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Abstract: Fourteen new fosmidomycin analogues with altered metal chelating groups were 

prepared and evaluated for inhibition of E. coli Dxr, M. tuberculosis Dxr and the growth of 

P. falciparum K1 in human erythrocytes. None of the synthesized compounds showed 

activity against either enzyme or the Plasmodia. This study further underlines the 

importance of the hydroxamate functionality and illustrates that identifying effective 

alternative bidentate ligands for this target enzyme is challenging.  
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1. Introduction 

Yearly, up to 5 million clinical cases and a million fatalities result from malaria, an infectious 

disease caused by protozoa of the Plasmodium species, with P. falciparum being responsible for the 

most severe cases [1]. The heaviest caseload is suffered by pregnant women and children in  

sub-Saharan Africa [2]. Unlike Plasmodia which are endemic in the tropics, Mycobacterium 

tuberculosis (Mtb), the causative agent of tuberculosis afflicts one-third of the world’s population 

annually, leading to about 2–3 million deaths [3]. With resistance emerging to virtually all currently 

used drugs for the treatment of both diseases, new, safe, effective and low cost antimalarial and 

antitubercular therapeutics are highly awaited.  

The discovery that fosmidomycin (1, Figure 1) and its acetyl congener FR900098 (2), both natural 

products extracted from Streptomyces species inhibit 1-deoxy-D-xylulose-5-phosphate reducto-

isomerase (Dxr), opened interesting opportunities for therapeutics [4,5]. Dxr is the second enzyme in 

the non-mevalonate pathway (NMP) for isoprenoid biosynthesis, which is absent in humans, but 

present in most Gram-negative and some Gram-positive bacteria (including Mtb), as well as in 

apicomplexan parasites (including Plasmodia) [6,7]. Fosmidomycin inhibits the Dxr-catalyzed 

conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) to 2C-methyl-D-erythritol-4-phosphate 

(MEP), by mimicking the binding mode of DOXP to this enzyme [8,9]. SAR studies have indicated 

the importance of fosmidomycin’s hydroxamate moiety for chelation of a divalent metal cation (M: 

Mn2+ or Mg2+) present in the enzyme’s active site. 

Figure 1. Analogy between DOXP and Fosmidomycin/FR900098.  
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Due to its promising antimalarial activity, fosmidomycin received considerable attention and a 

combination therapy with clindamycin confirmed its potential as an antimalarial drug, following 

clinical trials conducted in Gabon and Thailand [10,11]. However, the moderate bioavailability and 

short serum half-life of fosmidomycin prevented the drug combination from reaching the market. 

Fosmidomycin’s phosphonate group is highly ionized at physiological pH, which is the main reason 

for its low bioavailability. While this does not preclude efficient uptake in P. falciparum, other 

organisms like Mtb, are not sensitive to fosmidomycin because they lack a glycerol-3-phosphate 

transporter (G1pT) that is known to actively transport fosmidomycin across hydrophobic cell 

membranes [12,13].  
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Although the chelating ability of hydroxamates often makes them potent metalloenzyme inhibitors, 

most hydroxamic acids suffer from poor oral bioavailability and significant binding to other metals 

(e.g., Zn2+, Cu2+, etc.) besides Mn2+ and Mg2+ [14,15]. In addition, hydroxamic acids may be rapidly 

degraded in vivo by hydrolysis, glucuronidation and sulfation and may suffer from poor 

pharmacokinetic and toxicological profiles [16]. In order to circumvent the limitations associated with 

the phosphonate and hydroxamate moiety of fosmidomycin, two strategies have been widely exploited 

in the design of potent analogues: masking of the polar phosphonate group as prodrugs and/or 

substituting the hydroxamate of fosmidomycin with an alternative Mn2+ and Mg2+ binding group. The 

former strategy has been relatively well investigated [17], while the latter has been studied with less rigor. 

Giessmann et al. synthesized a series of amidopropylphosphonates 3 (Figure 2), but none of these 

showed detectable E. coli Dxr inhibition when tested up to 30 µM, indicating the importance of the  

N-OH group for Dxr inhibition [18]. This was further proven by Woo et al. following the evaluation of 

compounds 4 wherein the N-OH was replaced with N-CH3 [19]. During the synthesis of -substituted 

fosmidomycin analogues, our group observed that benzyl removal from the retrohydroxamate moiety 

by catalytic hydrogenation typically resulted in the formation of the desired compound, but also 

significant amounts of the corresponding deoxygenated derivative, i.e., the amide, due to the 

competitive side reaction of “full” reduction [20]. Deprotection of the phosphonate moiety of the latter 

afforded analogues such as 5, which were moderately potent in inhibiting E. coli Dxr and capable of 

inhibiting the growth of a Dd2 P. falciparum strain at submicromolar concentrations (unpublished 

results). The Rohmer group demonstrated that the reverse hydroxamate counterparts of fosmidomycin 

or FR900098 (6) elicit comparable inhibitory activity against E. coli Dxr as the natural products [21]. 

This observation was further confirmed by other groups which obtained sub-micromolar IC50 values 

following evaluation of fosmidomycin analogues comprising a reverse hydroxamate moiety [22–24]. 

Nakamura and co-workers showed that a cis arrangement of the two oxygen atoms of the hydroxamate 

group is required for effective metal chelation. Furthermore, they suggested that alternative functional 

groups containing cis oxygen atoms might have comparable metal coordination ability [8]. Catechols 

7a and 7b showed IC50 values of 24.8 µM and 4.5 µM, respectively, when tested for inhibition  

of E. coli Dxr, indicating a preference for the 1,3,4-orientation (7b) of the catechol over the  

1,2,3-orientation (7a) [25]. 

Figure 2. Hydroxamate-modified analogs of fosmidomycin. 
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In search for lipophilic fosmidomycin analogues, Andaloussi et al. resynthesized 7b alongside other 

hydroxamate-modified compounds with a bulky heteroaryl moiety such as 7c. Tests conducted with 

these compounds revealed that steric constraint in the vicinity of the Dxr active site was deleterious to 

inhibitory potency [26]. Other attempts to substitute the hydroxamate group of fosmidomycin with 

similar sterically demanding alternatives led to the conclusion that the Dxr active site is very narrow 

around the metal cation [27,28]. Nevertheless, the Dowd group recently observed a more efficient 

coordination of the metal cation by amide- versus O-linked substituents on the retrohydroxamate of 

fosmidomycin [29]. They highlighted the importance of having an aromatic group in the inhibitor 

while also suggesting that an alkyl chain between the retrohydroxamate and the aryl group may be 

preferable for accessing an alternate binding location.  

This paper aims to more systematically investigate the possibilities of replacing the retrohydroxamate 

group of fosmidomycin with effective alternative bidentate ligands. Amide derivatives represented by 

the general structure 8 were prepared and evaluated. We envisaged a contribution to chelation by 

ortho-substituents on the amide-linked aromatic ring. Compounds with a NH moiety between carbonyl 

and sulfonyl groups are very acidic (pKa ~ 2). At physiological pH, the presence of a negative charge 

at this position would be expected to improve the interaction with the active-site metal ion [30]. 

