ensure 

the laser induced plasma etching operation. The experimental conditions are listed in Table 

5.1. 

  

Table 5.1. Experiment conditions for laser induced plasma etching. 

 
Laser Power Density 

(GW/cm2) 

Distance from Focus 

Point to Sample 

Surface (mm) 

Number of Laser 

Shots 

Experiment 1 
30.0, 40.0, 50.0, 60.0, 

70.0 
3.0 1 

Experiment 2 70.0 
1.0, 3.0, 5.0, 7.0, 

9.0 
1 

Experiment 3 70.0 3.0 1, 2, 10, 20, 50 

  

 After the nanosecond laser induced plasma etching operation, a picosecond laser is 

employed to cut the composite sample on the cross section. The picosecond laser cutting is 

chosen here because it can significantly reduce the heat affect zone compared with the 
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traditional mechanical cutting and nanosecond laser cutting (Shannugam et al., 2002; Mo 

Naeem, 2008). A groove of 200 µm (width) × 120 µm (depth) was generated by the 

picosecond laser cutting near the center line of the etching area.  

  After the laser cutting, the sample was completely cut by a conventional mechanical 

cutter and then polished to obtain a relatively flat surface. The sample was further sputter-

coated to be analyzed under the SEM. Figure 5.3 shows an SEM image of the center region 

of the cross-section of the composite sample after 50 laser shots. The carbon fibers can be 

clearly seen in this image. The polymers between the carbon fibers are completely removed 

by the water breakdown plasma. 

 
Figure 5.3. SEM image of the center region of the composite sample after 50 laser shots (laser 

power density 70.0 GW/cm2, laser focus is 3.0 mm away from the target surface). 
 

5.3 Results and Discussion 

5.3.1 CCD Image of Water Breakdown Plasma 

 The CCD image of the water breakdown plasma was obtained, as shown in Figure 

5.4. The laser power density used in this measurement is around 50 GW/cm2. The water 
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surface is marked with a solid line in Figure 5.4. Initially, air occupies the space above the 

water surface line while water is filled in the bottom half. It can be seen from Figure 5.4 that 

the water breakdown plasma occurs at the region close to the water surface. Around a half 

of the volume of the plasma is under the water. As discussed in Section 5.2, the water 

breakdown plasma could be observed at the air–water interface if the laser power density is 

much higher than the water breakdown threshold, which is the condition in this case. This 

observation was also reported by other researchers for the laser shock peening applications 

(Berthe et al., 1997). 

 

 

Figure 5.4. Water breakdown plasma observed during laser induced plasma etching operation 
(laser power density 50 GW/cm2). 

 

5.3.2 Effect of Laser Power Density 

 The effect of laser power density was first investigated by changing the laser power 

input from 30.0 GW/cm2 to 70.0 GW/cm2. It should be mentioned here that the 

experiments in this section were performed in single shots. The cross-sectional view of the 
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crater is shown in Figure 5.5 for two different power densities. The etched layer is 

determined from the SEM image, where the polymer is completely removed by the laser 

induced water breakdown plasma while the carbon fibers remain intact. The dependence of 

the etching depth on the laser power density is plotted in Figure 5.6. Clearly, as shown in 

Figure 5.6, the etching depth increases linearly with the laser power density. 

 

 

(a) 

Figure 5.5. Cross-section view of the crater under different laser power densities (a) 40.0 
GW/cm2 (b) 50.0 GW/cm2 (distance from the laser focus to the target surface is fixed at 3.0 

mm). 
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(b) 

Figure 5.5. Continued. 
 

 

Figure 5.6. Etching depth dependence on the laser power density (laser focus 3.0 mm away 
from the target surface). 
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5.3.3 Effect of Laser Focus Position 

 The effect of laser focus position was also investigated by changing the distance 

between the laser focus position and the target surface from 1.0 mm to 9.0 mm. According 

to Figure 5.2, the laser focus position is still inside the water since the water layer depth is 10 

mm. Due to the refractive index change at the air/water interface, the actual distance change 

should be around 1.33 mm to 12.0 mm. As indicated in Section 5.2, the plasma was 

observed at the air–water interface (solid ellipse in Figure 5.2). In this experiment, the laser 

power density was fixed at 70.0 GW/cm2. The cross-sectional view of the crater is shown in 

Figure 5.6. In this figure, the blurred lower part is the polymer and carbon fiber which are 

not affected by the single shot laser etching. The blurred part was introduced during the 

sample polishing process where a small height difference is left between the unaffected 

region and the laser process region to avoid damaging the carbon fiber. The dependence of 

the etching depth on the laser focus position is plotted in Figure 5.8. 

