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Abstract

This paper proposes an adaptive model predictive control (AMPC) approach
with online parameter estimation for a V94.2 gas turbine mounted in the
Damavand combined cycle power plant (CCPP). The AMPC is designed to
simultaneously maintain the speed and temperature responses of the gas tur-
bine within their desired levels in the presence of frequency drop or change
in load demand. It implements an online parameter estimation and adap-
tive mechanism to enable the model parameters to follow any change in the
V94.2 gas turbine power plant (GTPP) model and provide the best control
performance possible. The effectiveness of the AMPC approach is assessed
using an estimated model of a V94.2 gas turbine mounted in the Damavand
CCPP. Additional analysis is also performed via a comparison study encom-
passing a classical MPC, H.,, and u — synthesis robust control strategies
and considering reference tracking performance, transient and steady-state
responses, disturbance rejection capabilities, and robustness to parameter
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variations. The obtained results confirmed the effectiveness of the proposed
approach in improving the robust stability and dynamics of the V94.2 GTPP
in the presence of measurement noise, frequency disturbance, and unmod-
eled power plant dynamics along with its superior performance in terms of
tracking capability and disturbance rejection properties.

Keywords: V94.2 gas turbine, adaptive model predictive control, robust
control, H,, u — synthesis.

1. Introduction

Gas turbines are widely used in a variety of aero, marine and industrial
applications. Attributes such as high efficiency, fast start up, and flexibility
in fuel selection make single-shaft or twin-shaft gas turbines an appropriate
choice for electrical power generation [1, 2]. However, accurately modeling
and controlling the gas turbine so as to properly mitigate frequency and load
transients and ensure good tracking performance are key issues that require
more consideration and efforts to be devoted.

The control system is a vital part of a gas turbine power plant (GTPP).
Without an appropriate control law, any change in power demand or devia-
tion in frequency can lead to overheating or over speeding, and even system
shutdown. To improve the stability of a gas turbine power plant, Eslami
et. al. [3] proposed an intelligent method, based on the artificial bee colony
(ABC) algorithm, to design an optimal PID-based low-pass filter for a gas
turbine power plant to improve its stability. The proposed controller was able
to improve the dynamic performance of the gas turbine in different operating
conditions. It also resulted in fuel consumption saving compared to a PID
controller tuned by particle swarm optimization (PSO) algorithm and ge-
netic algorithm (GA). A fractional-order fuzzy-PID controller was proposed
in [4] to enhance the combined cycle power plant (CCPP) temperature and
frequency responses. Compared to the simple PID controller, the proposed
fractional-order fuzzy-PID controller had more flexibility and was able to si-
multaneously improve the transient and steady-state responses of the CCPP.
The authors used the PSO algorithm to tune the controller gains. The per-
formance of the proposed controller was considered in terms of frequency
drop and changes in power demand and compared to those controllers tuned
by PSO, GA, differential evolution (DE), and ABC algorithms. However, the
limitations of PID-based controllers, especially for multivariable constrained



systems, are very well documented in the literature [5].

Model predictive control (MPC) has proven to be very effective in deal-
ing with large multivariable constrained control systems [6]. Its simplicity,
ease of implementation and accurate tracking performance have led to its
successful implementation in various industrial applications and its recent
adoption in power and energy systems [7, 8]. For instance, in [9] an MPC
approach was proposed to optimize the energy production of an inertial sea
wave energy converter while satisfying a set of constraints such as speed lim-
itation, control effort, and energy production requirements. A hierarchical
model predictive control was proposed in [10] to maintain the frequency sta-
bility of a wind farm during black-start in the energy storage system. The
proposed controller was evaluated under both low and high wind conditions.
Shan and Wang proposed an MPC control strategy to control the charg-
ing/discharging of a thermal energy storage system. The approach was able
to improve the efficiency of the system up to 22.94 % [11]. A model predictive
control (MPC) strategy was proposed in [12] for a gas turbine power plant.
The authors used an autoregressive with exogenous input (ARX) identifi-
cation approach to estimate a linear time-invariant model for a GE9001E
gas turbine power plant. Based on the estimated model, an MPC controller
was designed and implemented to adjust the speed and temperature loops
in a desired interval. Though the controller showed superior performance
to conventional PID and a SpeedTronic controllers, its robust stability and
performance in the presence of any frequency drop or model uncertainty has
not been considered.

