17 research outputs found

    Implications of Cellular Aging in Cardiac Reprogramming

    Get PDF
    Aging is characterized by a chronic functional decline of organ systems which leads to tissue dysfunction over time, representing a risk factor for diseases development, including cardiovascular. The aging process occurring in the cardiovascular system involves heart and vessels at molecular and cellular level, with subsequent structural modifications and functional impairment. Several modifications involved in the aging process can be ascribed to cellular senescence, a biological response that limits the proliferation of damaged cells. In physiological conditions, the mechanism of cellular senescence is involved in regulation of tissue homeostasis, remodeling, and repair. However, in some conditions senescence-driven tissue repair may fail, leading to the tissue accumulation of senescent cells which in turn may contribute to tumor promotion, aging, and age-related diseases. Cellular reprogramming processes can reverse several age-associated cell features, such as telomere length, DNA methylation, histone modifications and cell-cycle arrest. As such, induced Pluripotent Stem Cells (iPSCs) can provide models of progeroid and physiologically aged cells to gain insight into the pathogenesis of such conditions, to drive the development of new therapies for premature aging and to further explore the possibility of rejuvenating aged cells. An emerging picture is that the tissue remodeling role of cellular senescence could also be crucial for the outcomes of in vivo reprogramming processes. Experimental evidence has demonstrated that, on one hand, senescence represents a cell-autonomous barrier for a cell candidate to reprogramming, but, on the other hand, it may positively sustain the reprogramming capability of surrounding cells to generate fully proficient tissues. This review fits into this conceptual framework by highlighting the most prominent concepts that characterize aging and reprogramming and discusses how the aging tissue might provide a favorable microenvironment for in vivo cardiac reprogramming

    From cardiogenesis to cardiac regeneration : focus on epicardium-derived cells

    Get PDF
    Embryonic EPDCs are crucial for proper myocardial architecture and coronary vessel formation, both through their physical contribution and their regulatory role in these developmental processes. This thesis reports for the first time on the role of Epicardium-Derived Cells (EPDCs) in the adult ischemic heart. It is demonstrated that transplanted adult EPDCs, isolated from human adult epicardial tissue, improve left ventricular function of the ischemic mouse heart. This is probably instigated by an early paracrine-mediated stimulation of the injected EPDCs on the surrounding host tissue, as indicated by increased wall thickness, augmented vascular density (mouse origin), and enhanced DNA-damage repair activity of the endogenous tissue. Cardiac healing in the EPDC-recipients is further characterized by advanced WT-1 expression, a marker for undifferentiated EPDCs, indicating induction of endogenous epicardial activity. Strikingly, the benefit of EPDC injection can be further enhanced by adding complementary cardiomyocyte progenitor cells to the EPDC transplant, explained by synergistic paracrine actions of the two different cell types. Two different techniques for assessment of left ventricular function in the post-infarct failing mouse heart are evaluated. It is shown that both conductance catheter and magnetic resonance imaging are reliable methods, each having specific unique features which need to be considered during experimental set-up.UBL - phd migration 201

    Phenotypically Heterogeneous Podoplanin-expressing Cell Populations Are Associated with the Lymphatic Vessel Growth and Fibrogenic Responses in the Acutely and Chronically Infarcted Myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRalpha, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRbeta or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Phenotypically Heterogeneous Podoplanin-expressing Cell Populations Are Associated with the Lymphatic Vessel Growth and Fibrogenic Responses in the Acutely and Chronically Infarcted Myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRalpha, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRbeta or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Myocardial Self-Repair and Congenital Heart Disease

    Get PDF

    Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes.

    Get PDF
    Adult newt cardiomyocytes, in contrast to their mammalian counterparts, can proliferate after injury and contribute to the functional regeneration of the heart. In order to understand the mechanisms underlying this plasticity we performed longitudinal studies on single cardiomyocytes in culture. We find that the majority of cardiomyocytes can enter S phase, a process that occurs in response to serum-activated pathways and is dependent on the phosphorylation of the retinoblastoma protein. However, more than half of these cells stably arrest at either entry to mitosis or during cytokinesis, thus resembling the behaviour observed in mammalian cardiomyocytes. Approximately a third of the cells progress through mitosis and may enter successive cell divisions. When cardiomyocytes divided more than once, the proliferative behaviour of sister cells was significantly correlated, in terms of whether they underwent a subsequent cell cycle, and if so, the duration of that cycle. These observations suggest a mechanism whereby newt heart regeneration depends on the retention of proliferative potential in a subset of cardiomyocytes. The regulation of the remaining newt cardiomyocytes is similar to that described for their mammalian counterparts, as they arrest during mitosis or cytokinesis. Understanding the nature of this block and why it arises in some but not other newt cardiomyocytes may lead to an augmentation of the regenerative potential in the mammalian heart

    Das regenerative Potential der CD117+AT2R stimulierten Zellpopulation in vitro und in vivo

    Get PDF
    Regarding innovative therapeutical approaches for cardiac regeneration, we thoroughly investigated CD117+ and CD117+AT2R stimulated murine bone marrow stem cells. Electrophysiological measurements and in vitro results indicated the differentiation into an endothelial-like phenotype excluding a previously discussed development into cardiomyocytes. Cell implantation into infarcted murine heart provoked a significant improvement of cardiac function. AT2R triggered effects were not significantly different and should be analyzed in interplay with its opposing receptor AT1
    corecore