3,164 research outputs found

    On the Detectability of the Hydrogen 3-cm Fine Structure Line from the EoR

    Full text link
    A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p (directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state is metastable, the lifetime of atoms in this level is relatively long, which may cause the 2s state to be overpopulated relative to the 2p state. It has recently been proposed that for this reason, neutral intergalactic atomic hydrogen gas may be detected in absorption in its 3-cm fine-structure line (2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high redshifts. In particular, the optical depth in the fine-structure line through neutral intergalactic gas surrounding bright quasars during the EoR may reach tau~1e-5. The resulting surface brightness temperature of tens of micro K (in absorption) may be detectable with existing radio telescopes. Motivated by this exciting proposal, we perform a detailed analysis of the transfer of Lyman beta,gamma,delta,... radiation, and re-analyze the detectability of the fine-structure line in neutral intergalactic gas surrounding high-redshift quasars. We find that proper radiative transfer modeling causes the fine-structure absorption signature to be reduced tremendously to tau< 1e-10. We therefore conclude that neutral intergalactic gas during the EoR cannot reveal its presence in the 3-cm fine-structure line to existing radio telescopes.Comment: 7 pages, 4 figures, MNRAS in press; v2. some typos fixe

    Cosmic Ray Acceleration in Supernova Remnants

    Full text link
    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.Comment: Invited Plenary review talk at ICATPP 2010, Villa Olmo, Como 7-8 October 201

    The Liquid Hydrogen Option for the Subsonic Transport: A status report

    Get PDF
    Continued subsonic air transport design studies include the option for a liquid hydrogen fuel system as an aircraft fuel conservation measure. Elements of this option discussed include: (1) economical production of hydrogen; (2) efficient liquefaction of hydrogen; (3) materials for long service life LH2 fuel tanks; (4) insulation materials; (5) LH2 fuel service and installations at major air terminals; (6) assessment of LH2 hazards; and (7) the engineering definition of an LH2 fuel system for a large subsonic passenger air transport

    Anode Fabrication for Solid Oxide Fuel Cells: Electroless and Electrodeposition of Nickel and Silver into Doped Ceria Scaffolds

    Get PDF
    © 2016 The Authors.A novel fabrication method using electroless and electrodeposited Ni/Ag/GDC for SOFC anodes is presented. First a porous Ce0.9Gd0.1O2-x (GDC) scaffold was deposited on a YSZ electrolyte by screen printing and sintering. The scaffold was then metallized with silver using Tollens reaction, followed by electrodeposition of nickel from a Watts bath. The electrodes (Ni/Ag/GDC) were tested in both symmetrical and fuel cell configurations. The microstructures of the Ni/Ag/GDC anodes were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Nano-particles of Ni formed in the porous GDC scaffold provided triple phase boundaries (TPB). The electronic conductivity of the Ni/Ag/GDC (3.5/24.7/71.8 vol%) electrode was good even at relatively low Ni volume fractions. The electrochemical performance was examined in different concentrations of humidified hydrogen (3% H2O) and over a range of temperatures (600-750 °C). The total area specific resistance (ASR) of the anode at 750 °C in humidified 97 vol% H2 was 1.12 Ω cm2, with low-frequency polarization (R-l) as the largest contributor. The electrodes were successfully integrated into a fuel cell and operated in both H2 and syngas

    Intact capture of cosmic dust

    Get PDF
    The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved

    Laser-heated thruster

    Get PDF
    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers

    Synthetic fosmidomycin analogues with altered chelating moieties do not inhibit 1-deoxy-D-xylulose 5-phosphate reductoisomerase or Plasmodium falciparum growth in vitro

    Get PDF
    Fourteen new fosmidomycin analogues with altered metal chelating groups were prepared and evaluated for inhibition of E. coli Dxr, M. tuberculosis Dxr and the growth of P. falciparum K1 in human erythrocytes. None of the synthesized compounds showed activity against either enzyme or the Plasmodia. This study further underlines the importance of the hydroxamate functionality and illustrates that identifying effective alternative bidentate ligands for this target enzyme is challenging

    Densities and phase equilibria of hydrogen, propane and vegetable oil mixtures. Experimental data and thermodynamic modeling

    Get PDF
    Heterogeneous catalytic gas-liquid reactions are intensified when carried out in the homogenous fluid phase by means of a supercritical co-solvent. For instance, supercritical propane is used to enhance yield in the hydrogenation of vegetable oils. Besides phase equilibrium knowledge, volumetric information is also needed to elucidate kinetic mechanisms and design continuous supercritical reactors. In this work, we report new experimental PvT data of the reactive mixture H2+sunflower oil+propane using the isochoric method. In addition, the phase equilibria and PvT data are modeled with the GCA and RK-PR equations of state, respectively. The isochoric method not only provides PvT information under the reaction conditions, but also the reactive system compressibility, key variable to attain enhanced transport properties in the supercritical reactors.Fil: Hegel, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Cotabarren, Natalia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brignole, Esteban Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. University of KwaZulu-Natal; Sudáfric
    • …
    corecore