Therefore, we included one analogue with a methylsulfonyl group in the ortho position of the phenyl 

ring (compound 8h), as well as a (non-aromatic) sulfamate (compound 8m). In order to ascertain the 

influence of electronic factors on chelation, aromatic substituents with various electronic properties 

were selected. 

2. Results and Discussion 

2.1. Synthesis  

The synthesis of the amide derivatives 8a–i, m–q is outlined in Scheme 1. Carboxylic acid 9 was 

readily prepared starting from commercially available ethyl 4-bromo-butyrate and dibenzyl phosphite 

as previously described by Kuntz et al. [21]. Anticipation that the cyano substituent on aniline 11q 

would be susceptible to hydrogenation later in the synthesis necessitated the use of the diethyl 

protected phosphonate 10, obtained from saponification of commercially available triethyl  

4-phosphonobutyrate, for reaction with this aniline. With the exception of anilines 11i and 11l, all 

other anilines used were commercially available. Synthesis of 11i (Scheme 2) started from 2-nitro-aniline 

which was easily converted to the NH-Boc protected form as described by McNeil and Kelly [31]. 

Subsequent N,N-dimethylation, followed by Boc removal afforded the aniline. Compound 11l was 

prepared from 2,6-dihydroxyaniline according to a literature procedure [32]. 

Anilines are often poor nucleophiles, thus carboxylic acids 9 and 10 were first converted to their 

respective acid chlorides by treatment with oxalyl chloride before subsequent nucleophilic substitution 

of 11a–m, 11q to generate a small library of the protected amides 12a–m, and 13q in moderate yields. 

The 1H-NMR spectrum of 12c displays two peaks at 2.17 ppm and 2.21 ppm for the 2,6-dimethyl 

protons corresponding to the E and Z amide rotamers in a 5/1 ratio. Hydrolysis of the tertiary butyl 

ester group of 12j with TFA (20% in dichloromethane) further converted this intermediate to 12n. 

Using benzyl protection for both the phosphonate and the aryl substituent (12k and 12l) allowed a mild 
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single deprotection by catalytic hydrogenolysis in the presence of palladium over activated charcoal at 

room temperature to access targets 8a–i, m–p. TMSBr mediated deprotection of 13q and basic workup 

yielded 8q as the bisammonium salt.  

Scheme 1. General synthesis of amide derivatives 8a–i, m–q. 
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Reagents and conditions: (i) oxalyl chloride, DMF, CH2Cl2, 45 °C, 2–3 h, 40%–75%; (ii) TFA/CH2Cl2 (for 12j); 

(iii) H2, Pd/C, MeOH, NaOHaq., 25 °C, 10–15 min, quant.; (iv) TMSBr, CH2Cl2, H2O, NH4OHaq., quant. 

Scheme 2. Preparation of aniline 11i. 

NO2

NHBoc

NMe2

NHBoc

NMe2

NH2

11i14 15

i ii

 
Reagents and conditions: (i) formaldehyde, H2, Pd/C, MeOH, 90%; (ii) acetyl chloride, MeOH. 

2.2. Antiplasmodial and Antitubercular Evaluation  

The ability of the final compounds to inhibit the E. coli Dxr and M. tuberculosis Dxr was 

investigated using a spectrophotometric assay monitoring the substrate dependent oxidation of 

NADPH, essentially as described in detail elsewhere [33]. As shown in Figure 3, at a concentration of 

100 µM, all compounds failed to significantly inhibit the E. coli or Mtb Dxr. Likewise all compounds 

were found essentially inactive against P. falciparum K1 in human erythrocytes (IC50 > 64 µM). 

Figure 3. Relative activity of 8a–i, m–q on purified E. coli (dark grey) and Mtb Dxr (light-grey). 
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Similar to fosmidomycin, we expected that the phosphonate group of these analogs would be 

accommodated in the phosphate binding pocket of Dxr. With the three-carbon spacer unaltered, the 

introduced modification of the hydroxamate group is determining the lack of Dxr inhibitory activity. 

Monodentate ligands include virtually all anions and simple Lewis bases. While anticipating that the 

bivalent metal cation would be more readily bound by electron rich substituents on the aromatic ring, 

we expected that the analogs with 2,6-disubstituted aromatic rings would elicit better enzyme 

inhibition than their monosubstituted counterparts, since possible rotation of the amide bond would 

still assure a favorable conformation (cis) with respect to the carbonyl oxygen. Even though the hard 

metal ion character of Mg2+ favors the formation of stable complexes with dioxygen based hard 

ligands, O-linked substituents on the ring did not improve the inhibitory ability of these analogues. 

Carboxylate is a known chelating group [34] but in the assay conditions, the group was possibly 

protonated thereby reducing the chelating potency of the carboxylate oxygen of 8n with the Mg2+ ion. 

Obviously, the presence of an aromatic ring improved the lipophilicity of these analogs. However, 

limited flexibility around the amide bond seems detrimental for inhibitory activity. Maybe, the 

introduction of methylene groups between the NH and the (substituted)phenyl ring could increase the 

likelihood of adopting of a better conformation for occupation of ‘alternative’ binding pockets or a 

better fitting of the compound into the active site. In the course of our work, Bodill et al. reported 

similar modifications of the reytrohydroxamate moiety of fosmidomycin [35]. Out of a series of 

phosphonated N-(hetero)arylcarboxamide analogues with one, two, three or four methylene groups 

linking the phosphonate to the carboxamide group, they found that increasing the number of methylene 

groups in the spacer (particularly to three or four methylene groups) decreases the Dxr inhibitory 

activity dramatically. The authors noted that while receptor-cavity size constraints is an important 

determinant of binding, allosteric and reverse-orientation ligand binding modes cannot be excluded.  

3. Experimental  

3.1. General Methods and Materials 

1H-, 13C-, 19F- and 31P-NMR spectra were recorded in CDCl3, or D2O on a Mercury 300 

spectrometer (Varian, Palo Alto, CA, USA). Chemical shifts are given in parts per million (ppm) (δ 

relative to TMS for H and C and to external D3PO4 for 31P. High resolution mass spectroscopy spectra 

for all compounds were also recorded on a LCT Premier XE orthogonal time-of flight spectrometer 

with API-ES source (Waters, Alliance 2695XE-LCT Premier XETM, Zellik, Belgium). Silica gel (60 Å, 

0.063–0.200 mm) was purchased from Biosolve (Valkenswaard, The Netherlands). All solvents and 

chemicals were used as purchased unless otherwise stated.  

3.2. General Procedure for the Synthesis of Protected Amides 

To a 0.5 M solution of the acid 9/10 in dichloromethane under nitrogen atmosphere, was added 

oxalyl chloride (2 eq.) and a few drops of DMF at room temperature. After effervescence subsided, the 

mixture was heated to reflux at 45 °C for 2 h. It was then cooled to room temperature, concentrated  

in vacuo, co-evaporated three times with toluene and then re-dissolved in dichloromethane. The aniline 

(2 eq.) was then added at 0 °C, followed by DIPEA (3 eq.) and the mixture stirred overnight at room 
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temperature. The reaction was quenched by addition of NaHCO3 and the aqueous layer was extracted 

three times with dichloromethane. The combined organic layer was washed once with brine, dried over 

Na2SO4 and concentrated in vacuo. Purification by silica gel chromatography using a toluene/acetone 

or dichloromethane/methanol solvent system gave access to the pure protected amides (30%–75% yields). 

