
On the Power of Symmetric Linear Programs
Albert Atserias

Universitat Politècnica de Catalunya
Anuj Dawar

University of Cambridge
Joanna Ochremiak

University of Cambridge

Abstract—We consider families of symmetric linear pro-

grams (LPs) that decide a property of graphs (or other

relational structures) in the sense that, for each size of

graph, there is an LP defining a polyhedral lift that

separates the integer points corresponding to graphs with

the property from those corresponding to graphs without

the property. We show that this is equivalent, with at

most polynomial blow-up in size, to families of symmetric

Boolean circuits with threshold gates. In particular, when

we consider polynomial-size LPs, the model is equivalent

to definability in a non-uniform version of fixed-point logic

with counting (FPC). Known upper and lower bounds for

FPC apply to the non-uniform version. In particular, this

implies that the class of graphs with perfect matchings

has polynomial-size symmetric LPs while we obtain an

exponential lower bound for symmetric LPs for the class

of Hamiltonian graphs. We compare and contrast this

with previous results (Yannakakis 1991) showing that

any symmetric LPs for the matching and TSP polytopes

have exponential size. As an application, we establish that

for random, uniformly distributed graphs, polynomial-size

symmetric LPs are as powerful as general Boolean circuits.

We illustrate the effect of this on the well-studied planted-

clique problem.

I. INTRODUCTION

The theory of linear programming is a powerful and
widely-used tool for studying combinatorial optimization
problems. By the same token, the limitations of such
methods are an important object of study in complexity
theory. A major step in this line of work was the seminal
paper of Yannakakis [1] that initiated the study of
symmetric linear programs for combinatorial problems.

A polytope in Rn is the convex hull of a finite set of
points in Rn. Dually, it is the intersection of the finite
number of half-spaces that define its facets. Consider
a language S ✓ {0, 1}⇤ and let Sn ✓ {0, 1}n be the
collection of strings in S of length n. We can associate
with Sn the polytope Pn ✓ Rn that is the convex hull of
the points x 2 Rn with 0-1 coordinates that correspond
to the strings in Sn. If this polytope has a succinct
representation as a system of linear inequalities, we
can use linear programming methods to optimize linear
functions over Sn. In general, a succinct representation
might mean that its size grows polynomially with n.
Thus, the size of the polytope Pn, say measured by

the number of its facets, is an important measure of the
complexity of S.

In general, even when Pn has a large number of facets,
it may admit a succinct representation as the projection
onto Rn of a polytope Q ✓ Rn+m of higher dimension.
In this situation, we call Q a lift of Pn and Pn a
shadow of Q. This is the basis for so-called extended
formulations of combinatorial optimization problems. It
allows us to optimize over Sn using linear programs
with auxiliary variables. A classic example is the convex
hull of all strings in {0, 1}n of odd Hamming weight,
known as the parity polytope, which has exponentially
many facets but has an extended formulation using only
polynomially many inequalities. An interesting feature
of many such examples of small extended formulations
is that they are strongly symmetric, i.e., any basic
automorphism of the shadow polytope extends to an
automorphism of its lift.

Yannakakis [1] established lower bounds on the size
of symmetric lifts for the perfect matching polytope and
the travelling salesman polytope. The perfect matching
polytope on 2n vertices is the convex hull of points in
{0, 1}E where E =

�[2n]
2

�
which represent the edge sets

of a perfect matching on 2n vertices. Yannakakis shows
that any symmetric lift Q of this polytope necessarily has
a number of facets that is exponential in n. Here “sym-
metric” means that any permutation of the n vertices
extends to an automorphism of Q. This lower bound is
then used to show a similar lower bound for symmetric
lifts of the Hamilton cycle polytope (also known as the
travelling salesman polytope). This is the convex hull
of points in {0, 1}E where E =

�[n]
2

�
which are the

edge sets of Hamilton cycles of length n. The conclusion
is that any attempt to solve the travelling salesman
problem by representing it as a linear program in a
natural way (i.e. respecting the symmetries of the graph)
is doomed to be exponential. These results launched a
long study of extended formulations of combinatorial
problems. Relatively recently, exponential lower bounds
have been established even without the assumption of
symmetry [2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/237678394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

There is another way of representing a language S ✓
{0, 1}⇤ by a family of polytopes that is also considered
by Yannakakis. Say that Sn is recognized by a polytope
Pn if Sn ✓ Pn and {0, 1}n \ Sn is disjoint from Pn. In
particular, the convex hull of Sn recognizes Sn, but it
may well be that there are more succinct polytopes that
also do. Indeed, Yannakakis shows that for any language
S decidable in polynomial time, there is a family of
polynomial-size polytopes whose shadows recognize Sn.
Thus, we cannot expect to prove exponential lower
bounds on such polytopes without separating P from
NP. Note that the assumption of symmetry has been
dropped here. What can we say about symmetric lifts of
polytopes recognizing Sn? Yannakakis does not consider
this question and it does not appear to have been studied
in the literature. This is the question that we take up in
this paper.

We consider families of symmetric polytopes for rec-
ognizing classes of graphs (or other relational structures).
This gives an interesting contrast with the results of Yan-
nakakis. Our results show that there is a polynomial-size
family of symmetric polytopes whose shadows recognize
the class of graphs that contain a perfect matching. On
the other hand, there is no family of symmetric polytopes
of sub-exponential size whose shadows recognize the
class of graphs with a Hamiltonian cycle.

We obtain these specific upper and lower bounds by
relating the power of symmetric linear programs to two
other natural models of symmetric computation, based
respectively on logic and circuits. To be precise, we show
that families of symmetric polytope lifts for recognizing
a class of structures are equivalent to families of sym-
metric Boolean circuits with threshold gates, in the sense
that there are translations between them with at most
a polynomial blow-up in size in either direction. This
places symmetric linear programs squarely in the context
of a fairly robust notion of symmetric computation that
has recently emerged. It was shown in [3] that P-uniform
families of symmetric circuits with threshold gates are
equivalent to fixed-point logic with counting (FPC),
a well-studied logic in descriptive complexity theory
(see [4]).

Our translation from circuits to linear programs is
based on that given by Yannakakis, but we need to
preserve symmetry and, for threshold gates, this poses
a significant challenge. To construct symmetric linear
programs that enforce the values of threshold gates we
need a sweeping generalization of the construction of
symmetric lifts of the parity polytope. In the other
direction, we make a detour through logic. That is,

we show how a family of symmetric polytopes can be
translated into a family of formulas of first-order logic
with counting, with the number of variables and the
size being tightly bounded based on the size of the
polytopes. The translation is based on a support theorem,
which allows us to interpret in the logic, given a linear
program P as advice, a version of P for a particular input
structure. This then allows us to use the result of [5] to
the effect that solvability of linear programs is definable
in FPC.

It is interesting to compare our results with the
equivalence between FPC and P-uniform symmetric
threshold circuits established in [3]. Our results are
stated for the non-uniform model and it is not clear that
they can be made uniform. In particular, our translation
from linear programs to formulas of counting logic,
while it preserves size, is not necessarily computable
in polynomial time. It involves symmetry checks that
are as hard as the graph isomorphism problem. On the
other hand, the results in [3] were stated for polynomial-
size families of circuits and we are able to extend them
to sizes up to weakly exponential. The translation from
circuits to formulas given in [3] was based on a support
theorem proved there which only worked for circuit sizes
bounded by O(2n

1/3

). We use a stronger support theorem
(proved in Section IV-B) which enables us to prove the
translation from families of symmetric linear programs
to formulas of counting logic for sizes up to O(21�✏)
for arbitrarily small ✏.

The upper and lower bounds for symmetric linear
programs that we obtain (such as for the perfect match-
ing and the Hamilton cycle problem, respectively) are
direct consequences of equivalence with the non-uniform
counting logic. For instance, it is known [5] that perfect
matching is definable in FPC and it follows that it
is recognized by a polynomial-size family of symmet-
ric polytope lifts. Inexpressibility results for FPC are
usually established by showing lower bounds on the
number of variables required to express a property in
counting logic, and they yield lower bounds even in
the non-uniform setting. In particular, we tighten known
lower bounds on Hamiltonicity to show that it cannot
be expressed with a sub-linear number of variables
and hence with sub-exponential size symmetric polytope
lifts. Similar exponential lower bounds for other NP-
complete problems (such as graph 3-colourability and
Boolean satisfiability) follow from known bounds in
counting logic. Indeed, exponential lower bounds for
some problems in P (such as solving systems of linear
equations over finite fields) also follow. It should be

2

noted that this establishes exponential lower bounds
also on symmetric threshold circuits, a problem left
open in [3], where superpolynomial lower bounds were
established.