In a CCPP, the performance of gas and steam turbines are highly depen-
dent on the control strategy. In the absence of an appropriate controller, any
frequency drop or load demand variation can negatively affect the perfor-
mance of the power plant and can damage the power plant units, even lead-
ing to power grid instability and blackouts. Besides, there are usually lots
of discrepancies between the dynamics of the real gas turbine and the mod-
eled dynamics, which can deteriorate the performance of any classical (PID),
heuristic (PSO-, GA-, ABC-based), and MPC ([6]) controllers. Therefore, in
designing controllers, the robust stability and performance of the systems in
the presence of frequency disturbance, measurement noise, and unmodeled
power plant dynamics demand much more attention and priorities. In these
conditions, the adaptive model predictive controller (AMPC) seems to be a
more appropriate choice, since it uses online parameter estimation to follow
any change in the physical system and update the control rules based on the
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new estimated model to ensure the best and most effective control strategy.

Based on the above discussion, we propose in this paper an adaptive MPC
strategy for both the temperature and speed control loops of a V94.2 gas
turbine unit mounted in the Damavand power plant. The main contributions
of this paper are twofold:

e Design and implementation of AMPC controllers for the speed and
temperature loops of a V94.2 gas turbine.

e A comparison analysis between the performance of the AMPC and
those of the MPC, H,, and u— synthesis controllers in terms of track-
ing performance, steady-state and transient responses, and robustness
to uncertainties.

The remainder of the paper is organized as follows. The mathematical
model of a gas turbine is presented in section 2. Section 3 is devoted to
the description of the V94.2 gas turbine power plant linear ARX model.
The MPC formulations for the gas turbine power plant and the basic idea
of the AMPC strategy are provided in section 4. Section 5 is dedicated to
the comparative study, discussion, and simulation results. Finally, section 6
presents some concluding remarks.

2. Gas turbine power plant mathematical model

Various models aiming at either providing an accurate representation of
the gas turbine’s response, or analyzing the ambient temperature effect on
the power output, or studying the impact of the gas turbine dynamics on
frequency drop have been provided in the literature. In [13], a simplified
mathematical model of a heavy-duty gas turbine power plant was proposed
by Rowen. This model is useful in dynamic power system and connected
equipment studies and analyses. The model was extended in another work
by Rowen to show the impact of the ambient temperature and Inlet Guide
Vane (IGV) in power and temperature outputs [14]. Kunitomi et. al. used
Rowen’s model as a starting point for the development of an appropriate
model to determine the frequency dependency of gas turbine output [15].
A small and large signal modeling of a gas turbine power plant for load
frequency control study was proposed in [16]. In [17], the authors used a
gray box method to provide a dynamic model for an industrial gas turbine
(Qeshm power plant) in loading and unloading conditions.
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Gas turbine, compressor and combustion chamber are three main com-
ponents of a typical gas turbine power plant. The compressed air burns with
fuel in the combustor to produce a high temperature and pressure gas. This
high pressure and temperature gas drives the gas turbine and the generator
to provide mechanical and electrical power. A simplified gas turbine block
diagram including temperature and speed loops is depicted in Fig. 1. The
input/output signals are summarized in Table 1 [1]. In Fig. 1, the main
control signals are: 1) Wy (fuel flow) and 2) IGV (inlet guide vanes) or W,
and the main output signals are: 1) T, (exhaust temperature), 2) P, (power
demand), and 3) N (rotor speed or frequency).

As Fig. 1 shows (red line), the speed or frequency loop includes the
speed controller (governor), fuel limits, fuel system and components, gas
turbine, and rotor dynamics. The speed controller follows the output speed
(frequency) and changes the fuel supply to compensate for any frequency
deviation.

As Fig. 1 shows (green line), the temperature loop includes a normal
and an overheat temperature control branches. The overheat controller, fuel
limits, gas fuel system, combustor, and temperature transducer are the main
components of the overheat temperature branch. The main task of this
branch is to prevent turbine overloading and severe overheating. The normal
temperature branch mainly acts using the IGV controller (air system) and
the actuator to 1) prevent the exhaust temperature 7, from exceeding the
temperature reference 7,., and 2) modulate temperature at its maximum level
for part load optimization or heat recovery applications [13].

