10,983 research outputs found

    Design, analysis and kinematic control of highly redundant serial robotic arms

    Get PDF
    The use of robotic manipulators in industry has grown in the last decades to improve and speed up industrial processes. Industrial manipulators started to be investigated for machining tasks since they can cover larger workspaces, increasing the range of achievable operations and improving flexibility. The company Nimbl’Bot developed a new mechanism, or module, to build stiffer flexible serial modular robots for machining applications. This manipulator is a kinematic redundant robot with 21 degrees of freedom. This thesis thoroughly analysis the Nimbl’Bot robot features and is divided into three main topics. The first topic regards using a task priority kinematic redundancy resolution algorithm for the Nimbl’Bot robot tracking trajectory while optimizing its kinetostatic performances. The second topic is the kinematic redundant robot design optimization with respect to a desired application and its kinetostatic performance. For the third topic, a new workspace determination algorithm is proposed for kinematic redundant manipulators. Several simulation tests are proposed and tested on some Nimbl’Bot robot designs for each subjects

    Sarrus-inspired deployable polyhedral mechanisms

    Get PDF
    Deployable polyhedral mechanisms (DPMs) have witnessed flourishing growth in recent years because of their potential applications in robotics, space exploration, structure engineering, and so forth. This paper firstly presents the construction, mobility and kinematics of a family of Sarrus-inspired deployable polyhedral mechanisms. By carrying out expansion operation and implanting Sarrus linkages along the straight-line motion paths, deployable tetrahedral, cubic and dodecahedral mechanisms are identified and constructed following tetrahedral, octahedral, and icosahedral symmetry, respectively. Three paired transformations with synchronized radial motion between Platonic and Archimedean polyhedrons are revealed, and their significant symmetric properties are perfectly remained in each work configuration. Subsequently, with assistant of equivalent prismatic joints, the equivalent analysis strategy for mobility of multiloop polyhedral mechanisms is proposed to significantly simplify the calculation process. This paper hence presents the construction method and equivalent analysis of the Sarrus-inspired DPMs that are not only valuable in theoretical investigation, but also have great potential in practical applications such as mechanical metamaterials, deployable architectures and space exploration

    Influence of Fault System Geometry and Slip Rates on the Relative Role of Coseismic and Interseismic Stresses on Earthquake Triggering and Recurrence Variability

    Get PDF
    We model Coulomb stress transfer (CST) due to 30 strong earthquakes occurring on normal faults since 1509 CE in Calabria, Italy, including the influence of interseismic loading, and compare the results to existing studies of stress interaction from the Central and Southern Apennines, Italy. The three normal fault systems have different geometries and long‐term slip‐rates. We investigate the extent to which stress transfer can influence the occurrence of future earthquakes and what factors may govern the variability in earthquake recurrence in different fault systems. The Calabrian, Central Apennines, and Southern Apennines fault systems have 91%, 73%, and 70% of faults with mean positive cumulative CST in the time considered; this is due to fewer faults across strike, more across strike stress reductions, and greater along‐strike spacing in the three regions respectively. In regions with close along strike spacing or few faults across strike, such as Calabria and Southern Apennines, the stress loading history is mostly dominated by interseismic loading and most faults are positively stressed before an earthquake occur on them (96% of all faults that ruptured in Calabria; 94% of faults in Southern Apennines), and some of the strongest earthquakes occur on faults with the highest mean cumulative stress of all faults prior to the earthquake. In the Central Apennines, where across strike interactions are the predominant process, 79% of earthquakes occur on faults positively stressed. The results highlight that fault system geometry plays a central role in characterizing the stress evolution associated with earthquake recurrence

    Techniques for high-multiplicity scattering amplitudes and applications to precision collider physics