Another consequence can be derived from the con-
nection with FPC. We know that FPC can express all
polynomial-time properties of almost all structures under
a uniform distribution (see [6]). This can be used to show
that FPC can solve the planted clique problem if, and
only if, the problem is solvable in polynomial time. The
planted clique problem is that of distinguishing a random
graph from one in which a clique has been planted. It is
a widely studied problem in the context of lower bounds
on linear programming methods (see e.g. [7]–[10]). It is
a consequence of our results that if this problem can be
solved in polynomial time, then it is solvable by polyno-
mial sized symmetric linear programs. This is significant
because a number of lower bounds have been established
for the planted clique problem for a variety of models of
linear and semidefinite programming, notably the well-
studied Lovász-Schrijver, Sherali-Adams and Lasserre
hierarchies. It is noteworthy that all of these hierarchies
yield symmetric linear or semidefinite programs. Our
results show that these lower bounds cannot be extended
to general symmetric linear programs without separating
P from NP.

In Section II we establish some preliminary defini-
tions and notation. Section III gives the translation of
circuits to linear programs. This translation is carried
out for a very general notion of symmetry. For the
reverse translation, from linear programs to logic given
in Section IV, we restrict to the natural symmetries on
graphs and relational structures. The main result and
its consequences, including upper and lower bounds are
presented in Section V.

Some details are omitted due to space limitations. A
full version of the paper is included in the Appendix.

II. PRELIMINARIES

In this section we introduce notions specific to this
paper. For all standard definitions see the preliminaries
section in the full version and references therein.

For n 2 N, we write [n] for {1, . . . , n}, where [0] = ;.
For a set X and 0  n  |X|, by X(n) we denote the
set of all n-tuples of distinct elements of X . Logarithms
are base 2 with the convention that log(0) = 0.
Group actions. For any G-set U , the action of G on the
set of indexed variables {xu}u2U is given by: ⇡ · xu =
x⇡·u, for any ⇡ 2 G and u 2 U . This extends to vectors
of indexed variables. For vectors of variables we use the
notation x⇡ instead of ⇡ ·x. We also define an action of

G on RU as follows. Let {eu}u2U be the standard basis.
For any ⇡ 2 G and any real vector a =

P
u2U

aueu, we
put ⇡ ·a =

P
u2U

aue⇡·u. Here again we use a⇡ instead
of ⇡ · a. This extends to subsets of real vector spaces:
for P ✓ RU we write P⇡ instead of ⇡ · P .

For any G-set U and any H-set W , the product group
G⇥H acts on the disjoint union U

.

[W : given ⇡ 2 G
and � 2 H , we have (⇡,�) · u = ⇡ · u, for u 2 U , and
(⇡,�) · w = � · w, for w 2 W . Of particular interest to
us is the induced action of G⇥H on RU ⇥RW and on
sets of variables indexed by U

.

[W .

Logic and structures. For definitions of (relational)
vocabularies, first-order logic and its various extensions
with counting and fixed-point operators see the full
version of this paper and references therein.

Rational numbers are represented by structures of
a single-sorted vocabulary LQ with three monadic re-
lation symbols and one binary relation symbol . If
q = (�1)bn/d, where n, d 2 N and b 2 {0, 1},
then the domain of an LQ-structure that represents q is
{0, . . . , N} where N 2 N is large enough to represent
the numerator and denominator with N bits. The binary
relation  is interpreted by the natural linear order on
{0, . . . , N}. The first of the monadic relation symbols of
LQ is used to represent the sign b of q by having it empty
if, and only if, b = 0. The other two monadic relation
symbols of LQ are used to represent the bit positions on
which the numerator n and the denominator d have a
one. We use zero denominator to represent ±1.

If I1, . . . , Id are index sets, tensors u 2 QI1⇥···⇥Id

are represented by many-sorted structures, with one sort
Ī for each index set, and one sort B̄ for a domain
{0, . . . , N} of bit positions. The vocabulary Lvec,d of
these structures has a binary relation symbol  for the
natural linear order on {0, . . . , N} and three d + 1-ary
relation symbols Ps, Pn and Pd for encoding the signs
and the bits of the numerators and the denominators of
the entries of the tensor. Matrices A 2 QI⇥J and vectors
a 2 QI are special cases of these.

Polytopes, lifts, and shadows. A polytope is a set
of the form P = {x 2 RU : Ax  b}, where
A 2 RV⇥U is a constraint matrix, and b 2 RV is a
vector. Typically A and b can be chosen to have rational
entries, in which case the size of P is (|U | + 1)|V |b,
where b is the maximum number of bits it takes to write
all the numerators and all the denominators of the entries
of A and b in binary.

If we think of x = (xu)u2U as a sequence of vari-
ables, then P is represented by a sequence of linear
constraints (�v)v2V each of the form aT

v
x  bv . If U

3

is a G-set, then for any �v of the form avx  bv , we
write �⇡

v
for the linear constraint avx⇡  bv . Note that

the sequence (�⇡
v
)v2V defines P⇡ ✓ RU , which is again

a polytope.
If P ✓ RU⇥RW is a polytope, and Q is its projection

into RU , then we say that Q is a shadow of P , and that
P is a lift of Q. If A,B ✓ {0, 1}U are disjoint, then Q
separates A from B if A ✓ Q and B ✓ RU \ Q. We
also say that P is a lift that separates A from B. If Q
separates A from its complement A = {0, 1}U \A, then
Q recognizes A, and P is a lift that recognizes A.

Let U be a G-set. A polytope P ✓ RU ⇥ RW is G-
symmetric if for every ⇡ 2 G there exists � 2 SymW

such that P (⇡,�) = P . If additionally we are given an
action of the group G on W such that P (⇡,⇡) = P , then
the polytope P is G-symmetric with respect to this ac-
tion. A pair of permutations (⇡,�) 2 SymU ⇥ SymW

such that P (⇡,�) = P is an automorphism of P .
For n 2 N, if [n]2 comes with the natural action of

the symmetric group Symn, then any Symn-symmetric
polytope P ✓ R[n]2⇥RW is said to be graph-symmetric.
Any set A ✓ {0, 1}[n]2 recognised by a graph-symmetric
polytope lift P ✓ R[n]2⇥RW is invariant with respect to
the action of the group Symn, i.e., for any a 2 A and any
⇡ 2 Symn, we have a⇡ 2 A. P can be therefore seen
as recognising a class of graphs with n-vertices. If we
take a graph G with the set of vertices V of size n, fix a
bijection f from [n] to V , and define a = (aij)i,j2[n] 2
{0, 1}[n]2 by: aij = 1 if, and only if, there is an edge
from f(i) to f(j) in G, then G belongs to the class
recognised by P if and only if a 2 A. Since A is a
Symn-set, this does not depend on the choice of f .

More generally, we consider Symn-symmetric poly-
tope lifts recognising properties of arbitrary L-structures.
For any n 2 N and any single-sorted vocabulary L,
let L(n) be the disjoint union of [n]ar(R) over all
relation symbols R in L. Since L(n) comes with the
natural action of the group Sym(n), we can talk about
Symn-symmetric polytopes over RL(n) ⇥ RW . Any
such polytope is called L-symmetric. Similarly as in
the previous paragraph, L-symmetric polytope lifts over
RL(n) ⇥ RW recognise classes of L-structures with n-
element domains.

Boolean circuits. A Boolean threshold circuit is one
whose gates are labelled by NOTs, unbounded degree
ANDs, unbounded degree ORs, or unbounded degree
thresholds THn,k, where THn,k(z1, . . . , zn) outputs 1
if, and only if, the number of 1’s in the input z1, . . . , zn
is at least k.