For a gas turbine process, the existing relationships and equations be-
tween inputs and outputs are defined by [1, 18]:

W
Ty =Ta+ (Tro — Tio) va (1)

a

y—1
5
)

Tr = (QTOWCL)

Td:Ta(ler_l), (3)
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Figure 1: Gas turbine power plant block diagram

where Tyo, Tuo, x, Pro, v, 1. are described in Table 1. The temperature T
and energy supplied to the gas turbine can be expressed as follows:

T, =1, {1-(1-&)4, (@)

By = Ko {(Ty — T.) — (T — Tu)} W, (5)

where 7, is the turbine efficiency. More details about the GTPP’s model,
signals, and parameters can be found in [1, 4, 18, 19].

3. V94.2 gas turbine linear model

In what follows, we will adopt the identified linear model provided in our
previous work [1]. The linear model is based on the real-time data for the
V94.2 gas turbine unit mounted in the Damavand power plant, and it can
follow the plant outputs with a sufficient accuracy. The autocorrelation of
residuals, transient and steady-state diagrams for gas turbine response, and



Table 1: Gas turbine main input and output signals
Signals  Definition

P, Gas turbine generated power (pu)

Py Power demand (pu)

B, Thermal power converted by the gas turbine
T Exhaust temperature (pu)

T, Reference temperature (pu)

T, Ambient temperature (°C)

Ty Gas turbine inlet temperature (pu)

F Fuel demand signal (pu)

N Rotor speed (frequency)

W, Air flow

Wy Fuel flow (pu)

IGV  Tnlet guide vanes

T Rated value for the gas turbine inlet temperature (°C')

Tyo Rated value for the compressor discharge temperature (°C)
T Compressor temperature ratio

i Turbine efficiency

P Nominal compressor pressure ratio

Y Ratio of specific heats

Me Compressor efficiency

Ky Gas turbine coefficient

fitness percentage have been used to assess the performance of the estimated
model.

For the Damavand V94.2 GTPP, the base load is 115M W, the am-
bient temperature is around 30°C' or 303°K, the atmospheric pressure is
896.5mbar, IGV is between 0.52 and 1, N is 0.95 to 1, and F; is [0, 1.0].
These data are provided for no-load to full-load conditions with sampling
time of 1sec.

For this model, the value of the mean square normalized error perfor-
mance function (MSE), Akaike’s final prediction error (FPE), and fitness
percentage (Fit) for the speed loop are 1.917 x 107%, 1.927 x 107, and
92.72%, respectively. Similarly, for the temperature loop, MSE, FPE, and
Fit are 1.161 x 107%°, 1.179 x 107% and 94.7%, respectively [1].

Figure 2 shows the block diagram of the estimated ARX model for the
V94.2 gas turbine power plant where, for speed loop, the fuel flow F;, N, T,
power demand P, and IGV are inputs variables, whereas P, is the output
signal. Similarly, for the temperature loop, F;, N, T,, and IGV are inputs
signals, and temperature T, is the output. The identified transfer functions
between T, and P,, as outputs, and T,, N, IGV and F; as inputs are as



follows [1]:

Pp(s) 0.655% + 0.4652 + 0.569s + 0.0412
Fi(s)  s*+ 0.988s% + 2.20852 + 0.645s + 0.033

Pp(s) —2.1215% — 2.8965% — 1.94s — 0.017
N(s) — s*+40.98853 + 2.20852 + 0.645s + 0.033’

Gs(s) = 1455 (8)
Ca(s) P.(s) —0.008s% +0.001s% — 0.003s + 2.756 x 10~% o)
S = =
! To(s) s* 4+ 0.9885% + 2.2085% + 0.645s + 0.033
3 2
Cas) Pu(s) _ 0.061s* + 0.071s 4 0.115s + 0.00071 10)

~ IGV(s) s+ 0.988s% + 2.20852 + 0.6455 + 0.033’

T.(s) 13.22s 4 0.050
N(s) 52+ 6.31s+ 0.096’

Gols) — _ 12
() T.(s) s2+6.31s +0.096 (12)

T.(s)  1.45s+0.004
G = = 13
s(9) Fi(s)  s2+6.31s+ 0.096’ (13)

T.(s) —1.345 — 0.028
_ _ . 14
Gol8) = [GV(s) = 57+ 6.31s + 0.096 (14)
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4. Model predictive control

The MPC has different structures and has proven its performance using
steady-state or dynamic models alike. Fig. 3 highlights the basic princi-
ple of model-based predictive control. Here, the optimizer uses the process
model to predict the future plant outputs for a determined prediction hori-
zon P and the future errors to calculate the best control actions for a deter-
mined control horizon M by minimizing of a cost function in the presence
of equality/inequality constraints. The truncated impulse response model,
step response model, state space model, and transfer function model are the
main models to capture the process dynamics and predict the future outputs.
The quadratic cost function is a choice that can be used by the optimizer
to provide an appropriate control signal by taking into account the past
inputs/outputs and the reference trajectory [20].