Dibenzyl 3-(phenylcarbamoyl)propylphosphonate (12a). 1H-NMR (300 MHz, CDCl3) δH ppm 1.55–2.09 

(m, 4H, P-CH2-CH2), 2.47 (t, J = 6.82 Hz, 2H, CH2-CONHPh), 4.89–5.11 (m, 4H, CH2-Ph), 6.99–7.55 

(m, 15H, Ar-H), 8.27 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 18.93 (d, 2JP-C = 6.32 Hz, 

C2), 24.42 (d, 1JP-C = 139.32 Hz, C1), 36.82 (d, 3JP-C = 8.85 Hz), 67.39 (d,2JP-C = 6.63 Hz, PhCH2, C3), 

119.77 (Ar-C), 119.87 (Ar-C), 124.23 (Ar-C), 128.22 (Ar-C), 128.80 (Ar-C), 136.12 (3JP-C = 5.53 Hz, 

Cipso-PhCH2), 136.31, (Ar-C) 138.39 (Ar-C), 170.71 (CO). 31P-NMR (121.5 MHz, CDCl3): δP  

ppm = 34.00. HRMS (ESI): calculated for C24H27NO4P [(M+H)+], 424.1672; found 424.1698. 

Dibenzyl 3-(o-tolylcarbamoyl)propylphosphonate (12b). 1H-NMR (300 MHz, CDCl3) δH ppm 1.70–2.12 

(m, 4H, P-CH2-CH2), 2.24 (s, Ph-CH3), 2.51 (t, J = 6.74 Hz, 2H, CH2-CONHPh), 4.87–5.12 (m, 4H, 

CH2-Ph), 7.00–7.23 (m, 3H), 7.28–7.38 (m, 10H, Ar-H), 7.55 (br. s, 1H, NH), 7.78 (d, J = 7.91 Hz, 

1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.18 (PhCH3), 19.16 (d, 2JP-C = 6.32 Hz, C2), 24.75 

(d, 1JP-C = 140.21 Hz, C1), 36.87 (d, 3JP-C = 9.34 Hz, C3), 67.52 (2JP-C = 6.54 Hz, PhCH2), 123.35 (Ar-C), 

125.32 (Ar-C), 126.85 (Ar-C), 128.18 (Ar-C), 128.74 (Ar-C), 128.86 (Ar-C), 130.70 (Ar-C), 136.00 

(Ar-C), 136.43 (d, 3JP-C = 5.93 Hz, Cipso-PhCH2), 170.70 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm 

= 33.77. HRMS (ESI): calculated for C25H29NO4P [(M+H)+], 438.1829; found 438.1831. 

Dibenzyl 3-(2,6-dimethylphenylcarbamoyl)propylphosphonate (12c). 1H-NMR (300 MHz, CDCl3) δH 

ppm 1.69–2.12 (m, 4H, P-CH2-CH2), 2.17 (5/6 of 6H, s, Ph-CH3), 2.17 (1/6 of 6H, s, Ph-CH3), 2.49 (t, 

J = 7.16 Hz, 2H, CH2-CONHPh), 4.86–5.14 (m, 4H, CH2-Ph), 7.02–7.14 (m, 3H, Ar-H), 7.29–7.38 (m, 

10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.79 (Ph-CH3), 19.22 (d, 2JP-C = 5.21 Hz, C2), 25.20 

(d, 1JP-C = 140.50 Hz, C1), 36.24 (d, 3JP-C = 10.92 Hz, C3), 67.49 (d, 2JP-C = 6.69 Hz, PhCH2), 127.47 

(Ar-C), 128.28 (Ar-C), 128.38 (Ar-C), 128.74 (Ar-C), 128.87 (Ar-C), 134.14 (Ar-C), 135.53 (Ar-C), 

136.48 (d, 3JP-C = 5.85 Hz, Cipso-PhCH2), 170.57 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 

33.63. HRMS (ESI): calculated for C26H31NO4P [(M+H)+], 452.1985; found 452.1990. 

Dibenzyl 3-(2-methoxyphenylcarbamoyl)propylphosphonate (12d). 1H-NMR (300 MHz, CDCl3) δH 

ppm 1.74–2.12 (m, 4H, P-CH2-CH2), 2.47 (t, J = 7.04 Hz, 2H, CH2-CONHPh), 3.83 (s, 3H, NHPh-O-

CH3), 4.91–5.10 (m, 4H, CH2-Ph), 6.86 (dd, J = 1.17 Hz, 7.91 Hz, 1H, Ar-H), 6.94 (td, J = 1.46 Hz, 

7.61 Hz, 1H, Ar-H), 7.03 (td, J = 1.76 Hz, 7.62 Hz), 7.26–7.40 (m, 10H, Ar-H), 7.82 (br. s, 1H, NH), 

8.33 (dd,  

J = 1.17 Hz, 7.91 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.61 (d, 2JP-C = 4.98 Hz, C2), 

25.09 (d, 1JP-C = 140.42 Hz, C1), 37.48 (d, 3JP-C = 13.27 Hz, C3), 55.67 (Ph-O-CH3) 67.23 (2JP-C = 6.64 Hz, 

PhCH2), 109.97 (Ar-C), 119.98 (Ar-C), 121.08 (Ar-C), 123.76 (Ar-C), 127.61 (Ar-C), 127.99 (Ar-C), 

128.46 (Ar-C), 128.65 (Ar-C), 136.41 (d, 3JP-C = 6.08 Hz, Cipso-PhCH2), 147.889 (Ar-C), 170.03 (CO). 
31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.52. HRMS (ESI): calculated for C25H29NO5P [(M+H)+], 

454.1778; found 454.1791. 
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Dibenzyl 3-(2,6-dimethoxyphenylcarbamoyl)propylphosphonate (12e). 1H-NMR (300 MHz, CDCl3) δH 

ppm 1.85–2.11 (m, 4H, P-CH2-CH2), 2.33–2.59 (m, 2H, CH2-CONHPh), 3.75 (br. s, 6H, OCH3) 4.86–5.12 

(m, 4H, CH2-Ph), 6.55 (d, J = 8.51 Hz, 2H, Ar-H), 7.17 (t, J = 8.52 Hz, 1H, Ar-H) 7.27–7.36 (m, 10H, 

Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.12 (Ph-CH3), 22.26 (d, 2JP-C = 5.35 Hz, C2), 25.28 (d, 
1JP-C = 139.10 Hz, C1), 36.21 (d, 3JP-C = 9.83 Hz, C3), 67.38 (d, 2JP-C = 6.58 Hz, PhCH2), 127.39 (Ar-C), 

128.20 (Ar-C), 128.32 (Ar-C), 128.45 (Ar-C), 128.92 (Ar-C), 129.13 (Ar-C), 135.51 (Ar-C), 136.97 

(d, 3JP-C = 6.08 Hz, Cipso-PhCH2), 165.22 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.07. 

HRMS (ESI): calculated for C26H31NO6P [(M+H)+], 484.1884 ; found 484.0402. 

