9 research outputs found

    PEMODELAN DAN SIMULASI SISTEM PEMBANGKIT TURBIN GAS PLTGU TANJUNG PRIOK

    Get PDF
    This paper presents the modeling and simulation of the gas turbine generating system of Tanjung Priok Combined Cycle Power Plant. The gas turbine model is approximated using steam turbine systems. The model developed only accepts load changes as input to the system. Three types of control systems; speed-droop governor, speed-droop governor with integral control, and speed-droop governor with integral and derivative control have been tried to control the frequency of the system. The simulation results show that, in the presence of load changes, the speed-droop governor with integral and derivative control is able to bring back the system frequency to 50 Hz without oscillation

    Adaptive model predictive control design for the speed and temperature control of a V94.2 gas turbine unit in a combined cycle power plant

    Get PDF
    This paper proposes an adaptive model predictive control (AMPC) approach with online parameter estimation for a V94.2 gas turbine mounted in the Damavand combined cycle power plant (CCPP). The AMPC is designed to simultaneously maintain the speed and temperature responses of the gas turbine within their desired levels in the presence of frequency drop or change in load demand. It implements an online parameter estimation and adaptive mechanism to enable the model parameters to follow any change in the V94.2 gas turbine power plant (GTPP) model and provide the best control performance possible. The effectiveness of the AMPC approach is assessed using an estimated model of a V94.2 gas turbine mounted in the Damavand CCPP. Additional analysis is also performed via a comparison study encompassing a classical MPC, H∞, and m synthesis robust control strategies and considering reference tracking performance, transient and steady-state responses, disturbance rejection capabilities, and robustness to parameter variations. The obtained results confirmed the effectiveness of the proposed approach in improving the robust stability and dynamics of the V94.2 GTPP in the presence of measurement noise, frequency disturbance, and unmodeled power plant dynamics along with its superior performance in terms of tracking capability and disturbance rejection properties

    Design of an Interval Fuzzy Type-2- PID Controller for a Gas Turbine Power Plant

    Get PDF
    In this paper, an interval fuzzy type-2 PID controllers are designed for speed and Exhaust temperature in a heavy duty Gas Turbine (HDGT) power plant and the model selected is Rowen’s model to present the mechanical behavior of the gas turbine, the work is aimed to improve the system dynamic performance of speed and Exhaust temperature for a 56.6 MW, 50 HZ, simple cycle, single shaft heavy duty gas turbine, all gains for conventional  PID and interval fuzzy type-2 PID are tuned using Social Spider Optimization(SSO) technique, we show the performance improvement for interval fuzzy type -2 PID controller in comparison with conventional PID via simulation

    Coordinated Model Predictive Control of Aircraft Gas Turbine Engine and Power System

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143088/1/1.G002562.pd

    Contribution to mathematical modeling and dynamic analysis of a mechatronic system of control