If U is a G-set, then a circuit C with inputs (xu)u2U

and the set W of gates is G-symmetric if for every ⇡ 2 G
there exists � 2 SymW such that C(⇡,�) = C, where by
C(⇡,�) we mean that the gates of the circuit are permuted
according to �, the labels from {xu}u2U are permuted
according to ⇡, and none of the other labels is moved.
A circuit with U = L(n) is called L-symmetric if it
is Symn-symmetric, with the natural action of Symn

on L(n). As for polytopes, we consider L-symmetric
circuits as recognizing classes of L-structures on abstract
sets V of vertices through bijections f : [n] ! V . In the
case of graphs, for example, in which L(n) = [n]2, we
say that such a circuit accepts a graph G with the set
of vertices V of size n if for some, and hence every,
bijection f : [n] ! V it holds that C(a) = 1, where a
is the vector that describes the image of G under f�1,
as in the previous section.

III. FROM CIRCUITS TO LPS

In this section we prove the half of the equivalence
that takes symmetric circuits with threshold gates into
symmetric LPs. That is:

Lemma 1. If C is a class of L-structures that is
recognized by a family of L-symmetric Boolean threshold
circuits of size s(n), then C is recognized by a family
of L-symmetric LP lifts of size s(n)O(1). In addition, if
the Boolean circuits do not have threshold gates, then
the size of the LP lifts is O(s(n)).

The main step in the construction is the simulation of
the threshold gates. The naı̈ve approach by which each
threshold gate is replaced by an equivalent AND-OR-
NOT circuit will not work: it is known that any symmet-
ric such circuit that computes the majority function must
have superpolynomial size. This follows from Theorem 2
in [3] and a standard Ehrenfeucht-Fraissé argument. We
need an alternative approach. As a step towards our goal,
first we need to generalize the so-called Parity Polytope
from Yannakakis [1].

A. The truncated parity polytope
Yannakakis gives a polynomial-size symmetric poly-

tope lift of the parity polytope PPn defined as the convex
hull of all binary strings of length n with an odd number
of ones. We adapt the construction to what we call the
truncated parity polytope.

For each n � 1 and t 2 [n], let EX(n, t) be the
convex hull of all strings in {0, 1}n with exactly t ones.
By a standard ±✏ argument, or a standard dimension
argument, one can see that EX(n, t) is defined by its
direct LP relaxation:

P
n

k=1 xk = t with 0  xk  1 for
each k 2 [n] (see full version in Appendix). For each

4

integer n � 1, let |n| be the number of bits it takes
to write n in binary. For each pair of integers n � 1
and q 2 {0, . . . , |n|�1} let PP(n, q) be the convex hull
of all strings x 2 {0, 1}n satisfying b2�q

P
n

k=1 xkc ⌘
1 (mod 2). Note that a vector x 2 Rn is in PP(n, q) if,
and only if, x =

P
t,r

wt,ryt,r where each vector yt,r is
in EX(n, 2q(2t+1)+ r), and the wt,r are non-negative
coefficients that add up to one, with (t, r) ranging over
the set of pairs of integers with t 2 {0, . . . , bn/2q+1c}
and r 2 {0, . . . , 2q � 1}. We introduce variables wt,r

and zt,r,i for each (t, r) 2 T and each i 2 N , where
T = {0, . . . , bn/2q+1c} ⇥ {0, . . . , 2q � 1} and N =
{1, . . . , n}, with the intention that zt,r,i = wt,ryt,r,i
for appropriate values yt,r,i that we do not care to
actually get. The linear program that achieves this is the
following:
P

(t,r)2T
wt,r = 1

0  wt,r  1 (t, r) 2 TP
(t,r)2T

zt,r,i = xi i 2 NP
i2N

zt,r,i = (2q(2t+ 1) + r)wt,r (t, r) 2 T
0  zt,r,i  wt,r t 2 T, i 2 N

The symmetry of this linear program with respect to the
x-variables is obvious: given ⇡ 2 Symn, let � map zt,r,i
to zt,r,⇡(i) and leave every other variable in place. The
polytope PP(n, q) has the following interesting feature:

Claim: If x1, . . . , xn�1 2 {0, 1} and
P

n�1
k=1 xk ⌘

�1 (mod 2q), then there exists a unique xn in R
such that (x1, . . . , xn) is in PP(n, q), and moreover xn

is the unique bit in {0, 1} that makes the truncation
b2�q

P
n

k=1 xkc odd.

For the existence just take xn 2 {0, 1} so that the
truncation b2�q

P
n

k=1 xkc is odd, which must exist
by the assumption that

P
n�1
k=1 xk ⌘ �1 (mod 2q).

The uniqueness follows once we show that every xn

for which the extension vector (x1, . . . , xn) belongs
to PP(n, q) is in {0, 1}, and again the assumption
that

P
n�1
k=1 xk ⌘ �1 (mod 2q). For a proof that

such an xn is in {0, 1} it suffices to show that if
(x1, . . . , xn) 2 PP(n, q) satisfies the conditions, then
it is an extreme point. If it were not an extreme point
then it would be a non-trivial combination of at least
two extreme points and, whenever x1, . . . , xn�1 are all
in {0, 1}, only two candidates remain: (x1, . . . , xn�1, 0)
and (x1, . . . , xn�1, 1); otherwise some xi with 1  i 
n � 1 would be strictly between 0 and 1. However,
assuming that

P
n�1
k=1 xk ⌘ �1 (mod 2q), at least

one of these extreme points must have even truncation
b2�q

P
n

k=1 xkc, and hence not even belong to PP(n, q);
a contradiction.

B. Counting gates
The goal in this subsection is to write a polynomial-

size symmetric linear program that can be used
to simulate the truth-table of exact counting gates
EXn,t(x1, . . . , xn), which outputs 1 if the sum of the n
input bits is exactly t, and 0 otherwise. We use the
truncated parity polytopes to compute the bits of the
binary representation of

P
n

k=1 xi, and then compare the
result with the bits of the binary representation of t.

First consider the following sequence of linear pro-
grams which depend only on n and not on t:

(x, 1(2
q), z(1)1 , . . . , z(2

q�1)
q

, z̄q+1) 2 PP(n+ 2q+1, q)

for q = 0, . . . , |n|� 1, where z̄q+1 = 1� zq+1 and, for
` � 1, the notation a(`) denotes the string a, a, . . . , a of
length `. We claim the following property:

Claim: If x1, . . . , xn 2 {0, 1}, then there is a unique vec-
tor (z1, . . . , z|n|) 2 R|n| which together with x1, . . . , xn

is a solution to all, and in this solution we have zk 2
{0, 1} for all k, and

P
n

k=1 xk =
P|n|

k=1(1� zk)2k�1; in
other words, z1, . . . , z|n| are the flips of the bits of the
binary representation of

P
n

k=1 xk, listed from least to
most significant bit.

From now on in this proof, let X =
P

n

k=1 xk. The
first part of the claim follows from the corresponding
property of PP(n, q)’s, and induction on q. The second
part is proved by showing that z1, . . . , zq+1 are all in
{0, 1} and

X ⌘
q+1X

k=1

(1� zk)2
k�1 (mod 2q+1) (1)

also by induction on q. For q = 0 the claim follows
from PP(n + 2, 0) = PP(n + 2). For larger q it
is a matter of putting things together and using the
induction hypothesis in the right place (see full version
in Appendix).

Now, exact-t counting gates can be expressed using
an additional linear program that simulates an AND
gate to compare the bits z1, . . . , z|n| with (the flips of)
the bits of the binary representation of t. The LP for
the AND gate is described in the next section. We
encapsulate the main property of the resulting linear
program EXn,t(x1, . . . , xn, y):

Lemma 2. The linear program EXn,t(x1, . . . , xn, y)
has size polynomial in n, is symmetric with respect to the
group of permutations of x1, . . . , xn, y that fix y, and has
the following property: If x1, . . . , xn are all in {0, 1},
then there is a unique y 2 R such that (x1, . . . , xn, y)

5

can be extended to a feasible solution, and this y is the
unique output bit of the corresponding gate evaluated on
inputs x1, . . . , xn.

Proof. The bound on the size follows by inspection.
The symmetry with respect to the group of permutations
of x1, . . . , xn, y that fix y follows from the symmetry
claims for the truncated parity polytopes, together with
the extension that keeps each zi-variable in place. For
the main property we rely on the claim and the main
property of the LP for AND, stated below.