Dibenzyl 3-(2-fluorophenylcarbamoyl)propylphosphonate (12f). 1H-NMR (300 MHz, CDCl3) δH ppm 

1.76–2.01 (m, 4H, P-CH2-CH2), 2.50 (t, J = 7.06 Hz, 2H, CH2-CONHPh), 4.88–5.15 (m, 4H, CH2-Ph), 

6.96–7.16 (m, 3H, Ar-H), 7.28–7.39 (m, 10H, Ar-H), 7.84 (br. s, 1H, NH), 8.25 (t, J = 8.18 Hz, 1H, 

Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.64 (d, 2JP-C = 5.24 Hz, C2), 24.71 (d, 1JP-C = 140.37 Hz, 

C1), 36.85 (d, 3JP-C = 10.64 Hz, C3), 67.29 (d, 2JP-C = 6.59 Hz, PhCH2), 114.86 (d, 2JF-C = 19.38 Hz, F-Ph), 

122.02 (Ar-C), 124.36 (d, 2JF-C = 7.58 Hz, F-Ph), 124.49 (d, 3JF-C = 3.79 Hz, F-Ph), 128.00 (Ar-C), 

128.49 (Ar-C), 128.62 (Ar-C), 136.26 (d, 3JP-C = 5.71 Hz, Cipso-PhCH2), 152.42 (d, 1JF-C = 243.71 Hz, 

F-Ph), 170.43 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.60. HRMS (ESI): calculated for 

C24H26FNO4P [(M+H)+], 442.1578; found 442.1586. 

Dibenzyl 3-(2-acetylphenylcarbamoyl)propylphosphonate (12g). 1H-NMR (300 MHz, CDCl3) δH ppm 

1.80–2.12 (m, 4H, P-CH2-CH2), 2.49 (t, J = 7.11 Hz, 2H, CH2-CONHPh), 2.65 (s, 3H, OCCH3), 4.93–5.11 

(m, 4H, CH2-Ph), 7.11 (dd, 1H, J = 1.17 Hz, 8.23 Hz, Ar-H), 7.29–7.38 (m, 10H, Ar-H), 7.54 (dd,  

J = 1.68 Hz, 8.52 Hz, 1H, Ar-H), 7.88 (dd, J = 1.50 Hz, 7.86 Hz, 1H, Ar-H), 8.72 (dd, J = 1.10 Hz, 

8.52, 1H Ar-H), 11.70 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 18.59 (d, 2JP-C = 4.42 Hz, 

C2), 25.45 (d, 1JP-C = 140.98 Hz, C1), 28.69 (PhCOCH3), 38.45 (d, 3JP-C = 16.03 Hz, C3), 67.25 (d,  
2JP-C = 6.63 Hz, PhCH2), 120.82 (Ar-C), 121.90 (Ar-C), 122.45 (Ar-C), 128.01 (Ar-C), 128.45 (Ar-C), 

128.70 (Ar-C), 131.79 (Ar-C), 135.30 (Ar-C), 136.45 (d, 3JP-C = 6.08 Hz, Cipso-PhCH2), 141.07 (Ar-C), 

174.24 (CO), 202.91 (PhCOCH3). 
31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.43. HRMS (ESI): 

calculated for C26H29NO5P [(M+H)+], 466.1778; found 466.1779.  

Dibenzyl 3-(2-(methylsulfonyl)phenylcarbamoyl)propylphosphonate (12h). 1H-NMR (300 MHz, 

CDCl3) δH ppm 1.74–2.12 (m, 4H, P-CH2-CH2), 2.50 (t, J = 7.10 Hz, 2H, CH2-CONHPh), 2.99 (br. s, 

3H, SO2-CH3), 4.92–5.11 (m, 4H, CH2-Ph), 7.21–7.29 (m, 2H, Ar-H), 7.30–7.37 (m, 10H, Ar-H), 7.62 

(td, J = 1.62 Hz, 7.07 Hz, 1H, Ar-H), 7.90 (dd, J = 1.62 Hz, 7.98 Hz), 8.45 (dd, J = 1.27 Hz, 8.01 Hz, 

1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.56 (d, 2JP-C = 5.07 Hz, C2), 25.42 (d, 1JP-C = 141.36 Hz, 

C1), 37.92 (d, 3JP-C = 14.76 Hz, C3), 44.41 (-PhSO2CH3), 67.47 (d, 2JP-C = 6.82 Hz, PhCH2), 123.06 

(Ar-C), 124.40 (Ar-C), 127.28 (Ar-C), 128.21 (Ar-C), 128.68 (Ar-C),128.85 (Ar-C), 129.54 (Ar-C), 

135.54 (Ar-C), 136.53 (d, 3JP-C = 5.81 Hz, Cipso-PhCH2), 137.11 (Ar-C), 170.66 (CO). 31P-NMR (121.5 

MHz, CDCl3): δP ppm = 33.10. HRMS (ESI): calculated for C25H29NO6PS [(M+H)+], 502.1448; found 

502.1470.  

Dibenzyl 3-(2-(dimethylamino)phenylcarbamoyl)propylphosphonate (12i). 1H-NMR (300 MHz, 

CDCl3) δH ppm 1.75–2.12 (m, 4H, P-CH2-CH2), 2.49 (t, J = 7.07 Hz, 2H, CH2-CONHPh), 2.60 (br. s, 
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6H,  

N-(CH3)2), 4.92–5.10 (m, 4H, CH2-Ph), 7.00–7.18 (m, 3H, Ar-H), 7.27–7.38 (m, 10H, Ar-H), 8.33 (d, 

1H, J = 7.78, Ar-H), 8.43 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 18.80 (d, 2JP-C = 4.81 Hz, 

C2), 25.51 (d, 1JP-C = 140.87 Hz, C1), 37.89 (d, 3JP-C = 14.19 Hz, C3), 45.00 (N-CH3), 67.41 (d,  
2JP-C = 6.60 Hz, PhCH2), 119.72 (Ar-C), 120.12 (Ar-C), 123.92 (Ar-C), 125.26 (Ar-C), 128.15 (Ar-C), 

128.63 (Ar-C), 128.82 (Ar-C), 133.53 (Ar-C), 136.58 (d, 3JP-C = 6.02 Hz, Cipso-PhCH2), 142.87 (Ar-C), 

170.16 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.53. HRMS (ESI): calculated for 

C26H32N2O4P [(M+H)+], 467.2094; found 467.2330.  