The general block diagram of a closed-loop process including the target
value r, control signal v and measured output ¥, is depicted in Fig. 4. In this
figure, v, d, vy, and z are measured disturbance, unmeasured disturbance,
process output and measured noise, respectively [21]. The process can be
described using the state-space variables of (k) as follows:
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z(k+ 1) = Az(k) + Byu(k) + Byv(k) + Bad(k),
Ym (k) = Cpx(k) + Dymv(k) + Dgpd(k),
yu(k) = Coz(k) + Dyv(k) + Dgyd(k) + Dyyu(k), (15)

where A, B, C, D are time-invariant coefficients, and y,,(k) and y,(k) are
measured and unmeasured outputs, respectively. The final output y(k) is
the summation of y,, (k) and y, (k).

The unmeasured disturbance d(k) and measured noise model m(k) can
be defined using the Eqns. 16 and 17, respectively.

d(k) = Czq(k) + Dng(k), (16)

T (k+1) = A (k) + Bnp(k),
m(k) = Cp (k) + Dnp,(k), (17)

where n4(k) and n,,(k) are the random Gaussian noises. In the case that some
state variables of the process model are not measurable, the process model
states z(k), input/output disturbance model states x,(k) and measurement
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noise model states x,,(k) can be estimated by a state observer including a
Kalman filter as follows [21]:

&(kk) #(klk — 1)
Za(klk) | = | za(klk — 1) | + M(ym(k) — Gm(k)), (18)
T (K| ) (K[ k — 1)

ik +1|k) Az (k|k) + Byu(k) + Byv(k) + BiCq(klk)
Ta(k+1[k) | = At y(k|k) , - (19)
T (k + 1]k) Ay (|k)

where z(k|k) denotes the estimation of x(k) at sample time &, and here, M
is calculated using Kalman filter method.

The block diagram of the speed loop is presented in Fig. 5. Based on
this figure, Fig. 2, and the estimated linear transfer functions of Eqns. 6-10
for the speed loop, the system GTs,q (Fig. 5) can be defined as:

N(s) _ —Gs(s)
Pd(S) 1-— GQ(S)G:}(S)’

H(s) = (21)
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_ N(s)  Ga(s)Gs(s)

Hs) = 0 T T (56t (22)
~ N(s)  Gs(s)Gs(s)

Ha(s) = Tav(s) ~ T= Gas)Gals)” (23)

Hy(s) N(s)  Gi(s)Gs(s) (24)

T E(s)  1— Ga(s)Gs(s)’

Eqns. 21-24 can be combined and rewritten in the form of a discrete-time
state-space model with coefficients A, B, C', and D as follows:

0.966 —0.056 0.123 —-0.187  —0.014
0.103 0.838 —0.333 0.303 0.117
A= 1]-0.034 0.137 1.046 —-0.089  —0.008{ ,
—-0.067  —0.133 0.053 0.925 0.006
—0.106 0.301 0.051 —0.040 0.958
0.055 9.453 x 107%  —0.001  —0.013
0.028 5.023 x 107 0.0054 0.022
B = —0.002 —0.001 0.009 0.017 |,
2.744 x 107%% 4,997 x 107 0.011 —0.028
0.004 —0.002 —0.002  —0.006

C=[-0154 —0165 0.079 —0.017 —0.113],
D= 0 0 0.

where the sampling time is 0.20 sec, prediction horizon P = 10, control
horizon M =3, 0.95 < N < 1.05, 0.1 < F; < 1.0, and the main model inputs
are Py, T,, IGV, and F}, and model output is N.

Similarly, the block diagram for the temperature loop is presented in Fig.
6. Based on this figure, Fig. 2, and the identified linear ARX model for the
temperature loop (Eqns. 11-14), the system GT'ry,, can be defined in the
form of a discrete-time state-space model as follows:
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4 {0.999 —0.0434

0.028 0.282 |’
B —0.007 2.166 x 1079 0.017  —0.004
~ 1 0.376 —7.016 x 1079 0.041 —0.038]’

c=[0 4,p=[0 0 o0 0],

where the sampling time is 0.20 sec, prediction horizon P = 10, control
horizon M =5, 0.52 < IGV < 1.0, and the main model inputs are N, T,, F;
and IGV, and model output is T,.

