71 research outputs found

    k-ordered hamiltonicity of iterated line graphs

    Get PDF
    AbstractA graph G of order n is k-ordered hamiltonian, 2≤k≤n, if for every sequence v1,v2,…,vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1,v2,…,vk in this order. In this paper, we generalize two well-known theorems of Chartrand on hamiltonicity of iterated line graphs to k-ordered hamiltonicity. We prove that if Ln(G) is k-ordered hamiltonian and n is sufficiently large, then Ln+1(G) is (k+1)-ordered hamiltonian. Furthermore, for any connected graph G, which is not a path, cycle, or the claw K1,3, there exists an integer N′ such that LN′+(k−3)(G) is k-ordered hamiltonian for k≥3

    Master index to volumes 251-260

    Get PDF

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s≥0s \ge 0 and t≥0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,Y⊆E(G)X, Y \subseteq E(G) with ∣X∣≤s|X|\le s and ∣Y∣≤t|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t≥3t \ge 3 in terms of edge-connectivities, and show that when t≥3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset Y⊆E(G)Y \subseteq E(G) with ∣Y∣≤κ2˘7(G)−1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for G−YG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+t≤κ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)≥3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+t≤κ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer s≤∣V(G)∣−3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any k≤sk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r≥4r\ge 4 even, the minimum degree δ≥k≥2\delta\ge k\ge 2 and k≠r+2k\neq r+2, if λ2(H)≤(r−1)δ−r2(k−1)n4(r+1)(n−r−1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)≥k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future

    Resilience for tight Hamiltonicity

    Get PDF
    We prove that random hypergraphs are asymptotically almost surely resiliently Hamiltonian. Specifically, for any γ›0\gamma›0 and k≥3k\ge3, we show that asymptotically almost surely, every subgraph of the binomial random kk-uniform hypergraph G(k)(n,nγ−1)G^{(k)}\big(n,n^{\gamma-1}\big) in which all (k−1)(k-1)-sets are contained in at least (12+2γ)pn\big(\tfrac12+2\gamma\big)pn edges has a tight Hamilton cycle. This is a cyclic ordering of the nn vertices such that each consecutive kk vertices forms an edge.Mathematics Subject Classifications: 05C80, 05C35Keywords: Random graphs, hypergraphs, tight Hamilton cycles, resilienc

    On the power of symmetric linear programs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We consider families of symmetric linear programs (LPs) that decide a property of graphs (or other relational structures) in the sense that, for each size of graph, there is an LP defining a polyhedral lift that separates the integer points corresponding to graphs with the property from those corresponding to graphs without the property. We show that this is equivalent, with at most polynomial blow-up in size, to families of symmetric Boolean circuits with threshold gates. In particular, when we consider polynomial-size LPs, the model is equivalent to definability in a non-uniform version of fixed-point logic with counting (FPC). Known upper and lower bounds for FPC apply to the non-uniform version. In particular, this implies that the class of graphs with perfect matchings has polynomial-size symmetric LPs while we obtain an exponential lower bound for symmetric LPs for the class of Hamiltonian graphs. We compare and contrast this with previous results (Yannakakis 1991) showing that any symmetric LPs for the matching and TSP polytopes have exponential size. As an application, we establish that for random, uniformly distributed graphs, polynomial-size symmetric LPs are as powerful as general Boolean circuits. We illustrate the effect of this on the well-studied planted-clique problem.Peer ReviewedPostprint (author's final draft
    • …
    corecore