5,668 research outputs found

    Chemometrics for ion mobility spectrometry data:Recent advances and future prospects

    Get PDF
    Contains fulltext : 161386.pdf (publisher's version ) (Open Access)Historically, advances in the field of ion mobility spectrometry have been hindered by the variation in measured signals between instruments developed by different research laboratories or manufacturers. This has triggered the development and application of chemometric techniques able to reveal and analyze precious information content of ion mobility spectra. Recent advances in multidimensional coupling of ion mobility spectrometry to chromatography and mass spectrometry has created new, unique challenges for data processing, yielding high-dimensional, megavariate datasets. In this paper, a complete overview of available chemometric techniques used in the analysis of ion mobility spectrometry data is given. We describe the current state-of-the-art of ion mobility spectrometry data analysis comprising datasets with different complexities and two different scopes of data analysis, i.e. targeted and non-targeted analyte analyses. Two main steps of data analysis are considered: data preprocessing and pattern recognition. A detailed description of recent advances in chemometric techniques is provided for these steps, together with a list of interesting applications. We demonstrate that chemometric techniques have a significant contribution to the recent and great expansion of ion mobility spectrometry technology into different application fields. We conclude that well-thought out, comprehensive data analysis strategies are currently emerging, including several chemometric techniques and addressing different data challenges. In our opinion, this trend will continue in the near future, stimulating developments in ion mobility spectrometry instrumentation even further

    Pulsed electron beams in ion mobility spectrometry

    Get PDF
    Ion mobility spectrometry is a well-known technique used to analyze trace gases in ambient air. Typically, it works by employing a radioactive source to provide electrons with high energy to ionize the analytes in a series of chemical reactions. During the past ten years non-radioactive sources have been one of the subjects of interest in ion mobility spectrometry, initially in order to replace radioactive sources as a result of general security and regulatory concerns. Among these non-radioactive sources especially pulsed sources have recently been shown to additionally improve the analytic information provided by ion mobility spectrometers. In this review we will describe the progress regarding the application of pulsed non-radioactive electron sources in ion mobility spectrometry and show the recent analytical advances that have been achieved by using pulsed electron beams

    Development of atmospheric pressure ionization ion mobility spectrometry and ion mobility spectrometry mass spectrometry

    Get PDF
    This study is focused on the development and evaluation of ion mobility instrumentation with various atmospheric pressure ionization techniques and includes the following work. First, a high-resolution drift tube ion mobility spectrometer (IMS), coupled with a commercial triple quadrupole mass spectrometer (MS), was developed. This drift tube IMS is compatible with the front-end of commercial Sciex mass spectrometers (e.g., Sciex API-300, 365, and 3000) and also allows easy (only minor modifications are needed) installation between the original atmospheric pressure ion source and the triple quadrupole mass spectrometer. Performance haracteristics (e.g.,resolving power, detection limit, transmission efficiency of ions) of this IMS-MS instrument were evaluated. Development of the IMS-MS instrument also led to a study where a proposal was made that tetraalkylammonium ions can be used as chemical standards for ESI-IMS. Second, the same drift tube design was also used to build a standalone ion mobility spectrometer equipped with a Faraday plate detector. For this highresolution (resolving power about 100 shown) IMS device, a multi-ion source platform was built, which allows the use of a range of atmospheric pressure ionization methods, such as: corona discharge chemical ionization (CD-APCI), atmospheric pressure photoionization (APPI), and radioactive atmospheric pressure chemical ionization (R-APCI). The multi-ion source platform provides easy switching between ionization methods and both positive and negative ionization modes can be used. Third, a simple desorpion/ionization on silicon (DIOS) ion source set-up for use with the developed IMS and IMS-MS instruments was built and its operation demonstrated. Fourth, a prototype of a commercial aspiration-type ion mobility spectrometer was mounted in front of a commercial triple quadrupole mass spectrometer. The set-up, which is simple, easy to install, and requires no major modifications to the MS, provides the possibility of gathering fundamental information about aspiration mobility spectrometry.Not available

    Plate-height model of ion mobility-mass spectrometry: Part 2-Peak-to-peak resolution and peak capacity