C. The construction
Let us recall how AND and NOT gates are represented

by LPs. Define:

AND(x1, . . . , xn, y) NOT(x, y)
y �

P
n

i=1 xi � n+ 1 y = 1� x
y  xi 0  x  1
0  xi  1 0  y  1.
0  y  1.

The main properties are summarized:

Lemma 3. The linear programs AND(x1, . . . , xn, y)
and NOT(x1, y) have size linear in n, are symmetric
with respect to the group of permutations of its variables
that fix y, and have the following property: If x1, . . . , xn

are all in {0, 1}, with n = 1 for NOT, then there is a
unique y 2 R that makes (x1, . . . , xn, y) feasible, and
this y is the unique output bit of the corresponding gate
evaluated on inputs x1, . . . , xn.

Proof. For NOT it is obvious. For AND, easy to see.

We define the conversion from an AND-NOT-TH
circuit C to a linear program LP(C). Let C 0 be the
circuit that results from replacing each k-threshold gate
with inputs y1, . . . , ym by ¬

V
m

t=k
¬EXm,t(y1, . . . , ym),

where EXm,t(y1, . . . , ym) denotes an exact counting
gate with inputs y1, . . . , ym. For each gate i in C 0, let yi
be a variable constrained by the inequalities 0  yi  1.
Let G(y1, . . . , ym, z) be the LP for a gate of type G,
with auxiliary variables not shown. For each gate o in
C 0 add the constraints:
yo = xu if o has input xu,
G(yi1 , . . . , yim , yo) if o is G input i1, . . . , im,
yo = 1 if o is the output gate.

By Lemmas 2 and 3, all six cases have size polynomial in
the number of inputs, hence the total size is polynomial
in the size of C 0. In case C does not have TH gates, the
step for replacing them by EX gates is not done, and all
gates are AND, NOT, so the total size is linear.

Lemma 4. If U is a G-set and C is G-symmetric, then
LP(C) is G-symmetric and recognizes the same subset
of {0, 1}U as C.

Proof. The claim that LP(C) recognizes the same subset
of {0, 1}U as C follows from Lemmas 2 and 3. We prove
the symmetry. First note that the intermediate circuit
C 0 is also G-symmetric. Now fix ⇡ 2 G. Let � be a
permutation of the gates of C 0 so that the pair (⇡,�)
leaves C 0 in place. In particular, for each gate o of
C 0 with inputs i1, . . . , im, if p = �(o), then p is the
same type of gate as o, has the same fan-in m, and if
o is an input gate fed by xu, then p is an input gate
fed by x⇡(u). Moreover, if j1, . . . , jm are the inputs of
gate p, then there is a permutation ⌧o 2 Symm so that
�(ik) = j⌧o(k) for every k 2 [m]. Now use the symmetry
claims of the gate programs to extend the permutation
to an automorphism gate by gate (see Appendix).

Proof of Lemma 1. Fix n, let U = L(n), let G = Symn

with the natural action on L(n), and use LP(Cn).

IV. FROM LPS TO LOGIC

We say that a function s(n) is at most weakly
exponential if there exists a positive real ✏ such that
s(n)  2n

1�✏

for every sufficiently large n. In this
section we establish the translation which takes families
of symmetric linear programs to families of formulas of
counting logic. That is:

Lemma 5. If C is a class of L-structures that is recog-
nized by a family of L-symmetric polytope lifts of size
s(n), then C is recognized by a family of Ck(n) formulas,
where k(n) = O(log(s(n))/(log(n) � log log(s(n)))).
Moreover, if s(n) is at most weakly exponential, then
the formulas have size s(n)O(1).

Together with the standard translation of formulas to
circuits, this establishes the second half of the equiva-
lence between symmetric linear programs and symmetric
circuits.

Consider a family (Pn)n2N of L-symmetric LP lifts.
Subsection IV-A below implies that from each Pn one
can construct a polytope lift bPn which recognises the
same property of structures with n-element domains but
comes with an action of the group Symn witnessing its
symmetry. Further, in Subsection IV-B we show that
the action of Symn on each of the constraints and
auxiliary variables of bPn depends on a subset of [n]
of bounded size called its support. In the second part
of Subsection IV-B we analyse properties of sets whose
elements have bounded supports in order to show that
they are essentially sets of tuples of integers from [n].

6

This implies, in Subsection IV-C, that each bPn after a
small modification becomes a manageable LP lift P̄n,
that is, one whose auxiliary variables and constraints are
indexed by tuples of integers from [n] of bounded length
Finally, in Subsection IV-D based on P̄n we construct a
FOC-interpretation that given an L-structure A over an
n-element domain outputs a linear program which has a
solution if and only if A belongs to the class of interest.
Since solving linear programs is expressible in FPC [5],
we are able to conclude the proof.

A. Rigid polytopes

In this subsection we consider general G-symmetric
LPs, i.e., not necessarily L-symmetric.

Let U be a G-set and let P ✓ RU ⇥ RW be a
G-symmetric polytope given by a sequence of linear
constraints (�v)v2V where each �v is of the form
aTx+bTy  c, with x = (xu)u2U and y = (yw)w2W .
We say that the polytope P is rigid if for every ⇡ 2 G
there exists a unique element of SymW , let us denote it
by �⇡ , such that P (⇡,�⇡) = P .

If P is rigid, then the mapping from G to SymW

given by ⇡ 7! �⇡ is a group homomorphism. Hence,
there is a natural action of the group G on the set of
auxiliary variables {yw}w2W such that for any ⇡ 2 G
and w 2 W applying ⇡ to yw gives y�⇡(w), and the
polytope P is G-symmetric with respect to this action.
Moreover, this induces an action of the group G on the
set of constraints {�v}v2V in the obvious way: for any
⇡ 2 G and any v 2 V applying ⇡ to �v of the form
aTx + bTy  c gives aTx⇡ + bTy�⇡  c, and the
symmetry of P guarantees that this is also a constraint.
For rigid G-symmetric polytopes, we write y⇡ to mean
y�⇡ , we use �⇡

v
to denote aTx⇡ + bTy�⇡  c, and P⇡

to denote P (⇡,�⇡).
Suppose that a subset A of {0, 1}U is recognised by a

G-symmetric polytope lift P . We show that there exists
a rigid G-symmetric polytope lift bP of size polynomial
in the size of P recognising A.

The construction of bP goes as follows. For the
subgroup of SymW consisting of all permutations �
such that P (id,�) = P , consider the orbits of the set
of auxiliary variables {yw}w2W under the action of
this subgroup. By identifying the variables in each of
those orbits we obtain a new G-symmetric polytope
lift recognising A with potentially smaller number of
auxiliary variables. This procedure needs to be iterated
until the obtained polytope is rigid. For details, see full
version in Appendix. The conclusion is the following:

Lemma 6. For every G-symmetric polytope of size s,
there is a rigid G-symmetric polytope of size not more
than s log(s) which recognises the same set.

B. Bounded supports
For a Symn-set Y , a subset S of [n] is said to be a

support of an element y 2 Y if for every ⇡ 2 Symn that
fixes S pointwise, it holds that ⇡ · y = y. And it is said
to be an even support of y 2 Y if for every ⇡ 2 Altn
that fixes S pointwise, we have ⇡ · y = y.

An (even) support S is k-bounded if |S|  k. A
Symn-set Y is k-supported if each element of Y has
a k-bounded support. An L-symmetric polytope P is k-
supported if the set of auxiliary variables and the set of
constraints of P are k-supported. We show the following:

Lemma 7. There exists a positive integer n0 such that
for any positive integers s and n satisfying s � n � n0,
the following holds: If P is a rigid L-symmetric LP lift
of size s for structures with n elements, then P is k-
supported, where k = O(log(s)/(log(n) � log log(s))).
Moreover, if s  2n/3, then the size of P is at most nk.

Proof. For simplicity we give the proof for the case of
graphs. The general case is completely analogous.

Consider a rigid graph-symmetric polytope lift P ✓
R[n]2 ⇥ RW of size s given by a sequence of linear
constraints (�v)v2V of the form aTx+ bTy  c.

If s > 2n/3, we can take k = n. Indeed, in this case
log(s(n))/(log(n)� log log(s(n)) � n/3 log(3). Hence,
n = O(log(s)/(log(n)� log log(s))). Since any element
of a Symn-set is supported by [n], each auxiliary variable
and constraint of P has an n-bounded support.