 As expected, the etching depth decreases with the increase of the distance between 

the laser focus and the target surface. It should be mentioned that there were quite a lot of 

broken fibers shown in the crater region when the laser focus is 1.0 mm away from the 

target surface, probably due to the very high energy input to the composite target, which not 

only evaporates the polymer but also ablates the carbon fiber. The broken fibers can be 

clearly seen in Figure 5.9. For the distance larger than 3.0 mm, no significant amount of 

broken fibers appears in the crater. Therefore, in the subsequent multi-shot experiments, the 

distance between the laser focus and the target surface was maintained at 3.0 mm to obtain 

the maximum possible crater depth without fiber damage. 

 



 128 

 
(a) 

 
(b) 

Figure 5.7. Cross-section view of crater for different distances from the laser focus to target 
surface (a) 1.0 mm (b) 5.0 mm (laser power density 70 GW/cm2). 
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Figure 5.8. Dependence of etching depth on the distance between laser focus and target 

surface (laser power density 70 GW/cm2). 
   

 

Figure 5.9. Broken fibers in the crater region (laser focus 1.0 mm away from target). 
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5.3.4 Effect of Multi-Shot Etching 

 Based on the previous two experiments, the best combination of the laser power 

density and distance between laser focus and target surface is chosen to be 70.0 GW/cm2 

and 3.0 mm in order to obtain maximum possible crater depth. The multi-shot effect was 

then investigated by irradiating the same spot with different pulse numbers. Figure 5.10 

shows the two SEM images of the craters formed by multiple laser shots. The dependence 

of the etching depth on the pulse number is shown in Figure 5.11. 

 As expected, the etching depth increases with the pulse number. The maximum 

depth can be as high as 350 μm with 50 laser shots. Clearly, the increase is not significant 

with the pulse number increasing from 20 to 50, which indicates that the maximum etching 

depth is around 350 μm even if more laser shots are employed.  

 This saturation behavior is due to the fact that there is a limit for the plasma 

expansion and plasma energy radiation into the composite material. With the increase of  the 

etching depth, more carbon fibers will appear in the plasma expansion path, which will have 

strong interaction with the plasma and absorb the plasma energy. Therefore, the plasma 

cannot propagate into the composite material very deep. The maximum etching depth is 

found to be around 350 μm under the experimental conditions in this work. 
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(a) 

 
(b) 

Figure 5.10. SEM images of crater after multiple laser shots (a) 20 shots (b) 50 shots (laser 
power density 70 GW/cm2, laser focus 3.0 mm away from the target surface). 

 
 

 



 132 

 
Figure 5.11. Etching depth dependence on the pulse number (laser power density 70 GW/cm2, 

laser focus 3.0 mm away from the target surface). 
 

5.4 Summary 

 Water breakdown plasma was used in this work to etch the surface layer of a carbon 

fiber reinforced composite sample. It is found that the polymer layer can be effectively 

removed by the plasma while the carbon fiber remains almost intact. The dependence of the 

etching depth on the laser power density, laser focus position, and the number of shots were 

also investigated in this work. The maximum etching depth is around 350 μm with 50 laser 

shots at laser power density of 70 GW/cm2. 

 The etching method proposed in this work could be used in the laser-based repair of 

composite material. By controlling the laser parameters, layer-by-layer etching of the polymer 

can be accomplished. This process has great potential in the aerospace industry where more 

and more composite materials are used. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

 
This chapter summarizes the conclusions in this nanosecond laser matter interaction 

research, as well as proposed future study directions. 

 

6.1 Conclusions 

Nanosecond laser ablation of metal targets in air and water was investigated through 

a self-contained hydrodynamic model under different laser fluences involving no-phase 

explosion and phase explosion. The predicted ablation depths agreed well with the literature 

data and experiments. A sharp increase in ablation rate is observed for nanosecond laser 

ablation of aluminum at around 10 J/cm2 with the occurrence of phase explosion for a 1064 

nm, 10 ns laser pulse. The ablation depth is found to be nearly independent of the laser pulse 

duration, while it decreases with the increase of laser wavelength. Deeper crater depths in 

water found in all the conditions studied in this work are due to the high-magnitude shock 

compression. 

Nanosecond laser ablation of aluminum and copper with phase explosion was 

investigated through a multi-scale model and experimental verification. The model 

prediction of the melt ejection behavior agrees well with the experimental observation in 

terms of the phase explosion starting time, particle expansion characteristics, and ablation 

depth. The commonly used ablation depth prediction criterion of 0.9 Tc is found to be not 
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correct for copper when phase explosion is involved, while it is reasonable for aluminum. In 

the cases considered in this work, 0.75 ~ 0.8 Tc is found to be a better criterion for copper.  

The model developed in this work has been shown to provide better capability of predicting 

the ablation depth and the associated ablation behavior with phase explosion. 

A 3-D finite element model with a confined plasma model has been developed and 

used to simulate the LSP process. By using these combined models, the indentation depth 

and residual stresses could be accurately calculated under different LSP conditions. Single 

shot, single-track overlapping, multi-track overlapping LSP experiments have been 

performed on various metals under different LSP conditions. The model prediction of 

indentation profiles and residual stresses in the depth direction provided good agreement 

with experimental data. It was found that higher laser power density can increase not only 

the peak residual stress but compressive zone depth. The overlapping ratio contributed to 

the peak residual stress while showing almost no effect on the compressive zone depth. 