    Get PDF
    Ова докторска дисертација даје савремен и оригиналан приступ истраживању и допринос актуелним методама проучавања динамичког понашања и управљања једног дела мехатроничког система – криогене експанзионе турбине у процесу производње техничких криогених гасова. Развијен је унапређени математички модел криогене експанзионе турбине, као објекта аутоматског управљања, чиме је омогућена и квалитативна и квантитативна анализа његових статичких и динамичких карактеристика. У циљу квалитетнијег моделирања утицаја пасивног момента у оквиру одређивања једначине поља обртања ротора експанзионе криогене турбине он је моделиран и уведен имајући у виду ефекте стишљивости и вискозности криогеног флуида применом рачуна нецелог реда. Затим је спроведен поступак добијања линеаризованог математичког модела експанзионе турбине применом конкретних вредности коефицијената у диференцијалним једначинама понашања за дати, усвојени номинални радни режим рада експанзионе турбине. На основу одскочног одзива релативне промене температуре на излазу потврђена је веродостојност математичког модела експанзионе турбине као и аутентичност истог. Развијен је и предложен оригинални оптимизациони алгоритам, целог и нецелог реда применом генетских алгоритама којим је постигнуто децентрализовано мултиваријабилно оптимално управљање датим криогеним мехатроничким објектом. Примењена оптимизациона метода се овде фокусира у оквиру критеријума оптималности на смањење прескока, време смирења и минимизацију интегралне грешке. Спроведене симулације у временском домену показују боље перформансе оптималног PI D b a регулатора нецелог реда у односу на класични оптимални ПИД регулатор. Такође, спроведено је испитивање робусности сугерисаног напредног децентрализованог управљања, где су сада поремећаји представљени у виду релативне промене улазних температура две струје гасовитог ваздуха. Исто тако, развијени нови мултиваријабилни управљачки систем на бази нових концепата и алгоритама управљања омогућавају сада да се добију знатно боље перформансе датог криогеног мехатроничког система управљања и већу флексибилност у погледу преласка на нове радне режиме. На бази строго постављених захтева синтетизован је нови оргинални аналитички мултиваријабилни ПИД регулатор целог реда и повезан са датим мехатроничким објектом управљања у систем у затвореном колу дејстава. Овде је („Multiple inputs – multiple outputs“, MIMO) систем дат са два улаза и два излаза познати и као (ТИТО) системи управљања. Прво је примењено распрезање система коришћењем адекватног динамичког декуплера, а затим је спроведена синтеза аналитичког регулатора целог реда у функцији једног слободног параметра l . Главна идеја овог управљачког система је одређивање аналитичких израза за коефицијенте пропорционалног/диференцијалног/ интегралног дејства у функцији слободног параметра l узимајући у обзир и комплементарну функцију осетљивости у циљу потискивања поремећаја. У даљем раду, за идентичне захтеве рада криогеног процеса мешања два гасовитих ваздушних токова струјања испред експанзионе турбине, извршена је синтеза новог, сложеног ПИД регулатора нецелог реда, уз коришћење параметарске методе Д-разлагања и који је интегрисан у одговарајући систем регулисања. Скупом од три подешљива параметра (од четири могућа) за које је разматрани систем стабилан, одређене су и одговарајуће области (релативне) стабилности система у простору датих параметара. При томе испитане су све могуће комбинације параметара, што је и илустровано и 3D графичким приказом области стабилности за све вредности нецелог реда у интервалу од нула до један у параметарском простору односно одговарајућим контурним приказом истог. Као резултат у простору подешљивих параметара добијене су одговарајуће области оивичене отвореним или затвореним контурама које представљају потенцијалне области стабилности. Посебно, у циљу провере домена стабилности уочена је једна област у параметарској равни а за једну фиксирану вредност параметра нецелог реда тако да су применом симулације верификовани претходно добијени резултати што је и илустровано на сликама где су приказани импулсни одзиви датог система управљања...This doctoral thesis provides a modern and original research approach and unique contribution to the current methods of studying of dynamic behavior and control of one mechatronic system part - cryogenic expansion turbine in the process of technical cryogenic gases production. An improved mathematical model of cryogenic expansion turbine as automatic controlled object is developed and it offers both qualitative and quantitative analysis of system static and dynamic characteristics. In order to improve the modeling of passive torque impact within the field equations for determining rotation of cryogenic expansion turbine this model is implemented taking into account the effects of compressibility and viscosity of cryogenic fluid by applying a fractionalorder system. The procedure is carried out to obtain a linear mathematical model of the expansion turbine using concrete values of the coefficients of differential equations for a given system behavior in assumed expansion turbine nominal operating mode. Based on the step response of the relative temperature change at turbine outlet the credibility as well as authenticity of expansion turbine mathematical model is confirmed. An original optimization algorithm of whole-number and fractional order is proposed and developed by using of genetic algorithms which enabled decentralized multivariable optimal control of cryogenic mechatronic object. Applied optimization method uses optimum criterion to focus on the overshooting, reset time and integral error minimization. Conducted time domain simulations show better performance of optimal fractional order PIβDα controller compared to the classical optimal PID controller. Further a survey is carried out to determine the robustness of suggested advanced decentralized control, where an input disturbances are now represented as a relative change of input temperatures of two gaseous air streams. A newly developed multivariable control system, based on a new concepts and control algorithms, now allow obtaining better performances of the cryogenic mechatronic control system and greater flexibility in terms of switching to new operating modes. Starting with a strict demands, new original analytical multivariable PID integer order regulator is developed and associated with a given mechatronic object control system in a closed loop system. Here the "Multiple inputs - multiple outputs" (MIMO) system is set for two inputs and two outputs, also known as TITO system control. First, a system decoupling is performed using an adequate dynamic decoupler and then a synthesis of analytical whole-number order regulator is applied as a function of one free parameter λ. The main idea of this control system is determination of analytical expressions of proportional/differential/integral gain coefficients as a function of one free parameter λ taking into account the complementary sensitivity function aiming to suppress input disorder. Further, for identical working requirements of cryogenic mixing process of two gaseous air streams in front of the expansion turbine, the synthesis of new and complex fractional order PID controller is implemented, using parametric methods of Ddecomposition, and then integrated in the appropriate regulation system. Using a set of three adjustable parameters (out of four available), which are supposed to keep the system stable, it is determined an appropriate field of relative system stability in the given parameter space. For that purpose all the possible parameter combinations are examined, which is illustrated in a 3D graphic-view of stability area for all values of fractional order in the interval from zero to one in the given parameter space or its corresponding contour-view. As a result, in the space of adjustable parameters, the corresponding area bordered by open or closed contours are obtained, which represent potential areas of stability. In particular, in order to verify the domain of stability, one area in the parameter space is chosen, for a fixed value of the fractional order parameter, so that the application of simulation could verify previously obtained results which is illustrated in the figures presenting step response of a given control system