4.1. Adaptive model predictive control and online estimation

MPC control technique predicts the future behavior of the physical pro-
cess by a linear discrete time-invariant model. Although this model is effec-
tive for many applications, to calculate the best control moves, in practice,
the physical system can show a strong nonlinearity and its dynamic prop-
erties can change slowly or fastly with the time [21, 22]. In this condition,
the prediction process could be inaccurate and lead to an unacceptable MPC
performance.

It is worth noting that the AMPC controller uses an online estimator to
control and follow the system dynamic behavior as closely as possible. The
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AMPC control uses a fixed LTI discrete-time, state-space model structure
as base, but allows the model parameters to evolve with the time. At the
beginning of each control interval, the AMPC uses the estimated model to
update the current conditions. The AMPC controller uses Kalman filter (KF)
to estimate an appropriate model in the presence of output disturbance or
measurement noise. The main duty of the KF is to follow any change and
uncertainty in the model and provide a model state for the AMPC controller
[21].

In this paper, the AMPC is used to compensate for any difference between
the estimated linear gas turbine power plant model and the main physical
process dynamic by changing the operating conditions. A simple block dia-
gram for the AMPC applied to a gas turbine power plant is depicted in Fig.
7. An AMPC can be considered as a MPC controller with online parameter
estimation, where plant parameters are estimated based on the measured
input/output signals, and used by the MPC to compute the future control
moves.

An AMPC controller uses a linear V94.2 GTPP model at the nominal
operating point and, as time evolves, this model updates by an online pa-
rameters estimator. This estimator uses Eqn. (27) to estimate a multi-inputs
single-output (MISO) ARX model for V94.2 GTPP mode based on the mea-
sured input/output signals.

AlQ)y(t) = Blqu(t — nk) + e(t), (27)

where g, nk, u(t), y(t), and e(t) are time-shift operator, delay, inputs, output,
and the error, respectively. In this paper, for speed loop, A(q) and B(q) can
be defined as follows:

=1+ a1g " +asq™” +asq° +asq" +asq
B(q) = b +baq ™" +bsq > + bag ™ + bsg ", (28)
where B(q) has four rows, and a and b are estimated coefficients, and at the

start of simulation, they will be initialized to the transfer function coefficients
of Eqn. 25 as follows:
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A=[-4733 9.026 —8.673 4.201 —0.821],
—0.014 0.052 —0.073 0.047

—1.052x 1079 2191 x 1079 —2.535x 107% —1.887 x 1079 —1.002 x 1079
8455 x 1079 —1.449 x 107 —2.031 x 1079 1474 x 107% —6.779 x 1079
8.765 x 1074 —0.002 —7.048 x 10795 0.002 —T7.461 x 1079

B =

Similarly, for the temperature loop we have:

Alg) =1+ aig "+ axq?,
B(q) = b1+ byg ", (30)

where B(q) has four rows, and at the start of simulation, they will be initial-
ized to the transfer function coefficients of Eqn. 26 as follows:

A=[-1.281 0.283],

1.502 —1.501
—0.003  0.003

B = 0.166 —0.163| (31)
—0.152  0.152

In the case of the gas turbine’s speed loop, Py, T,, IGV, F; and N are
used by an online parameters estimator to follow the parameters’ changes.
Similarly, for temperature loop, the inputs/output N, T,, F;, IGV and T,
are used for the estimation process. For both speed and temperature loops,
the updating frequency for online parameter estimator is 0.2 sec.

5. Results and discussions

The performance of the AMPC controllers is assessed in this section us-
ing an estimated model for V94.2 gas turbine unit mounted in Damavand
combined cycle power plant. Further assessment is also carried out using a
comparison study and analysis with the performance of a classical MPC, a
H,, and p—synthesis controllers. The robust structures and weighting func-
tions used for H,, and u— synthesis controllers are based on those presented
in [1]. Details about the performance, robustness, frequency and temperature
responses of these approaches can be found in [1].
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Figure 7: AMPC block diagram