In the case s  2n/3 the argument is more in-
volved. First we obtain bounded even supports. Take
t = log(s)/(log(n) � log log(s)) and k = dte. Observe
that the denominator in the definition of t is non-zero,
since s  2n/3 < 2n. Also, we have 0 < t  k 
n/3 log(3) < n/4 < n/e, to be used later in the proof.
Let us start by noting that t log

�
n

t

�
> log(s), which

follows from the fact that expanding t log
�
n

t

�
results

in log(s) log(n)�log log(s)+log(log(n)�log log(s))
log(n)�log log(s) and since

s  2n/3, the big fraction is strictly bigger than 1.
For any S ✓ [n], let Alt(S) denote the group of all

even permutations of [n] that fix the set S pointwise. We
use the following fact.

Lemma 8 (Theorem 5.2B in [11]). If n > 8 and 1 
k  n/4, and G  Symn such that [Symn : G] <

�
n

k

�
,

then there is S ✓ [n] with |S| < k such that Alt(S)  G.

For w 2 W , let Stw denote the stabilizer of yw in
Symn, i.e., the subgroup of Symn defined by Stw =

7

{⇡ 2 Symn : ⇡ · yw = yw}. Since [Symn : Stw] is the
size of the orbit of yw under the action of Symn and the
total number of auxiliary variables is bounded by the size
of P , we have [Symn : Sti]  s < (n/t)t  (n/k)k �
n

k

�
with the second following from t log

�
n

t

�
> log(s)

showed above, and the third from 0 < t  k < n/4 <
n/e and the fact that f(x) = (n/x)x is an increasing
function of x in the interval (0, n/e). Lemma 8 implies
that, if n is large enough, there exist S ✓ [n] with |S| <
k and Alt(S)  Stw. This is a k-bounded even support
of yw. An analogous argument yields a k-bounded even
support for each constraint in {�v}v2V .

To obtain supports in place of even supports we look
at polytopes as graphs. We define a graph called the
graph representation of P . Its automorphism group is
isomorphic to the automorphism group of P and its
number of vertices is bounded by O(s2). For details,
see the full version.

Now, for any S ✓ [n], let Sym(S) denote the group of
all permutations of [n] that fix the set S pointwise. Take
some w 2 W and let S be a k-bounded even support
of yw. Since Alt(S)  Stw, we have Alt(S)  Stw \
Sym(S)  Sym(S). Hence, Stw \ Sym(S) = Alt(S) or
Stw \ Sym(S) = Sym(S). We argue it is the latter case
that holds using the following theorem.

Lemma 9 (Theorem A in [12]). If n > 22, then
the number of vertices of any graph whose full au-
tomorphism group is isomorphic to Altn is at least
1/2

�
n

bn/2c
�
⇠ 2n/

p
2⇡n .

Assume that Stw \ Sym(S) = Alt(S). In the full
version we describe a simple modification of the graph
representation P which yields a graph Pw whose auto-
morphism group is isomorphic to Stw \ Sym(S), and
therefore to Alt(S), which in turn is isomorphic to the
alternating group on [n � |S|]. Once again, the number
of vertices of Pw is O(s2). Thus, if n is large enough,
we have s2  22n/3 < 1/2

�
n

bn/2c
�
. Hence, by Lemma 9,

we obtain the desired contradiction.
Stw \ Sym(S) = Sym(S) implies Sym(S)  Stw,

thus S is a k-bounded support of yw. An analogous
argument yields a k-bounded support for each constraint
in {�v}v2V . Note also that s <

�
n

k

�
 nk.

We now show that it is possible to (non-uniquely)
represent the auxiliary variables and constraints of k-
supported polytopes by tuples of integers from [n] of
length k in a way that is consistent with the group action.
In order for the representation to be uniform across all
n, we extend the definition of the set [n](k) to the case
when k > n. For 0 < n < k, the set [n](k) consists of

k-tuples of elements of [n] with the first n components
pairwise distinct and the last k�n components equal to
the n-th component.

For the proof of the following, see the full version.

Lemma 10. If Y is a single-orbit k-supported Symn-set,
there is a surjective homomorphism from [n](k) to Y .

Once a surjective homomorphism f from a Symn-set
[n](k) to a Symn-set Y is fixed, the family {f�1(y)}y2Y

forms a partition of [n](k). Hence, for any y 2 Y , each
tuple (i1, . . . , ik) from f�1(y) uniquely identifies y, and
is called an identifier of y. In most cases each element of
Y has several identifiers. In the full version, we illustrate
this with a couple of examples.

To represent elements of a k-supported Symn-sets
with potentially more than one orbit, we need to intro-
duce several copies of the set [n](k), one for each orbit.

Corollary 1. Let Y be a k-supported Symn-set. There
is a surjective homomorphism from Q⇥[n]k to Y , where
the size of Q is equal to the number of orbits of Y .

The definition of an identifier extends to the general
case discussed in the corollary above. Note that if a tuple
(q, i1, . . . , ik) is an identifier of y 2 Y , then the tuple
(q,⇡(i1), . . . ,⇡(ik)) is an identifier of ⇡ · y.

C. Manageable polytopes

For a non-negative integer k, a polytope P ✓ RL(n)⇥
RW is called k-manageable if: (1) there are two sets Q
and T with a trivial action of the group Symn, (2) the
set of constraints of P is indexed by V = Q ⇥ [n]k,
(3) the set of auxiliary variables of P is indexed by
W = T ⇥ [n]k, (4) P is L-symmetric with respect to the
natural action of Symn on W , and the induced action
of Symn on the set of constraints is exactly the natural
action of Symn on V .

The proof of the following key property of k-
manageable polytopes, which allows us to use them in
the translation from families of linear programs to logic,
can be found in the full version.

Lemma 11. If P is a k-manageable polytope with
constraints indexed by V = Q ⇥ [n](k) and auxiliary
variables indexed by W = T ⇥ [n](k), then for any
R 2 L, q 2 Q, t 2 T , i, i0, j, j0 2 [n](k), k,k0 2 [n]ar(R):
(1) the constant terms of the linear constraints �(q,i)
and �(q,i0) are the same, (2) if the equality types of the
tuples (j, i) and (j0, i0) are the same, then the coefficient
of the variable y(t,j) in the linear constraint �(q,i) is
the same as the coefficient of the variable y(t,j0) in the
linear constraint �(q,i0), (3) if the equality types of the

8

tuples (k, i) and (k0, i0) are the same, then the coefficient
of the variable x(R,k) in the linear constraint �(q,i) is
the same as the coefficient of the variable x(R,k0) in the
linear constraint �(q,i0).

Now, suppose that a k-supported rigid L-symmetric
LP lift P ✓ RL(n) ⇥ RW recognizes some property of
L-structures. We argue that there exists a k-manageable
polytope lift P̄ recognising A. Since the polytope P is
k-supported, by applying Lemma 10 we obtain two sets
of identifiers: V̄ = Q⇥[n]k for the constraints, and W̄ =
T ⇥ [n]k for the auxiliary variables. Let us introduce a
new variable of the form y(t,j), for any identifier (t, j) 2
W̄ . We obtain a manageable polytope P̄ from P by first,
replacing, for each w 2 W , the auxiliary variable yw by
the sum of variables y(t,j) over the set of all identifiers
(t, j) of yw; and secondly, replacing, for every v 2 V ,
the constraint �v , by several copies of this constraint, one
for every identifier (q, i) of �v . The obtained polytope
lift P̄ is clearly k-manageable and it is easy to see that
it recognizes the same property of L-structures.

D. From manageable polytopes to counting logic

We now put everything together in the proof of
Lemma 5. For simplicity we give the proof for the case
of graphs. The general case is completely analogous.

Let P ✓ R[n]2 ⇥ RW be a graph-symmetric LP lift
of size s recognising some property of graphs with n
vertices, that is, a subset A of {0, 1}[n]2 , and let bP be a
rigid graph-symmetric LP lift recognising A. Recall that
its size s0 is at most s log(s) where s is the size of P .
In particular, s0  s2.

If s > 2n/6, we have n = O(log(s)/(log(n) �
log log(s))). Since every class of graphs with n vertices
is definable in Cn, we complete the proof of the lemma
in this case by taking k = n.