    Aplicação de controle preditivo não linear multivariável com otimizador à operação transiente de turbina a gás

    Get PDF
    Apply and to investigate a multivariable nonlinear modelbased predictive control strategy to avoid unsafe or inappropriate operation of a gas turbine. In this research, the controller maintains the rotational speed of the compressor constant in accordance with the grid frequency, during load changes. Additionally, in case the gas turbine is installed in a combined heat and power cycle, the discharge temperature must track a reference, to ensure the quality of the generated steam. The control is achieved by manipulation of the fuel flow in the combustion chamber and by adjusting the position of the variable inlet guide vanes of the compressor. The nonlinear dynamic behavior of a gas turbine with an industrial configuration is modeled with the aid of a first principle process simulator, which solves the mass and energy balances and the equations of state and shaft transient. In addition to speed and temperature control, the control strategy is applied to minimize fuel consumption and pollutant emissions. The inherent optimization process of the controller is solved and verified by means of three evolutionary algorithms and one direct search method. The proposed controller is successfully applied to the simulated gas turbine for load fall and load rejection scenarios and the strategy fulfills its goals in reducing fuel consumption and pollutants emissions.Aplica e investiga uma estratégia de controle preditivo não linear multivariável como um meio de evitar a operação insegura ou inadequada de uma turbina a gás. Nesta pesquisa, o controlador é utilizado para manter a velocidade de rotação constante correspondente à frequência do sistema elétrico, quando das variações de carga. Adicionalmente, caso a turbina opere em ciclo combinado, a temperatura na descarga da turbina deve ser mantida no valor ajustado, a fim de preservar a qualidade do vapor gerado. O controle é obtido pela manipulação da vazão de combustível na câmara de combustão e do posicionamento das pás diretoras móveis do compressor. O comportamento dinâmico não linear de uma turbina a gás com configuração industrial é modelado com auxílio de um simulador de processos especialista, o qual resolve as equações de conservação de massa e energia, de estado e da dinâmica de eixo, sendo dispensável a obtenção dos modelos físico e termodinâmico de forma explícita. Além do controle de rotação e de temperatura, o controlador é aplicado como otimizador da vazão mássica de combustível fornecida à câmara de combustão e do nível de emissões de poluentes. O processo de otimização intrínseco à estratégia de controle preditivo é solucionado e verificado através da implementação de três algoritmos evolucionários e um de busca direta. A estratégia de controle proposta é aplicada com sucesso à operação da turbina a gás simulada para cenários de rejeição de carga e cumpre o seu objetivo na redução do consumo de combustível e de emissões de poluentes

    Resource Management in Constrained Dynamic Situations

    Full text link
    Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments for the planning level. To obtain a policy, dynamic programing is applied, and to obtain a solution, limited breadth-first search is applied to the recomposable restricted finite state machine. A multi-function phased array radar resource management problem and an unmanned aerial vehicle patrolling problem are treated using recomposable restricted finite state machines. Then, we use model predictive control for the control level, because it allows constraint handling and setpoint tracking for the schedule. An aircraft power system management problem is treated that aims to develop an integrated control system for an aircraft gas turbine engine and electrical power system using rate-based model predictive control. Our results indicate that at the planning level, limited breadth-first search for recomposable restricted finite state machines generates good scheduling solutions in limited resource situations and unpredictably dynamic environments. The importance of cooperation in the planning level is also verified. At the control level, a rate-based model predictive controller allows good schedule tracking and safe operations. The importance of considering the system constraints and interactions between the subsystems is indicated. For the best resource management in constrained dynamic situations, the planning level and the control level need to be considered together.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137128/1/sjinu_1.pd

    Nonlinear model predictive control for a heavy-duty gas turbine power plant

    No full text
    corecore