Longer laser pulse resulted in larger compressive zone depths. Stress relaxation effect was 

also observed in overlapping LSP process. 

This work presented a model that offers a more complete and general solution for 

shock wave propagation and spallation in the laser shock peening process. In addition to the 

pressure shock wave and its propagation inside the solid materials, the model is also capable 

of calculating the transient stress history at the interface and the rear free surface velocity. 

The spallation threshold and damage zone location were also calculated for aluminum film 

and Cu/Ni system with different thickness of foils and various laser shock peening 

parameters. Single layer aluminum film showed low level spallation inside the film under a 

Gaussian pressure wave with the magnitude of 2.8 GPa and the pulse duration of 25 ns. 



 135 

Cu/Ni system presented negligible and substantial spallation near the interface region under 

low (1.4 GPa) and high pressure (3.7 GPa) loading, respectively. Good agreement was 

obtained between experimental and simulation results for the void distribution for both 

single layer and double-layer targets. 

Water breakdown plasma was used in this work to etch the surface layer of a carbon 

fiber reinforced composite sample. It is found that the polymer layer can be effectively 

removed by the plasma while the carbon fiber remains almost intact. The dependence of the 

etching depth on the laser power density, laser focus position, and the number of shots were 

also investigated in this work. The maximum etching depth is around 350 μm with 50 laser 

shots at laser power density of 70 GW/cm2. The etching method proposed in this work 

could be used in the laser-based repair of composite material. By controlling the laser 

parameters, layer-by-layer etching of the polymer can be accomplished. This process has 

great potential in the aerospace industry where more and more composite materials are used. 

 

6.2 Recommendations for Future Work 

Based on the current studies, several subjects are proposed for the future work: 

1) Multi-shot laser ablation. With the correct prediction of melt ejection behavior in 

the single shot laser ablation, the structural change introduced by the laser ablation process 

can be obtained, which could be used to investigate the multi-pulse laser ablation process. 

This multi-shot ablation process is of significant importance since it can give more insights 

into the overlapping laser shock peening process discussed in Chapter 3. 

2) Theoretical modeling of plasma etching process. As discussed in Chapter 4, the 

etching by the laser induced water breakdown plasma starts with laser-water interaction and 
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then becomes a thermal-kinetic process, which can be explained by the plasma-matter 

interaction (Pallav et al., 2011). Therefore, the plasma etching process can be modeled as a 

three-stage process: Water breakdown plasma formation; Water breakdown plasma 

expansion; and then material removal due to plasma-matter interaction. This theoretical 

model could provide better understanding of the thermal effect of the water breakdown 

plasma. 

3) Double-pulse laser ablation. With the experimental setup discussed in Chapter 5, 

the nanosecond and picosecond laser beams could be easily combined together to enhance 

the ablation efficiency. Also due to the localized ablation of picosecond laser, a cleaner, 

sharper crater could be generated with this double-pulse technique. 
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APPENDIX 

 Some additional experimental observations and MD/SPH prediction results for the 

copper cases in Chapter 4 are attached here. 

Case 1: laser fluence of 42 J/cm2 

 

   
(a)    (b)    (c)  

   
(d)   (e)    (f)  

Figure A.1. Experimental observation of melt ejection under laser fluence 42 J/cm2 (a) t = 50 
ns (b) t = 55 ns (c) t = 60 ns (d) t = 65 ns (e) t = 70 ns (f) t = 75 ns (copper target, 
laser beam coming from the top of the image, pulse duration 6 ns, 1064 nm, beam 

diameter 100 µm). 
 

0.1 mm 

Target Surface 
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Figure A.2. SPH calculation results showing the melt ejection for copper (laser fluence 42 

J/cm2, wavelength 1064 nm, pulse duration 6 ns, beam diameter 100 µm). 
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Case 2: laser fluence of 48 J/cm2 
 

 
Figure A.3. SPH calculation results showing the melt ejection for copper (laser fluence 48 

J/cm2, wavelength 1064 nm, pulse duration 6 ns, beam diameter 100 µm). 
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Case 3: laser fluence of 54 J/cm2 

 

   
(a)    (b)    (c)  

   
(d)    (e)    (f)  

Figure A.4. Experimental observation of melt ejection under laser fluence 54 J/cm2 (a) t = 50 
ns (b) t = 55 ns (c) t = 60 ns (d) t = 65 ns (e) t = 70 ns (f) t = 75 ns (copper target, 
laser beam coming from the top of the image, pulse duration 6 ns, 1064 nm, beam 

diameter 100 µm). 
 

 
Figure A.5. SPH calculation results showing the melt ejection for copper (laser fluence 54 

J/cm2, wavelength 1064 nm, pulse duration 6 ns, beam diameter 100 µm). 
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Figure A.5. Continued. 
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