If s  2n/6, then s0  s2  2n/3. Hence,
by Lemma 7, for some k = O(log(s0)/(log(n) �
log log(s0))), bP is k-supported, has at most nk auxil-
iary variables, at most nk constraints, and all its co-
efficients and constant terms can be encoded using at
most nk bits. Moreover, any such k clearly satisfies
k = O(log(s)/(log(n)� log log(s))).

Let P̄ be a k-manageable polytope lift recognising A
with the set of constraints indexed by Q⇥ [n]k, and the
set of auxiliary variables indexed by T ⇥ [n]k. Note that
it follows from the construction of P̄ that the number of
elements in the sets T and Q is bounded, respectively,
by the number of auxiliary variables and the number of
constraints in bP . Hence, |Q|, |T |  nk.

Suppose now that we are given a graph G with the
set of vertices V of size n and the set of edges E. If
we could fix a bijection from [n] to V , we could then
compute from P̄ and G a linear program P̄G with the
set of constraints I = {�(q,v) : q 2 Q,v 2 V k}, and the
set of variables J = {xvw : v, w 2 V } [{y(t,v) : t 2
T,v 2 V k}. In order to decide if G has the property
of interest we would then check if the partial valuation:
xvw = 1 if (v, w) 2 E, and xvw = 0 otherwise, can be
extended to a solution. This in turn can be done in logic
using the following consequence of the results in [5].

Lemma 12. There exists an FPC formula � which given
a matrix A 2 QI⇥J and a pair of vectors b 2 QI , and
a 2 QJ

0
, where J 0 ✓ J , decides if a can be extended to

a solution of the linear program Ax  b.

Our goal is to use Lemma 11 to show that the linear
program P̄G can be computed without fixing a bijection
between [n] and V . We define a FOC-interpretation
which takes as input a graph G with n vertices and
outputs, essentially, a relational encoding of the linear
program P̄G together with the partial valuation discussed
above. More precisely, outputs a matrix A 2 QI⇥J

and a pair of vectors b 2 QI , and a 2 QJ
0
, where

J 0 ✓ J , such that a can be extended to a solution of
Ax  b if and only if G has the property of interest.
To encode the fact that J 0 ✓ J we introduce an extra
binary relation symbol F of type J̄ 0⇥ J̄ for an injective
function from the index set J 0 to the index set J .

Given a graph G with n vertices the FOC-
interpretation has access to the domain V of the graph,
and the naturally ordered number domain {0, . . . , n}.
To represent the bit encodings of coefficients we use
tuples from [n]k ✓ {0, . . . , n}k. Let o : [n]k !
{0, 1, . . . , nk�1} be the order-preserving bijection from
[n]k ordered lexicographically to {0, 1, . . . , nk�1} with
the natural order. For any s 2 [n]k, by [s] we denote the
natural number o(s). Tuples from [n]k ✓ {0, . . . , n}k
are also used to represent elements of Q and T . Let
us fix injective functions f and g from Q and T to
[n]k, respectively. The linear program Ax  b in the
output of has constraints indexed by [n]k ⇥ V k and
variables indexed by V 2 [[n]k ⇥ V k. Once restricted to
the constraints indexed by f(Q)⇥ V k and the variables
indexed by V 2 [g(T) ⇥ V k it is exactly the linear
program P̄G. All the other coefficients and constant
terms in Ax  b are set to 0 = (�1)0 0/1.

Consider tuples of the form (z1, z2, z3, ⇢), where
z1, z2, z3 2 [n]k, and ⇢ is a quantifier-free formula
defining an equality type of 2k-tuples. By T y

d
let us

9

denote the set of all tuples of this form which satisfy
one of the following conditions: (1) z1 62 f(Q) or
z2 62 g(T), and [z3] = 0, (2) z1 2 f(Q) and z2 2 g(T),
and if f�1(z1) = q, g�1(z2) = t, then for every
s1, s2 2 [n]k such that the equality type of (s1, s2)
is ⇢, the position [z3] in the binary encoding of the
denominator of the coefficient of the variable indexed by
(t, s2) in the constraint indexed by (q, s1) in P̄ carries
the 1-bit. It follows from Lemma 11 that the set T y

d

carries all information about the denominators of the
coefficients of the auxiliary variables in P̄ .

Similarly, we define sets T y
s

, T y
n

, T x
s

, T x
n

, T x

d
, and Cs,

Cn, Cd to carry all the information about the signs and
the bits of the numerators and the denominators of: the
coefficients of the auxiliary variables, the coefficients of
{xij}1i,jn, and the constant terms, respectively.

Given a graph G with the set of vertices V of size n
and the set of edges E the interpretation : 1) defines Ī
as [n]k ⇥ V k, J̄ as V 2 [[n]k ⇥ V k, J̄ 0 as V 2, and B̄ as
[n]k, 2) defines the relation  for the linear order on B̄ as
the lexicographic order with respect to the natural order
of the number domain, 3) defines F as the equality rela-
tion on V 2, 4) defines PA

d
for encoding the denominators

of the entries of the matrix A as a union of two relations.
The first is a subset of ([n]k ⇥V k)⇥ ([n]k ⇥V k)⇥ [n]k

consisting of tuples (s1,v1, s2,v2, s3) for which there
is (z1, z2, z3, ⇢) in T y

d
such that (v1,v2) satisfies ⇢,

and for every i 2 [3] it holds si = zi. The second
is a subset of ([n]k ⇥ V k) ⇥ V 2 ⇥ [n]k consisting of
tuples (s1,v1, v, w, s2) for which there is (z1, z2, ⇢) in
T x

d
such that (v1, v, w) satisfies ⇢ and s1 = z1, and

s2 = z2, 5) defines the relations PA
s

, PA
n

, Pb
s

, Pb
n

, Pb
d

in a similar way as PA
n

, 6) defines P a
s

, P a
n

, P a
d

to encode
1 = (�1)0 1/1 or 0 = (�1)0 0/1 depending on whether
(v, w) 2 E.

Note that by existential quantification over the sets T y

d

and T x

d
we really mean a disjunction. And by si = zi we

mean the 2-variable FO-formula of size O(kn) which,
for every j 2 [k], says that the j-th component si,j of
si is the zi,j-th component of [n], using the order on the
number domain. Observe also that , as described, is not
rigorously a FOC-interpretation, but it is not difficult to
see that it can be easily turned into such.

The interpretation has O(k) variables. Its size is
polynomial in nk, in k, and in the number of equality
types of 2k tuples, that is, polynomial in nk, k, and
(2k)2k. Since k = O(n), the size of is simply nO(k).

By composing with the FPC formula � from
Lemma 12 we obtain an FPC formula which given a
graph G with n vertices decides if G has the property
of interest. The formula has l = O(k) variables and

size nO(k). We translate it into a formula ✓ of C2l such
that is equivalent to ✓ on all graphs of size at most n
and ✓ is of size polynomial in the size of , l, and nl.
Hence, ✓ has O(k) variables and size nO(k).

We have therefore shown that a property of graphs
with n vertices recognized by a graph-symmetric poly-
tope lift of size s is defined by a Ck formula, where
k = O(log(s)/(log(n) � log log(s))). Moreover, if s
is at most weakly exponential, then for some positive
real ✏ we have k = O(log(s)/(log(n) � log log(s))) =
O(log(s)/(✏ log(n))) = O(log(s)/ log(n)). Hence, in
this case the size of ✓ is nO(k) = sO(1). This finishes
the proof of Lemma 5 and this section.

V. RESULTS AND APPLICATIONS

In this section, we start by establishing the main
theorem of the paper, which characterizes the expressive
power of symmetric linear programs. We then derive
from it upper and lower bounds on families of sym-
metric linear programs for many classical combinatorial
problems. Finally, we observe that such families are as
powerful as general Boolean ciruits on almost all random
graphs and relate this to work on the planted clique
problem.

A. Equivalence of Models

If C is a class of finite L-structures of some single-
sorted vocabulary L, and n is a positive integer, we
write Cn for the set of all structures in C of cardinality
n. We write sC (n) for the size of a smallest L-symmetric
Boolean circuit that recognizes Cn, and lpC (n) for the
size of a smallest L-symmetric LP lift that recognizes
Cn. Similarly, we write wC (n) for the counting-width
of Cn, i.e., the smallest number of variables k of a Ck-
formula that defines Cn on L-structures of cardinality
n, and swC (n) for the counting size-width of Cn, i.e.,
the smallest k such that there is a Ck-formula of size at
most nk that defines Cn on L-structures of cardinality n.