Dibenzyl 3-(2-(tert-butoxycarbonyl)phenylcarbamoyl)propylphosphonate (12j). 1H-NMR (300 MHz, 

CDCl3) δH ppm 1.59 (br. s, 9H, O-tBu), 1.77–2.13 (m, 4H, P-CH2-CH2), 2.50 (t, J = 7.21 Hz, 2H,  

CH2-CONHPh), 4.93–5.11 (m, 4H, CH2-Ph), 7.05 (td, J = 1.10 Hz, 7.38, 1H, Ar-H), 7.25–7.38 (m, 

10H, Ar-H), 7.49 (td, J = 1.75 Hz, 7.38 Hz, 1H, Ar-H), 7.97 (dd, J = 1.75 Hz, 8.32 Hz 1H, Ar-H), 8.67 

(dd, J = 1.06 Hz, 8.51 Hz 1H, Ar-H), 11.20 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 18.66 

(d, 2JP-C = 4.94 Hz, C2), 25.54 (d, 1JP-C = 140.62 Hz, C1), 28.41 (PhCOOCCH3), 38.55 (d,  
3JP-C = 15.82 Hz, C3), 67.38 (d, 2JP-C = 6.35 Hz, PhCH2), 82.66 (Ar-C), 116.62 (Ar-C), 120.47 (Ar-C), 

122.48 (Ar-C), 128.15 (Ar-C), 128.57 (Ar-C), 128.79 (Ar-C), 131.24 (Ar-C), 134.31 (Ar-C), 136.63 

(d, 3JP-C = 5.92 Hz, Cipso-PhCH2), 141.71 (Ar-C), 167.91 (COOtBu), 170.96 (C0). 31P-NMR (121.5 

MHz, CDCl3): δP ppm = 33.41.  

Dibenzyl 3-(2-(benzyloxy)phenylcarbamoyl)propylphosphonate (12k). 1H-NMR (300 MHz, CDCl3) δH 

ppm 1.74–2.10 (m, 4H, P-CH2-CH2), 2.40 (t, J = 7.21 Hz, 2H, CH2-CONHPh), 4.86–5.16 (m, 4H, 

CH2-Ph), 5.10 (br. s, 2H, NH-Ph-O-CH2-Ph), 6.88–7.05 (m, 3H, Ar-H), 7.24–7.43 (m, 15H, Ar-H), 

7.79 (br. s, 1H, NH), 8.35 (td, J = 2.47 Hz, 7.84 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 

19.25 (d, 2JP-C = 4.98 Hz, C2), 25.66 (d, 1JP-C = 140.43 Hz, C1), 38.00 (d, 3JP-C = 14.37 Hz, C), 67.54 

(2JP-C = 6.6.63 Hz, PhCH2), 71.50 (NH-Ph-O-CH2-Ph), 112.35 (Ar-C), 120.72 (Ar-C), 122.04 (Ar-C), 

124.28 (Ar-C), 128.09(Ar-C), 128.49(Ar-C), 128.90 (Ar-C), 128.95 (Ar-C), 129.14 (Ar-C), 129.35 

(Ar-C), 136.91 (d, 3JP-C = 6.09 Hz, Cipso-PhCH2), 136.97 (Ar-C), 147.66 (Ar-C), 170.49 (CO).  
31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.55. HRMS (ESI): calculated for C31H33NO5P [(M+H)+], 

530.2091; found 530.2122. 

Dibenzyl 3-(2,6-bis(benzyloxy)phenylcarbamoyl)propylphosphonate (12l). 1H-NMR (300 MHz, CDCl3) δH 

ppm 1.69–1.98 (m, 4H, P-CH2-CH2), 2.38 (app. s, 2H, CH2-CONHPh), 5.82–5.01 (m, 4H, P-O-CH2-Ph), 

5.06 (s, 4H, N-Ph-O-CH2-Ph), 6.62 (d, J = 8.57 Hz, 2H, Ar-H), 7.12 (t, J = 8.39 Hz, 1H, Ar-H), 7.21–7.45 

(m, 20 H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.19 (C2), 24.49 (d, 1JP-C = 138.22 Hz, C1), 

36.07 (C3), 67.02 (d, 2JP-C = 6.59 Hz, PhCH2OP), 70.71 (NH-PhOCH2Ph), 106.08 (Ar-C), 115.21  

(Ar-C), 127.33 (Ar-C), 127.89 (Ar-C), 128.31 (Ar-C), 128.53 (Ar-C), 136.39, (d, 3JP-C = 5.53 Hz,  

Cipso-PhCH2), 138.81 (Ar-C), 154.92 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 34.16.  

Dibenzyl (4-(methylsulfonamido)-4-oxobutyl)phosphonate (12m). 1H-NMR (300 MHz, CDCl3) δH ppm 

1.75–2.04 (m, 4H, P-CH2-CH2), 2.47 (t, J = 7.03 Hz, 2H, CH2-CONHPh), 3.21 (s, 3H, SO2NHCH3), 

4.89–5.11 (m, 4H, CH2-Ph), 7.28–7.40 (m, 10H, Ar-H), 10.63 (br.s, 1H, NH). 13C-NMR (75 MHz, 

CDCl3) δC ppm 17.79 (d, 2JP-C = 5.93 Hz, C2), 24.46 (d, 1JP-C = 140.57 Hz, C1), 35.84 (d, 3JP-C = 10.02 
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Hz, C3), 41.61 (SO2NHCH3), 67.93 (d, 2JP-C = 6.47 Hz, PhCH2), 128.14 (Ar-C), 128.88 (Ar-C), 128.93 

(Ar-C), 136.18 (d, 3JP-C = 5.81 Hz, Cipso-PhCH2), 172.17 (CO). 31P-NMR (121.5 MHz, CDCl3):  

δP ppm = 33.41. HRMS (ESI): calculated for C19H25NO6PS [(M+H)+], 426.1140; found 426.1162.  

2-(4-(Bis(benzyloxy)phosphoryl)butanamido)benzoic acid (12n). Compound 12j (0.416 g) was 

dissolved in a dichloromethane/TFA mixture (5/1, 8 mL) at 0 °C. After stirring for an hour, TLC 

analysis showed a completed reaction. Toluene (15 mL) was then added to the reaction mixture before 

concentration in vacuo. Column chromatography (97.5% CH2Cl2/2% MeOH/0.5% CH3COOH) yielded 

272 mg of 12n as an oil (73% yield). 1H-NMR (300 MHz, CDCl3) δH ppm 1.94–2.17 (m, 4H,  

P-CH2-CH2), 2.52 (t, J = 6.26 Hz, 2H, CH2-CONHPh), 4.87–5.14 (m, 4H, CH2-Ph), 7.06 (td,  

J = 1.08 Hz, 8.10 Hz, 1H, Ar-H), 7.27–7.35 (m, 10H, Ar-H), 7.51 (td, J = 1.08 Hz, 8.28 Hz, 1H, Ar-H), 

8.10 (dd, J = 1.68 Hz, 8.10 Hz, 1H, Ar-H), 8.66 (td, J = 1.00 Hz, 8.39 Hz, 1H, Ar-H), 11.44 (br.s 1H, NH).  
13C-NMR (75 MHz, CDCl3) δC ppm 18.25 (d, 2JP-C = 5.04 Hz, C2), 25.22 (d, 1JP-C = 140.04 Hz, C1), 

38.52 (d, 3JP-C = 17.22 Hz, C3), 67.96 (d, 2JP-C = 6.52 Hz, PhCH2), 115.55 (Ar-C), 120.23 (Ar-C), 

122.72 (Ar-C), 128.21 (Ar-C), 128.77 (Ar-C), 128.86 (Ar-C), 131.81 (Ar-C), 134.71 (Ar-C), 136.14 

(d, 3JP-C = 5.92 Hz, Cipso-PhCH2), 141.89 (Ar-C), 170.90 (CO), 170.98 (CO). 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 26.02. 