    Get PDF
    In this thesis, we present state-of-the-art techniques for the computation of scattering amplitudes in Quantum Field Theories. Following an introduction to the topic, we describe a robust framework that enables the calculation of multi-scale two-loop amplitudes directly relevant to modern particle physics phenomenology at the Large Hadron Collider and beyond. We discuss in detail the use of finite fields to bypass the algebraic complexity of such computations, as well as the method of integration-by-parts relations and differential equations. We apply our framework to calculate the two-loop amplitudes contributing to three process: Higgs boson production in association with a bottom-quark pair, W boson production with a photon and a jet, as well as lepton-pair scattering with an off-shell and an on-shell photon. Finally, we draw our conclusions and discuss directions for future progress of amplitude computations

    Properties of central stars of planetary nebulae with distances in Gaia DR2

    Get PDF
    Context. We have compiled a catalogue of central stars of planetary nebulae (CSPN) with reliable distances and positions obtained from Gaia Data Release 2 (DR2) astrometry. Distances derived from parallaxes allow us to analyse the galactic distribution and estimate other parameters such as sizes, kinematical ages, bolometric magnitudes, and luminosities. Aims. Our objective is to analyse the information regarding distances together with other available literature data about photometric properties, nebular kinematics, and stellar effective temperatures to throw new light on this rapid and rather unknown evolutionary phase. We seek to understand how Gaia distances compare with other indirect methods commonly used and, in particular, with those derived from non-local thermodynamic equilibrium (non-LTE) models; how many planetary nebulae (PNe) populate the Galaxy; and how are they spatially distributed. We also aim to comprehend their intrinsic luminosities, range of physical sizes of the nebulae; how to derive the values for their kinematical ages; and whether those ages are compatible with those derived from evolutionary models. Methods. We considered all PNe listed in catalogues from different authors and in Hong Kong/AAO/Strasbourg/Hα (HASH) database. By X-matching their positions with Gaia DR2 astrometry we were able to identify 1571 objects in Gaia second archive, for which we assumed distances calculated upon a Bayesian statistical approach. From those objects, we selected a sample of PNe with good quality parallax measurements and distance derivations, we which refer to as our Golden Astrometry PNe sample (GAPN), and obtained literature values of their apparent sizes, radial and expansion velocities, visual magnitudes, interstellar reddening, and effective temperatures. Results. We found that the distances derived from DR2 parallaxes compare well with previous astrometric derivations of the United States Naval Observatory and Hubble Space Telescope, but that distances inferred from non-LTE model fitting are overestimated and need to be carefully reviewed. From literature apparent sizes, we calculated the physical radii for a subsample of nebulae that we used to derive the so-called kinematical ages, taking into account literature expansion velocities. Luminosities calculated with DR2 distances were combined with literature central stars Teff values in a Hertzsprung–Russell (HR) diagram to infer information on the evolutionary status of the nebulae. We compared their positions with updated evolutionary tracks finding a rather consistent picture. Stars with the smallest associated nebular radii are located in the flat luminosity region of the HR diagram, while those with the largest radii correspond to objects in a later stage, getting dimmer on their way to become a white dwarf. Finally, we commented on the completeness of our catalogue and calculated an approximate value for the total number of PNe in the Galaxy.Agencia Estatal de Investigación | Ref. ESP2016-80079-C2-2-RAgencia Estatal de Investigación | Ref. RTI2018-095076-B-C22Xunta de Galicia | Ref. ED431B 2018/42Agencia Estatal de Investigación | Ref. AYA2017-88254-PAgencia Estatal de Investigación | Ref. BES-2017-08312

    Biomechanics in anthropology

    Get PDF
    Biomechanics is the set of tools that explain organismal movement and mechanical behavior and links the organism to the physicality of the world. As such, biomechanics can relate behaviors and culture to the physicality of the organism. Scale is critical to biomechanical analyses, as the constitutive equations that matter differ depending on the scale of the question. Within anthropology, biomechanics has had a wide range of applications, from understanding how we and other primates evolved to understanding the effects of technologies, such as the atlatl, and the relationship between identity, society, culture, and medical interventions, such as prosthetics. Like any other model, there is great utility in biomechanical models, but models should be used primarily for hypothesis testing and not data generation except in the rare case where models can be robustly validated. The application of biomechanics within anthropology has been extensive, and holds great potential for the future
    • …