Theorem 1. If C is a class of finite L-
structures, lpC (n) is at most weakly exponential,
and kC (n) = log(lpC (n))/ log(n), then

1) sC (n)⌦(1)  lpC (n)  sC (n)O(1),
2) ⌦(swC (n))  kC (n)  O(swC (n)).

Proof. The upper bound in 1) is a direct consequence of
Lemma 1. The lower bound in 2) follows from Lemma 5:
Write s = lpC (n) and choose k = c log(s)/(log(n) �
log log(s)) for a large c to be specified later. By as-
sumption s  2n

1�✏

for some ✏ > 0 and large enough n.
Hence k = O(log(s)/ log(n)) with the hidden constant

10

in the big-oh notation dependent on ✏. For the appro-
priate constant in the big-oh in k = O(log(s)/ log(n)),
Lemma 5 says that there is a Ck-formula that defines
C and has size polynomial in s, since lpC (n) is at
most weakly exponential. If c is big enough we get that
sO(1)  nk, so swC (n) = O(log(s)/ log(n)). These
imply the lower bound in 1) and the upper bound in 2)
through sC (n)  nO(swC (n)) (see [13]).

B. Upper and Lower Bounds
In combination with the strongest known lower

bounds on counting width, Theorem 1 gives weakly
exponential lower bounds of the type 2⌦(n1�✏). The
strongest forms of Lemmas 1 and 5 do even better.

a) Lower bounds on symmetric lifts and circuits: In
the sequel, let 3-XOR refer to the constraint satisfaction
problem of deciding whether a system of 3-variable par-
ity constraints on {0, 1}-valued variables is satisfiable,
and let 3-SAT refer to the satisfiability problem for 3-
CNF formulas. In both cases, an instance is presented
as a finite structure that encodes the incidence structure
of the constraints: the domain is the disjoint union of
the set of variables and the set of constraints, and the
relations carry one monadic relation for each type of
constraint that indicates which constraints are of that
type, and three binary relations that indicate the three
variables that participate in each constraint. Note that
the instances for these problems are not plain graphs but
graphs with coloured vertices and edges.

Theorem 2. Every graph-symmetric LP lift or Boolean
threshold circuit that recognizes the class of Hamiltonian
graphs with n vertices, or the class of 3-colourable
graphs with n vertices, or the class of satisfiable 3-
SAT instances with n variables, or the class of satis-
fiable 3-XOR instances with n variables, has size 2⌦(n).
Moreover, for 3-colouring, 3-SAT, and 3-XOR, the lower
bound holds even on the class of instances with O(n)
edges, O(n) clauses, and O(n) constraints, respectively.

We note that these 2⌦(n) lower bounds for 3-
colouring, 3-XOR and 3-SAT are optimal up to the mul-
tiplicative constant in the exponent: there are symmetric
Boolean circuits and LP lifts of size 2O(n); this follows
from their definability in Monadic Second-Order Logic.

By Lemma 5, for obtaining the lower bound for LP
lifts it suffices to show that any Ck-sentence that defines
the class of n-vertex 3-colourable graphs has k = ⌦(n):
indeed, whenever s  2n/d, we have log(s)/(log(n) �
log log(s))  n/(d log(d)). By Lemma 1, the claim then
follows for Boolean threshold circuits. A result from
the literature that is quite close to the k = ⌦(n) that

we need can be found in Section 4.2 in [14], but the
analysis in there gives k = ⌦(

p
n), and not k = ⌦(n).

While it should be possible to modify the construction
in [14] to get what we need, we refer to a more recent
construction that achieves what we want for the problems
3-XOR and 3-SAT, and then proceed by reduction. These
intermediate steps will also be useful when we discuss
Hamiltonicity.

Theorem 3 (see Theorem 3.7 and 3.8 in [15] and
Lemmas 22 and 23 in [16]). There exist c, d > 0 such
that, for every k and every sufficiently large n, every Ck-
sentence that separates the class of satisfiable 3-XOR
(resp. 3-SAT) instances with n variables and cn con-
straints from the class of unsatisfiable ones has k � dn.

Neither [15] nor [16] state the linear bound cn on
the number of constraints, but it easily follow from both
proofs. Concretely, it follows from Lemma 3.3 in [15],
in which the bound is stated. It is easy to see that
the textbook (e.g., [17]) reduction from 3-SAT to 3-
colouring is a first-order interpretation that produces a
linear size output. The textbook reduction from 3-SAT
to Hamiltonicity is not so without change, but can easily
be converted into one. See the Appendix for details.
Combined with Theorem 3 we get Theorem 2.

b) Lower Bound on the TSP Polytope: Yannakakis
proved that the travelling salesman polytope does not
have subexponential symmetric LP lifts. We show that
the same follows from Theorem 2. Let TSPn denote the
convex hull of all the vectors (xij)i,j2[n] that represent
Hamilton cycles on n vertices.

Theorem 4 (Theorem 2 in [1]). Every graph-symmetric
LP lift that has TSPn as shadow has size 2⌦(n).

Proof. If P were such a lift, with principal and auxiliary
variables y and z, then the program with constraints 0 
yij  xij and (y, z) 2 P would recognize the class of
Hamiltonian graphs and clash with Theorem 2.

c) Upper bounds: Surprisingly, the type of argu-
ment of Theorem 4 cannot be adapted for the matching
polytope: Theorem 1 says that any problem that is
definable in FPC has polynomial-size symmetric LP-
lifts, and graphs that have perfect matchings are definable
in FPC [3].

Corollary 2. There is a (polynomial-time uniform) fam-
ily of graph-symmetric LP lifts of polynomial size that
recognizes the class of graphs with a perfect matching.

This should be contrasted with the fact, proved by
Yannakakis, that any symmetric LP lift of the perfect

11

matching polytope PMn has size 2⌦(n). Capturing PMn

by an LP lift or recognizing the class of graphs that
have a perfect matching by an LP lift are different tasks.
Both objects could be used for deciding whether a given
graph has a perfect matching, but capturing PMn has a
demanding structural requirement that has no analogue in
the other task. We do not know whether there is any route
for deriving lower bounds for PMn from our results.

C. Problems on Erdős-Rényi Random Graphs
Let G ⇠ G (n, p) mean that G is distributed as in

the Erdős-Rényi distribution on n-vertex labelled graphs
with edge probability p. We argue that, for average-
case problems with respect to the uniform distribu-
tion G (n, 1/2), as well as for the type of problems that
ask to distinguish G (n, 1/2) from some other distribu-
tion, polynomial-size symmetric LPs are as powerful as
arbitrary not necessarily symmetric Boolean circuits. For
average-case problems, this is a direct consequence of
our main result and the following well-known fact in
descriptive complexity theory:

Theorem 5 (Corollary 4.8 in [6]). For every polynomial-
time decidable class of graphs C there is an FPC-
definable class of graphs C 0 for which the probability
that a random graph G ⇠ G (n, 1/2) falls in the
symmetric difference C�C 0 is o(1).

The point of Theorem 5 is that the FPC formula that
defines C 0 does not require any order on the input graph,
hence our Theorem 1 applies. Theorem 5 is indeed a
consequence of the Immerman-Vardi Theorem [18], [19]
and the fact that a linear order is, asymptotically almost
surely on G (n, 1/2), definable in FPC. We return to this
later. For the rest of this section we focus on the problem
of distinguishing G (n, 1/2) from some other distribution
of random graphs, to which a direct application of
Theorem 5 does not look possible.

Let G (n, p, k) denote the distribution that results from
drawing a random graph from G (n, p) and then planting
a random k-clique in it, i.e., adding the edges of a
k-clique on a uniformly chosen subset of k vertices.
Following [20], the planted clique problem, also known
as the hidden clique problem, comes in three flavours:
search, refutation, and decision. Formally, the decision
version can be stated as follows. We say that C solves
the decision version of the planted clique problem with
parameters p = p(n) and k = k(n) and advantage ✏ > 0
if for every large enough n we have: 1) if G ⇠ G (n, p),
then G is in C with probability at least 1/2 + ✏, 2) if
G ⇠ G (n, p, k), then G is in C with probability at most
1/2� ✏. It is solvable in polynomial time means if C is.