Diethyl 3-(2-cyanophenylcarbamoyl)propylphosphonate (13q). 1H-NMR (300 MHz, CDCl3) δH ppm 

1.34 (t, J = 7.11 Hz, 6H, P-O-CH2CH3), 1.79–2.17 (m, 4H, P-CH2-CH2), 2.64 (t, J = 7.11 Hz, 2H, 

CH2-CONHPh), 4.01–4.23 (m, 4H, -O-CH2-CH3), 7.19 (dd, J = 1.05 Hz, 7.64 Hz, 1H, Ar-H), 7.51–7.66 

(m, 2H, Ar-H), 8.14 (br. s, 1H, NH), 8.28 (dd, J = 1.10 Hz, 8.96 Hz, 1H Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 16.49 (d, 3JP-C = 6.32 Hz, P-O-CH2-CH3), 18.58 (d, 2JP-C = 6.32 Hz, C2), 24.43 (d,  
1JP-C = 141.21 Hz, C1), 37.02 (d, 3JP-C = 12.19 Hz, C3), 61.75 (d, 2JP-C = 6.06 Hz, P-O-CH2-CH3), 

102.97 (Ar-C), 116.46 (CN), 122.10 (Ar-C), 124.39 (Ar-C), 132.46 (Ar-C), 134.04 (Ar-C), 140.37 

(Ar-C), 170.86 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.14. HRMS (ESI): calculated for 

C25H22N2O4P [(M+H)+], 325.1317; found 325.1317. 

3.3. General Procedure for Amide Deprotection Yielding Targets 8a–i, m–p 

The amide (100–150 mg) was dissolved in MeOH (10 mL) and Pd/C (10%) was added under inert 

atmosphere. The resulting mixture was then stirred under hydrogen atmosphere for 10 min and the 

progress monitored by mass spectrometry. At completion, the reaction mixture was filtered and 

neutralized with 1 eq. of a NaOH. The mixture was concentrated in vacuo, re-dissolved in a mixture of 

water and ter-butanol, frozen and lyophilized to afford the desired targets compounds 8a–i, m–p as a 

white powder in quantitative yield. 

Sodium hydrogen 3-(phenylcarbamoyl)propylphosphonate (8a). 1H-NMR (300 MHz, D2O) δH ppm 

1.40–1.56 (m, 2H, -CH2-), 1.78–1.93 (m, 2H, P-CH2-), 2.46 (t, J = 7.47 Hz, 2H, CH2-CONHPh), 7.24 

(dt, J = 5.78, 2.82 Hz, 1H, Ar-H), 7.34–7.46 (m, 4 H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 21.13 

(d, 2JP-C = 3.71 Hz, C2), 28.55 (d, 1JP-C = 131.25 Hz, C1), 38.10 (d, 3JP-C = 16.61 Hz, C3), 122.45 (Ar-C), 

125.79 (Ar-C), 129.33 (Ar-C), 136.92 (Ar-C), 176.00 (CO). 31P-NMR (121.5 MHz, D2O):  

δP ppm = 22.06. HRMS (ESI): calculated for C10H13NO4P [(M−H)−], 242.0588; found 242.0061.  
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Sodium hydrogen 3-(o-tolylcarbamoyl)propylphosphonate (8b). 1H-NMR (300 MHz, D2O) δH ppm 

1.47–1.62 (m, 2H, -CH2-), 1.70–1.90 (m, 2H, P-CH2-), 2.10 (s, Ph-CH3), 2.40 (t, J = 7.44 Hz, 2H, 

CH2-CONHPh), 7.18–7.35 (m, 4H, Ar-H), 8.42 (br. s, 1H, NH). 13C-NMR (75 MHz, D2O) δC ppm 

17.14 (Ph-CH3), 21.06 (d, 2JP-C = 3.65 Hz, C2), 28.42 (d, 1JP-C = 131.87 Hz, C1), 37.68 (d,  
3JP-C = 16.61 Hz, C3), 126.76 (Ar-C), 127.21 (Ar-C), 127.81 (Ar-C), 130.89 (Ar-C), 134.56 (Ar-C), 

137.97 (Ar-C), 176.47 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 23.60. HRMS (ESI): calculated 

for C11H15NO4P [(M−H)−], 256.0744; found 256.0322.  

Sodium hydrogen 3-(2,6-dimethylphenylcarbamoyl)propylphosphonate (8c). 1H-NMR (300 MHz, 

D2O) δH ppm 1.47–1.65 (m, 2H, -CH2-), 1.80–2.20 (m, 2H, P-CH2-), 2.17 (s, 6H, Ph-CH3), 2.54 (t, J = 

7.47 Hz, 2H, CH2-CONHPh), 7.07–7.25 (m, 3H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 17.44 (Ph-

CH3), 21.11 (d, 2JP-C = 3.44 Hz, C2), 28.68 (d, 1JP-C = 131.75 Hz, C1), 37.24 (d, 3JP-C = 17.28 Hz, C3), 

128.21 (Ar-C), 133.48 (Ar-C), 136.31 (Ar-C), 176.37 (CO). 31P-NMR (121.5 MHz, D2O):  

δP ppm = 22.47. HRMS (ESI): calculated for C12H17NO4P [(M−H)−], 270.0901; found 270.0319.  

Sodium hydrogen 3-(2-methoxyphenylcarbamoyl)propylphosphonate (8d). 1H-NMR (300 MHz, D2O) 

δH ppm 1.37–1.52 (m, 2H, -CH2-), 1.77–1.92 (m, 2H, P-CH2-), 2.47 (t, J = 7.52 Hz, 2H,  

CH2-CONHPh), 3.83 (s, 3H, Ph-O-CH3), 7.00 (td, J = 7.65 Hz, 1.33 Hz, 1H, Ar-H), 7.09 (dd,  

J = 8.31 Hz, 1.24 Hz, 1H, Ar-H), 7.20–7.32 (m, 1H, Ar-H), 7.52 (dd, J= 7.87 Hz, 1.68 Hz, 1H, Ar-H). 
13C-NMR (75 MHz, D2O) δC ppm 21.40 (d, 2JP-C = 3.36 Hz, C2), 28.94 (d, 1JP-C = 130.12 Hz, C1), 

38.04 (d, 3JP-C = 16.84 Hz, C3), 56.01 (-Ph-O-CH3), 112.30 (Ar-C), 121.07 (Ar-C), 125.20 (Ar-C), 125.53 

(Ar-C), 127.65 (Ar-C), 152.22 (Ar-C), 176.45 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 21.28. HRMS 

(ESI): calculated for C11H15NO5P [(M−H)−], 272.0693; found 272.0129. 

Sodium hydrogen 3-(2,6-dimethoxyphenylcarbamoyl)propylphosphonate (8e). 1H-NMR (300 MHz, 

D2O) δH ppm 1.42–1.57 (m, 2H, -CH2-), 1.69–1.88 (m, 2H, P-CH2-), 2.40 (t, J = 7.39 Hz, 2H,  

CH2-CONHPh), 3.71 (s, 6H, Ph-O-CH3), 6.66 (d, J = 8.47 Hz, 2H, Ar-H), 7.33 (t, J = 8.47 Hz, 1H,  

Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.82 (d, 2JP-C = 3.64 Hz, C2), 28.05 (d, 1JP-C = 132.26 Hz, 

C1), 37.12 (d, 3JP-C = 17.22 Hz, C3), 56.34 (PhOCH3), 105.38 (Ar-C), 113.06 (Ar-C), 129.44 (Ar-C), 

155.33 (Ar-C), 176.72 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 24.34. HRMS (ESI): calculated 

for C12H17NO6P [(M+H)+], 302.0799; found 302.0074.  

