354,990 research outputs found

    Computational study of the mechanism of Bcl-2 apoptotic switch

    Full text link
    Programmed cell death - apoptosis is one of the most studied biological phenomenon of recent years. Apoptotic regulatory network contains several significant control points, including probably the most important one - Bcl--2 apoptotic switch. There are two proposed hypotheses regarding its internal working - the indirect activation and direct activation models. Since these hypotheses form extreme poles of full continuum of intermediate models, we have constructed more general model with these two models as extreme cases. By studying relationship between model parameters and steady-state response ultrasensitivity we have found optimal interaction pattern which reproduces behavior of Bcl-2 apoptotic switch. Our results show, that stimulus-response ultrasensitivity is negatively related to spontaneous activation of Bcl-2 effectors - subgroup of Bcl-2 proteins. We found that ultrasensitivity requires effector's activation, mediated by another subgroup of Bcl-2 proteins - activators. We have shown that the auto-activation of effectors forms ultrasensitivity enhancing feedback loop, only if mediated by monomers, but not by oligomers. Robustness analysis revealed that interaction pattern proposed by direct activation hypothesis is able to conserve stimulus-response dependence and preserve ultrasensitivity despite large changes of its internal parameters. This ability is strongly reduced as for the intermediate to indirect side of the models. Computer simulation of the more general model presented here suggest, that stimulus-response ultrasensitivity is an emergent property of the direct activation model, that cannot originate within model of indirect activation. Introduction of indirect-model-specific interactions does not provide better explanation of Bcl-2 functioning compared to direct model

    5-HT6R Viral Vector-Mediated Indirect Pathway Activation in the Dorsolateral Striatum: A Discussion on Basal Ganglia Habitual and Goal-Directed Circuits

    Get PDF
    Altering maladaptive behavioral tendencies is relevant for clinical interventions, making research on underlying mechanisms of habit essential. Mechanisms of habit are explored here with differential activation of the indirect pathway in the basal ganglia. Viral vector-mediated overexpression of the 5-hydroxytryptamine 6 (5-HT6) receptor in the indirect pathway of the dorsolateral striatum was used to increase indirect pathway activity. Subjects were trained such that control animals were expected to exhibit habitual behavior. We hypothesized increased activation of the indirect pathway would maintain goal-directed behavior. To test this hypothesis female rats were assigned to 5-HT6 receptor upregulation or control groups in a reward devaluation behavior paradigm to assess habitual behavior. Although our results do not show anticipated behavioral results following reward devaluation, a lack of statistical power due to small sample sizes does not allow conclusions to be reached

    Activation of the Navy's indirect effects lightning simulation laboratory

    Get PDF
    The Naval Air Test Center is currently the Navy's lead lab for electromagnetic effects testing. As part of this charter, it has been performing lightning effects testing on Navy aircraft in support of specification compliance since 1973. An overview is presented of lightning test and evaluation efforts at NATC, both past and present, as well as its plans for the future. The array of simulation capabilities presently operational are described, and a high level look is given to the test methodology now being used. The principal discussion centers on the results from the recent air launched ordnance test and testing of the Navy's A-6E all weather attack aircraft. Particular attention is paid to the NATC's test approach, including details about coaxial return construction, aircraft preparation, and the test waveforms and data acquisition systems that were used

    ROCK signalling induced gene expression changes in mouse pancreatic ductal adenocarcinoma cells

    Get PDF
    The RhoA and RhoC GTPases act via the ROCK1 and ROCK2 kinases to promote actomyosin contraction, resulting in directly induced changes in cytoskeleton structures and altered gene transcription via several possible indirect routes. Elevated activation of the Rho/ROCK pathway has been reported in several diseases and pathological conditions, including disorders of the central nervous system, cardiovascular dysfunctions and cancer. To determine how increased ROCK signalling affected gene expression in pancreatic ductal adenocarcinoma (PDAC) cells, we transduced mouse PDAC cell lines with retroviral constructs encoding fusion proteins that enable conditional activation of ROCK1 or ROCK2, and subsequently performed RNA sequencing (RNA-Seq) using the Illumina NextSeq 500 platform. We describe how gene expression datasets were generated and validated by comparing data obtained by RNA-Seq with RT-qPCR results. Activation of ROCK1 or ROCK2 signalling induced significant changes in gene expression that could be used to determine how actomyosin contractility influences gene transcription in pancreatic cancer

    Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex

    Get PDF
    In human communication, direct speech (e.g., Mary said: “I'm hungry”) is perceived to be more vivid than indirect speech (e.g., Mary said [that] she was hungry). However, for silent reading, the representational consequences of this distinction are still unclear. Although many of us share the intuition of an “inner voice,” particularly during silent reading of direct speech statements in text, there has been little direct empirical confirmation of this experience so far. Combining fMRI with eye tracking in human volunteers, we show that silent reading of direct versus indirect speech engenders differential brain activation in voice-selective areas of the auditory cortex. This suggests that readers are indeed more likely to engage in perceptual simulations (or spontaneous imagery) of the reported speaker's voice when reading direct speech as opposed to meaning-equivalent indirect speech statements as part of a more vivid representation of the former. Our results may be interpreted in line with embodied cognition and form a starting point for more sophisticated interdisciplinary research on the nature of auditory mental simulation during reading

    How Free is Free Indirect Discourse? Empirical Approaches to the Anchoring Mechanisms of Perspective-taking

    Get PDF
    This dissertation presents a discussion and empirical investigation of the anchoring mechanisms of free indirect discourse. Its main focus is on the claim that a discourse referent must be sufficiently activated in a linguistic context in order to serve as the anchor for a sentence in free indirect discourse mode. This issue becomes particularly pressing whenever more than one discourse referent is available as the perspectival center. I want to argue that whenever several referents compete, the referent with the highest activation is preferred as the perspectival center, while a sentence in FID mode anchored to a less activated referent sounds rather unnatural. To approach this claim, I provide a number of examples that illustrate that the anchoring of free indirect discourse is related to linguistic activation. The observations indicate that: (i) referents in subject position are preferred as anchors over referents in object position, (ii) referents that are introduced with a proper name are preferred as anchors over referents that are introduced with an indefinite noun phrase, (iii) referents that are activated in a larger context are preferred over referents that are activated in the sentence preceding the free indirect discourse, and (iv) referents that are assigned particular verbal features are preferred over competing referents. In order to account for these observations, I present the results of a series of psycholinguistic experiments that indicate an effect of grammatical function, referential expression, global activation, and verbal features assigned to the referents by the verb in the preceding context on the anchoring of free indirect discourse. Ultimately, the findings presented in this thesis indicate that the anchoring of free indirect discourse is not arbitrary but determined by referential activation

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular
    corecore