In this paper, two major simulation scenarios (tracking and measurement
disturbance rejection) with three levels of model uncertainties are used to
assess the controller’s performance under different operating conditions. Ref-
erence tracking, steady-state and transient responses, robust performance in
the presence of low/high model uncertainties, and measurement disturbance
rejection are the key points of these evaluations. In the first scenario, track-
ing scenario, the aim is to evaluate the steady-state and transient responses
of the V94.2 gas turbine plant for changes in the power demand; the speed
reference N,.y = 1 and T,.; = 1; after 1450 sec, P; goes from 0.65 (pu) to
0.78 (pu); and after 650 sec, returns to 0.68 (pu). In the second scenario,
disturbance rejection, the aim is to evaluate the transient response of the gas
turbine unit for any frequency drop; the speed reference N,.y =1, T,ef = 1,
P; = 0.76; after 3000 sec, 1/ frequency drop is applied to the plant. These
two scenarios are considered in the three cases of 1) under normal conditions
(without model uncertainties), 2) in the presence of a low levels of model
uncertainties, and 3) in the presence of high levels of model uncertainties.
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5.1. Nonlinear gas turbine response under nominal conditions

The dynamic responses and optimum time indices of the V94.2 gas turbine
model for the AMPC controllers compared with the MPC, H,, and pu —
synthests controllers are provided in Fig. 8 and Tables 2 and 3, respectively.
Here Mp, T, (sec), and Ty (sec) are the maximum peak, rise time, and
settling time, respectively. ISE, IAE, ITSE, ITAE refers to integral squared
error, integral absolute error, integral time squared error, and integral time
absolute error [23].

In terms of tracking ability, as Fig. 8 and Table 2 shows, AMPC and
MPC controllers provide the best rise time and settling time for temperature
output compared with other controllers. Also, in Table 3, AMPC presents
the best IAE and ITAE error for speed output. In the case of other outputs,
power and T, this controller gives a similar results compared with the MPC,
H,, and p— synthesis. As Table 3 shows, H,, controller provides the lowest
ISE, TAE, ITSE, and ITAE output errors for power demand. This superi-
ority of H,, controller is in close connection with the robust performance
of this controller and the priority in weighting functions and control design
objectives for providing the best speed and power outputs. In a GTPP, for
any change in power demand, the speed controller acts to compensate any
deviation in speed (frequency) output. This reaction, as Fig. 8 shows, leads
to an overshoot in the fuel control signal. The impact of this sudden change
in fuel flow, as Fig. 8 and Table 2 show, can be seen in all AMPC, MPC, and
especially in H.,, 1—synthesis controllers. A lower overshoot for AMPC and
MPC controller in fuel demand can lead to energy saving for V94.2 GTPP
compared to other controllers. As Table 3 shows, this sudden reaction and
change in speed loop can enable the AMPC, MPC and H., controllers to
compensate for any frequency deviation as soon as possible. In Fig. 8, near
time 1600 sec, the IGV controller acts through the air flow system to prevent
exhausted temperature from exceeding the reference temperature of 1. In
this case, the p — synthesis controller provides the worst maximum over-
shoot, rise time, and settling time (Table 2). Based on Table 3, a noticeable
result is that all controllers provide acceptable performance for temperature
and speed outputs.

In a GTPP, it is importance to evaluate the performance of the designed
controllers in the presence of output disturbances; this is mainly because
any unwanted change and frequency drop can negatively affect the power
plant and power network stability. Figure 9 and Table 4 show the dynamic
GTPP responses for a 1/ instantaneous frequency deviation. In Fig. 9 and
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Table 4, AMPC provides the best fuel control signal and power output among
three other controllers. The superiority of AMPC for effective control of fuel
flow can provide a lower overshoot in temperature and power outputs. As
this figure shows, in time 3000 sec for a change in speed output, the speed
controller increases the fuel flow to compensate for this frequency deviation.
Although the quick reaction of H,, controller yields a better result in terms
of speed output (Table 4), it can lead to a big overshoot in the temperature
and power outputs, and fuel and IGV control signals. Note also that though,
1 — synthesis presents the best IGV control signal, its performance in terms
of output temperature control is the worst amongst all controllers. In Fig. 9,
in the case of H,,, we can clearly see an inverse relationship between control
performance for power and fuel signals, from one side, and speed output,
from the other side, where a higher fuel flow can lead to a lower deviation
for frequency output.
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Figure 8: Control and output responses for the different controllers under nominal condi-

tions
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Table 2: Optimum time indices for MPC, AMPC, H,, and pu — synthesis controllers

without model uncertainties

Output Mp (%) Tr(sec) Ts(sec) Output Mp (%) Tr(sec)  Ts(sec)
MPC Hoo

Power 26.79 2.93 68.96 Power 24.25 1.40 62.69
Te 0.36 65.88 150.05 Te 0.96 79.24 155.59
AMPC I