Sodium hydrogen 3-(2-fluorophenylcarbamoyl)propylphosphonate (8f). 1H-NMR (300 MHz, D2O) δH 

ppm 1.44–1.61 (m, 2H, -CH2-), 1.80–1.94 (m, 2H, P-CH2-), 2.51 (t, J = 7.32 Hz, 2H, CH2-CONHPh), 

7.13–7.33 (m, 3H, Ar-H), 7.53 (td, J = 1.74 Hz, 7.63 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 

20.89 (d, 2JP-C = 3.54 Hz, C2), 28.30 (d, 1JP-C = 131.37 Hz, C1), 37.50 (d, 3JP-C = 17.13 Hz, C3), 

116.05 (d, JF-C = 19.91 Hz, Ar-C), 124.03 (d, JF-C = 3.36 Hz, Ar-C), 124.71 (d, JF-C = 12.74 Hz, Ar-C), 

126.62 (Ar-C), 128.08 (d, JF-C = 7.95 Hz, Ar-C), 157.44 (Ar-C), 176.42 (CO). 31P-NMR (121.5 MHz, 

D2O): δP ppm = 22.63. HRMS (ESI): calculated for C10H12FNO4P [(M−H)−], 260.0494; found 260.0001. 

Sodium hydrogen 3-(2-acetylphenylcarbamoyl)propylphosphonate (8g). 1H-NMR (300 MHz, D2O) δH 

ppm 1.24 (s, 3H, PhCOCH3), 1.40–1.58 (m, 2H, -CH2-), 1.84–1.99 (m, 2H, P-CH2-), 2.51 (t, J = 7.13 Hz, 

2H, CH2-CONHPh), 7.20–7.43 (m, 4H, Ar-H), 13C-NMR (75 MHz, D2O) δC ppm 21.43 (d,  
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2JP-C = 3.87 Hz, C2), 29.10 (d, 1JP-C = 129.92 Hz, C1), 29.71 (PhCOCH3), 37.69 (d, 3JP-C = 16.58 Hz, 

C3), 126.83 (Ar-C), 127.98 (Ar-C), 128.23 (Ar-C), 129.40 (Ar-C), 133.94 (Ar-C), 141.189 (Ar-C), 

177.12 (-CO-), 177.20 (-COCH3). 
31P-NMR (121.5 MHz, D2O): δP ppm = 22.19. HRMS (ESI): 

calculated for C12H15NO5P [(M−H)−], 284.0693; found 284.0693.  

Sodium hydrogen 3-(2-(methylsulfonyl)phenylcarbamoyl)propylphosphonate (8h). 1H-NMR (300 

MHz, D2O) δH ppm 1.40–1.58 (m, 2H, -CH2-), 1.81–1.98 (m, 2H, P-CH2-), 2.57 (t, J = 7.66 Hz, 2H,  

CH2-CONHPh), 3.23 (s, 3H, -Ph-SO2CH3), 7.57 (td, J = 1.36 Hz, 7.73 Hz, 1H, Ar-H), 7.65 (dd,  

J = 1.36 Hz, 8.13 Hz, 1H, Ar-H), 7.79 (td, J = 1.49 Hz, 7.73 Hz, 1H, Ar-H), 8.01 (dd, J = 8.00 Hz, 

1.53 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.97 (d, 2JP-C = 3.37 Hz, C2), 28.89 (d,  
1JP-C = 130.92 Hz, C1), 37.91 (d, 3JP-C = 17.13 Hz, C3), 43.14 (-Ph-SO2CH3), 128.31 (Ar-C), 129.60 

(Ar-C), 129.83 (Ar-C), 133.81 (Ar-C), 134.67 (Ar-C), 135.82 (Ar-C), 177.16 (CO). 31P-NMR (121.5 

MHz, D2O): δP ppm = 22.51. HRMS (ESI): calculated for C11H15NO6PS [(M−H)−], 320.0363; found 

319.9703. 

Sodium hydrogen 3-(2-(dimethylamino)phenylcarbamoyl)propylphosphonate (8i). 1H-NMR (300 

MHz, D2O) δH ppm 1.37–1.56 (m, 2H, -CH2-), 1.79–1.96 (m, 2H, P-CH2-), 2.51 (t, J = 7.52 Hz, 2H,  

CH2-CONHPh), 2.62 (s, 6H, Ph-N-CH3), 7.07–7.15 (m, 1H, Ar-H), 7.22–7.29 (m, 2H, Ar-H), 7.45 

(app. d, J = 7.65 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 21.31 (d, 2JP-C = 3.69 Hz, C2), 

29.11 (d, 1JP-C = 130.27 Hz, C1), 38.17 (d, 3JP-C = 16.91 Hz, C3), 43.71 (Ph-N-CH3), 120.11 (Ar-C), 

123.95 (Ar-C), 126.90 (Ar-C), 127.79 (Ar-C), 129.99 (Ar-C), 147.99 (Ar-C), 176.57 (CO). 31P-NMR 

(121.5 MHz, D2O): δP ppm = 24.24. HRMS (ESI): calculated for C12H18N2O4P [(M−H)−], 285.1010; 

found 285.0459.  

Sodium hydrogen (4-(methylsulfonamido)-4-oxobutyl)phosphonate (8m). 1H-NMR (300 MHz, D2O) δH 

ppm 1.55–1.69 (m, 2H, -CH2-), 1.78–1.92 (m, 2H, P-CH2-), 2.40 (t, J = 7.27 Hz, 2H, CH2-CONHPh), 

2.39 (s, 3H, -N-SO2CH3). 
13C-NMR (75 MHz, D2O) δC ppm 19.78 (d, 2JP-C = 3.87 Hz, C2), 27.41 (d, 

1JP-C = 133.24 Hz, C1), 38.62 (d, 3JP-C = 17.14 Hz, C3), 40.10 (-N-SO2CH3), 180.33 (CO). 31P-NMR 

(121.5 MHz, D2O): δP ppm = 25.22. HRMS (ESI): calculated for C5H11NO6PS [(M−H)−], 244.0050; 

found 244.0611.  

Sodium hydrogen 3-(2-carboxyphenylcarbamoyl)propylphosphonate (8n). 1H-NMR (300 MHz, D2O) 

δH ppm 1.55–1.70 (m, 2H, -CH2-), 1.81–1.98 (m, 2H, P-CH2-), 2.51 (t, J = 7.31 Hz, 2H,  

CH2-CONHPh), 7.22 (td, J = 1.03 Hz, 7.64 Hz, 1H, Ar-H), 7.50 (td, J = 1.65 Hz, 7.64 Hz, 1H, Ar-H), 

7.85 (dd, J = 7.83, 1.60 Hz, 1H, Ar-H), 8.01 (app. d, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 

19.97 (d, 2JP-C = 3.95 Hz, C2), 27.37 (d, 1JP-C = 133.39 Hz, C1), 38.45 (d, 3JP-C = 17.66 Hz, C3), 

121.99 (Ar-C), 124.67 (Ar-C), 125.10 (Ar-C), 130.71 (Ar-C), 132.22 (Ar-C), 137.17 (Ar-C), 173.83 

(CO, PhCOOH), 174.88 (CO, -CH2-CO-NH-). 31P-NMR (121.5 MHz, D2O): δP ppm = 24.98. HRMS 

(ESI): calculated for C11H13NO6P [(M−H)−], 286.0486; found 286.0268. 