    Get PDF
    In a previous work, we explored zone broadening and the achievable plate numbers in linear drift tube ion mobility-mass spectrometry through developing a plate-height model [1]. On the basis of these findings, the present theoretical study extends the model by exploring peak-to-peak resolution and peak capacity in ion mobility separations. The first part provides a critical overview of chromatography-influenced resolution equations, including refinement of existing formulae. Furthermore, we present exact resolution equations for drift tube ion mobility spectrometry based on first principles. Upon implementing simple modifications, these exact formulae could be readily extended to traveling wave ion mobility separations and to cases when ion mobility spectrometry is coupled to mass spectrometry. The second part focuses on peak capacity. The well-known assumptions of constant plate number and constant peak width form the basis of existing approximate solutions. To overcome their limitations, an exact peak capacity equation is derived for drift tube ion mobility spectrometry. This exact solution is rooted in a suitable physical model of peak broadening, accounting for the finite injection pulse and subsequent diffusional spreading. By borrowing concepts from the theoretical toolbox of chromatography, we believe that the present study will help in integrating ion mobility spectrometry into the unified language of separation science

    Review: Ion mobility spectroscopy a new method of analysis, its application and reproducibility problems

    Get PDF
    Ion Mobility Spectrometry (IMS) is a mass-selective technique in which the sample is vaporised, ionised, and with given initial velocity moved along a drift region towards a collector electrode. The drift times (milliseconds, ms) needed by the ions to reach the collector are proportional to their masses: the higher the mass, the longer the drift times. During our evaluation of ion mobility spectrometry in the screening it was found that reproducibility problem may occurred which is solve easily by using some methods, described in this review. Ion mobility spectroscopy is widely use for the drug analysis, hair analysis and other applications

    Analysis of model Titan atmospheric components using ion mobility spectrometry

    Get PDF
    The Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS) was proposed as an analytical technique for the analysis of Titan's atmosphere during the Cassini Mission. The IMS is an atmospheric pressure, chemical detector that produces an identifying spectrum of each chemical species measured. When the IMS is combined with a GC as a GC-IMS, the GC is used to separate the sample into its individual components, or perhaps small groups of components. The IMS is then used to detect, quantify, and identify each sample component. Conventional IMS detection and identification of sample components depends upon a source of energetic radiation, such as beta radiation, which ionizes the atmospheric pressure host gas. This primary ionization initiates a sequence of ion-molecule reactions leading to the formation of sufficiently energetic positive or negative ions, which in turn ionize most constituents in the sample. In conventional IMS, this reaction sequence is dominated by the water cluster ion. However, many of the light hydrocarbons expected in Titan's atmosphere cannot be analyzed by IMS using this mechanism at the concentrations expected. Research at NASA Ames and PCP Inc., has demonstrated IMS analysis of expected Titan atmospheric components, including saturated aliphatic hydrocarbons, using two alternate sample ionizations mechanisms. The sensitivity of the IMS to hydrocarbons such as propane and butane was increased by several orders of magnitude. Both ultra dry (waterless) IMS sample ionization and metastable ionization were successfully used to analyze a model Titan atmospheric gas mixture

    Environment applications for ion mobility spectrometry

    Get PDF
    The detection of environmentally important polychlorinated aromatics by ion mobility spectrometry (IMS) was investigated. Single polychlorinated biphenyl (PCB) isomers (congeners) having five or more chlorine atoms were reliably detected in isooctane solution at levels of 35 ng with a Barringer IONSCAN ion mobility spectrometer operating in negative mode; limits of detection (LOD) were extrapolated to be in the low ng region. Mixtures of up to four PCB congeners, showing characteristic multiple peaks, and complex commercial mixtures of PCBs (Aroclors) were also detected. Detection of Aroclors in transformer oil was suppressed by the presence of the antioxidant BHT (2,6-di-t-butyl4-methylphenol) in the oil. The wood preservative pentachlorophenol (PCP) was easily detected in recycled wood shavings at levels of 52 ppm with the IONSCAN; the LOD was extrapolated to be in the low ppm region

    Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    Get PDF
    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed
    corecore