The planted clique problem has an interesting history
starting at [21], [22]. In the range k(n) = ⌦(

p
n),

algorithms were found to solve it in polynomial time
[22]–[24]. For k(n) = o(

p
n) the status of the problem

is famously open, but lower bounds are known in re-
stricted models, including certain models of (symmetric)
linear and semidefinite program formulations. The clique
number is the maximum of

P
v2V

yv subject to the
constraints that yuyv = 0 for each non-edge (u, v) 62 E,
and y2

v
�yv = 0 for each u 2 V . In the decision version

we replace the objective by
P

v2V
yv � k. The program

can be made uniform for all G by turning the constraint
into yuyv  xuv for all u, v 2 [n]. This is a hard-to-solve
quadratic program, but there are systematic methods
for generating tractable relaxations as introduced by
Lovász and Schrijver in [25], and Sherali and Adams
in [26]. These lead to hierarchies of symmetric LP lifts
that project to tighter and tighter approximations of the
convex hull of solutions of the quadratic program. The
limitations of the LS and SA hierarchies (and beyond)
for the planted clique problem have been the object of
recent study [8]–[10]

In view of such success in proving lower bounds on
the size of symmetric LP lifts, starting with Yannakakis,
and including the discussion above on hierarchies for the
planted clique problem, and also given our own lower
bounds from Section V-B, the following consequence of
Theorem 1 may come as a surprise:

Theorem 6. If the planted clique problem with param-
eters p = 1/2 and k = k(n) is solvable in polynomial
time with advantage ✏ > 0, then it is also solvable
with advantage ✏ � o(1) in FPC, by polynomial-size
graph-symmetric LP lifts, and by polynomial-size graph-
symmetric threshold circuits.

Proof. Using almost sure graph canonization from [27],
an order is almost surely definable on G ⇠ G (n, 1/2) by
a FOC-formula � (see [6]). Let (G) be “�(G) defines
an order and �(G,�) holds”, where �(G,<) is the FP
formula given by the Immerman-Vardi Theorem on the
assumption. Note: is an FPC formula over unordered
graphs. If G ⇠ G (n, 1/2), then the probability that �
does not define a linear order is o(1), and the probability
that some and hence every ordered expansion of G
satisfies � is at least 1/2 + ✏, so the probability that G
satisfies is at least 1/2+✏�o(1). If G ⇠ G (n, 1/2, k),
then the probability that some and hence every ordered
expansion of G satisfies � is at most 1/2 � ✏, so
the probability that G satisfies is even smaller, and
1/2� ✏  1/2� ✏+ o(1).

12

REFERENCES

[1] M. Yannakakis, “Expressing combinatorial optimization prob-
lems by linear programs,” J. Comput. Syst. Sci., vol. 43, no. 3,
pp. 441–466, 1991.

[2] T. Rothvoss, “The matching polytope has exponential extension
complexity,” J. ACM, vol. 64, no. 6, pp. 41:1–41:19, 2017.
[Online]. Available: https://doi.org/10.1145/3127497

[3] M. Anderson and A. Dawar, “On symmetric circuits and
fixed-point logics,” Theory of Computing Systems, vol. 60,
no. 3, pp. 521–551, Apr 2017. [Online]. Available: https:
//doi.org/10.1007/s00224-016-9692-2

[4] A. Dawar, “The nature and power of fixed-point logic with
counting,” ACM SIGLOG News, vol. 2, no. 1, pp. 8–21, 2015.

[5] M. Anderson, A. Dawar, and B. Holm, “Solving linear
programs without breaking abstractions,” J. ACM, vol. 62,
no. 6, pp. 48:1–48:26, Dec. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2822890

[6] L. Hella, P. G. Kolaitis, and K. Luosto, “Almost everywhere
equivalence of logics in finite model theory,” Bulletin of Symbolic
Logic, vol. 2, no. 4, pp. 422–443, 1996.

[7] N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large
hidden clique in a random graph,” in Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’98. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1998, pp. 594–598. [Online]. Available:
http://dl.acm.org/citation.cfm?id=314613.315014

[8] U. Feige and R. Krauthgamer, “The probable value of the
Lovász–Schrijver relaxations for maximum independent set,”
SIAM J. Comput., vol. 32, no. 2, pp. 345–370, 2003.

[9] B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra,
and A. Potechin, “A nearly tight sum-of-squares lower bound for
the planted clique problem,” in FOCS. IEEE Computer Society,
2016, pp. 428–437.

[10] S. B. Hopkins, P. Kothari, A. H. Potechin, P. Raghavendra,
and T. Schramm, “On the integrality gap of degree-4 sum
of squares for planted clique,” ACM Trans. Algorithms,
vol. 14, no. 3, pp. 28:1–28:31, 2018. [Online]. Available:
https://doi.org/10.1145/3178538

[11] J. D. Dixon and B. Mortimer, Permutation Groups, ser. Graduate
Texts in Mathematics. Springer-Verlag New York, 1996, vol.
163.

[12] M. W. Liebeck, “On graphs whose full automorphism group is
an alternative group or a finite classical group,” Proceedings of
the London Mathematical Society, vol. s3-47, no. 2, pp. 337–
362, 1983. [Online]. Available: https://londmathsoc.onlinelibrary.
wiley.com/doi/abs/10.1112/plms/s3-47.2.337

[13] M. Otto, Bounded Variable Logics and Counting: A Study
in Finite Models, ser. Lecture Notes in Logic. Cambridge
University Press, 2017, vol. 9. [Online]. Available: https:
//doi.org/10.1017/9781316716878

[14] A. Dawar, “A restricted second order logic for finite structures,”
Inf. Comput., vol. 143, no. 2, pp. 154–174, 1998. [Online].
Available: https://doi.org/10.1006/inco.1998.2703

[15] A. Atserias and A. Dawar, “Definable inapproximability: New
challenges for duplicator,” in 27th EACSL Annual Conference
on Computer Science Logic, CSL 2018, September 4-7, 2018,
Birmingham, UK, 2018, pp. 7:1–7:21. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CSL.2018.7

[16] A. Dawar and P. Wang, “Definability of semidefinite program-
ming and lasserre lower bounds for csps,” in LICS. IEEE
Computer Society, 2017, pp. 1–12.

[17] C. H. Papadimitriou, Computational complexity. Academic
Internet Publ., 2007.

[18] N. Immerman, “Languages that capture complexity classes,”
SIAM J. Comput., vol. 16, no. 4, pp. 760–778, 1987.

[19] M. Y. Vardi, “The complexity of relational query languages
(extended abstract),” in STOC. ACM, 1982, pp. 137–146.

[20] B. Barak and D. Steurer, “Proofs, beliefs, and algorithms
through the lens of sum-of-squares,” 2016, last accessed Jan 8,
2019. [Online]. Available: https://www.sumofsquares.org/public/
index.html

[21] M. Jerrum, “Large cliques elude the metropolis process,” Random
Struct. Algorithms, vol. 3, no. 4, pp. 347–360, 1992.

[22] Ludĕk Kučera, “Expected complexity of graph partitioning
problems,” Discrete Applied Mathematics, vol. 57, no. 2,
pp. 193 – 212, 1995, combinatorial optimization
1992. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0166218X9400103K

[23] N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large hidden
clique in a random graph,” Random Structures & Algorithms,
vol. 13, no. 3-4, pp. 457–466, 1998.

[24] U. Feige and R. Krauthgamer, “Finding and certifying
a large hidden clique in a semirandom graph,” Random
Structures & Algorithms, vol. 16, no. 2, pp. 195–208,
2000. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/%28SICI%291098-2418%28200003%2916%3A2%
3C195%3A%3AAID-RSA5%3E3.0.CO%3B2-A

[25] L. Lovász and A. Schrijver, “Cones of matrices and set-functions
and 0-1 optimization,” SIAM Journal on Optimization, vol. 1,
no. 2, pp. 166–190, 1991.

[26] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations
between the continuous and convex hull representations for zero-
one programming problems,” SIAM J. Discrete Math., vol. 3,
no. 3, pp. 411–430, 1990.

[27] L. Babai, P. Erdös, and S. M. Selkow, “Random graph isomor-
phism,” SIAM J. Comput., vol. 9, no. 3, pp. 628–635, 1980.

13