Sodium hydrogen 3-(2-hydroxyphenylcarbamoyl)propylphosphonate (8o). 1H-NMR (300 MHz, D2O) 

δH ppm 1.46–1.61 (m, 2H, -CH2-), 1.79–1.96 (m, 2H, P-CH2-), 2.51 (t, J = 7.44 Hz, 2H,  

CH2-CONHPh), 6.88–7.03 (m, 2H, Ar-H), 7.18 (td, J = 1.79 Hz, 7.45 Hz, 1H, Ar-H), 7.35 (dd,  
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J = 7.83 Hz, 1.60 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.85 (d, 2JP-C = 3.84 Hz, C2), 

28.25 (d, 1JP-C = 131.65 Hz, C1), 37.47 (d, 3JP-C = 17.18 Hz, C3), 116.89 (Ar-C), 120.73 (Ar-C), 

124.10 (Ar-C), 126.37 (Ar-C), 128.15 (Ar-C), 149.83 (Ar-C), 176.39 (CO). 31P-NMR (121.5 MHz, 

D2O): δP ppm = 22.85. HRMS (ESI): calculated for C10H13NO5P [(M+H)+], 258.0537; found 

258.0058.  

Sodium hydrogen 3-(2,6-dihydroxyphenylcarbamoyl)propylphosphonate (8p). 1H-NMR (300 MHz, 

D2O) δH ppm 1.48–1.66 (m, 2H, -CH2-), 1.78–1.99 (m, 2H, P-CH2-), 2.54 (t, J = 7.43 Hz, 2H,  

CH2-CONHPh), 6.52 (d, J = 8.33 Hz, 2H, Ar-H), 7.07 (t, J = 8.22 Hz, 1H, Ar-H). 13C-NMR (75 MHz, 

D2O) δC ppm 20.63 (d, 2JP-C = 3.95 Hz, C2), 28.12 (d, 1JP-C = 131.80 Hz, C1), 37.02 (d, 3JP-C = 16.52 Hz, 

C3), 108.25 (Ar-C), 111.93 (Ar-C), 129.19 (Ar-C), 152.84 (Ar-C), 177.01 (CO). 31P-NMR (121.5 MHz, 

D2O): δP ppm = 22.22. HRMS (ESI): calculated for C10H13NO6P [(M−H)−], 274.0486; found 

273.9962.  

Bisammomium 3-(2-cyanophenylcarbamoyl)propylphosphonate (8q). Intermediate 13q (150 mg,  

0.334 mmol) was dissolved in dry dichloromethane (6 mL) under inert atmosphere and cooled to 0 °C. 

TMSBr (0.5 mL, 3.3 mmol) was added dropwise while stirring. The icebath was removed after 10 min 

and the reaction stirred at room temperature for 24 h. 31P-NMR confirmed that the starting phosphonate 

was completely deprotected (shift from δ = 32–25 ppm). The volatiles were removed in vacuo, the 

crude material was dissolved in 5% aqueous ammonia and washed with diethyl ether. Lyophilisation of 

the ammonia solution yielded the product as a brown solid in quantitative yield. 1H-NMR (300 MHz, 

D2O) δH ppm 1.50–1.65 (m, 2H, -CH2-), 1.85–2.20 (m, 2H, P-CH2-), 2.68 (t, J = 7.58 Hz, 2H,  

CH2-CONHPh), 7.45 (td, J = 0.99 Hz, 7.96 Hz, 1H, Ar-H), 7.60 (d, J = 8.05 Hz, 1H, Ar-H), 7.77 (td,  

J = 1.51 Hz, 7.20 Hz, 1H, Ar-H), 8.08 (dd, J = 1.33 Hz, 7.96 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) 

δC ppm 21.55 (d, 2JP-C = 3.87 Hz, C2), 27.80 (d, 1JP-C = 136.00 Hz, C1), 35.65 (d, 3JP-C = 16.59 Hz, 

C3), 121.59 (Ph-CN), 126.40 (Ar-C), 126.65 (Ar-C), 127.45 (Ar-C), 134.95 (Ar-C), 149.45 (Ar-C), 

157.68 (Ar-C), 162.45 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 25.00. HRMS (ESI): calculated 

for C11H13N2O4P [(M−H)−], 267.0540; found 267.0823. 

3.4. Synthesis of o-(Dimethylamino)aniline (11i) 

To a solution of 14 (0.5 g; 2 mmol) in MeOH (100 mL) was added formalin (14 mL), Pd/C 10% 

(160 mg) and formic acid (1 mL). The resulting mixture was allowed to stir under a hydrogen 

atmosphere for 3 h, after which, the mixture was filtered over a celite path and the filtrate concentrated 

to about 25 mL. The mixture was then basified by adding NaHCO3 and the water layer was extracted 

three times with EtOAc (3 × 50 mL). The combined organic phase was washed once with brine and 

dried over Na2SO4. Column chromatography (hexane/EtOAc 95:5) yielded 15 (0.450 g, 90%) as a 

colorless oil. Subsequent treatment of 15 with 30% TFA in dichloromethane at 0 °C afforded 11i 

which was used for the next step without further purification. 

tert-Butyl 2-(dimethylamino)phenylcarbamate (15). 1H-NMR (300 MHz, CDCl3) δH ppm 1.54 (br. s, 

9H, tert-Bu), 2.62 (s, 6H, N-CH3), 6.96 (td, J = 1.16 Hz, 7.57 Hz, 1H, Ar-H), 7.05–7.16 (m, 2H, Ar-H), 

7.70 (br. s, 1H, NH), 8.07 (d, J = 8.17). 13C-NMR (75 MHz, CDCl3) δC ppm 28.93 (CH3 of tert-Bu), 
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44.83 (N-CH3), 80.27 (Cq of tert-Bu), 117.97 (Ar-C), 120.16 (Ar-C), 122.51 (Ar-C), 125.22 (Ar-C), 

134.13 (Ar-C), 142.35 (Ar-C), 153.29 (CO). HRMS (ESI): calculated for C13H21N2O2 [(M+H)+], 

237.1598; found 237.1602.  

4. Conclusions  

In conclusion, amide derivatives of fosmidomycin were synthesized from simple starting materials. 

These analogues were inactive against E. coli Dxr, Mtb Dxr and P. falciparum K1 possibly due their 

inability to adopt a favorable conformation necessary for the Dxr active site metal chelation. Replacing 

the hydroxamate group of fosmidomycin with an alternative and efficient bidentate metal binding 

group in Dxr inhibitors, remains a daunting challenge as previously noted [36].  
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