Power 26.97 2.96 68.87 Power 21.18 2.31 93.58

Te 0.78 66.17 150.12 Te 10.24 80.21 600

Table 3: Error indices for MPC, AMPC, H,, and u— synthesis controllers without model

uncertainty
Error ISE IAE ITSE ITAE Error ISE IAE ITSE ITAE
MPC Hoo
Power 8.81 x 10~01 7.10 1257 10133  Power 8.62 x 1091  6.81 1229 9721
T, 5.27 x 10701 7.13 756 10307 T. 5.09 x 10— %1 7.26 729 10527
N 2.68 x 10703 0.19  3.90 281 N 7.39 x 10794 (.23 1.08 356
AMPC n
Power 8.81x 10701 7.10 1257 10134 Power  8.71 x 10—01 7.14 1242 10214
T. 5.26 x 10~01 7.15 755 10350 T. 5.92 x 10~01 9.46 853 14139
N 2.66 x 10703 0.19 3.87 277 N 4.94 x 10703 0.80 7.31 1226
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Figure 9: Control and output responses of the different controllers for 1% frequency drop
and under nominal conditions

5.2. Nonlinear gas turbine response in the presence of low levels of model
uncertainties

The dynamic responses and optimum time indices of the GTPP in the
presence of a low model uncertainty are provided in Fig. 10 and Tables 5
and 6, respectively. Low levels of uncertainties are applied to the plant by
changing the gain of the gas turbine fuel system from 1 to 2.

As Fig. 10 and Table 5 shows, AMPC and MPC controllers present the
best rise time and settling time for temperature output compared with other
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Table 4: ISE, TAE, ITSE, ITAE, mean, standard deviation (SD) and maximum deviation
(MD) of output errors for 1% frequency drop without model uncertainty

Method ISE IAE ITSE ITAE Mean SD MD
H

Power 1.34 x 10792 0.246  40.101 739 0.756 1.53 x 10792 9.97 x 10702
T. 1.55 X 1079¢  0.057 0.466 171 0.995 1.80 X 10793 1.06 x 10792
N 1.05 X 10~9¢ 0.023 0.316 69 1.000 2.64 x 10793 2.38 x 10703
IGV 8.40 x 10703 0.112  25.213 337 0.517 1.43 x 10792 1.12 x 10791
Fuel 3.84 x 10702 0.355 115.115 1066 0.801 4.70 x 10702 2.23 x 10701
17

Power 7.34 x 10793 0.242  22.037 726 0.756 1.38 x 10792 6.10 x 10792
Te 3.14 x 10704 0.088  0.946 264 0.995 2.24 x 10793 8.51 x 10703
N 1.52 x 10794 0.041 0.455 124 1.000 2.00 X 10—93 2,16 x 10793
1GV 2.86 x 10—% 0.002 0.009 7 0.520 2.61 X 10794 1.82 x 1093
Fuel 1.46 x 10792 0.335  43.787 1007 0.807 1.94 x 10792 9.33 x 10792
MPC

Power 6.44 x 10703 0.231 19.348 694 0.756 1.22 x 10792 5.44 x 10702
T. 2.92 x 10704 0.074  0.877 224 0.995 2.34 x 10793 5.63 x 10703
N 2.16 x 1004 0.047  0.648 142 1.000 2.43 x 10793 2.76 x 10793
IGV 9.05 x 10704 0.078  2.724 234 0.518 4.35 x 10703 1.60 x 10792
Fuel 8.7 x 10703 0.236  26.108 710 0.807 1.45 x 10792 6.45 x 10792
AMPC

Power 5.69 x 10—93 0.223 17.087 671 0.756 1.13 X 10792  5.21 x 1092
T, 3.28 x 10704 0.092  0.988 279 0.995 2.32 x 10793 4.89 x 10793
N 2.33 x 10704 0.058  0.701 174 1.000 2.51 x 10793 2.75 x 10703
IGV 1.56 x 10793 0.113  4.706 341 0.517 5.59 x 10~93 1.81 x 10792
Fuel 5.81 X 10793  0.168 17.448 505 0.807 1.16 X 10792  6.29 x 1002
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controllers. Furthermore, as Table 6 shows, AMPC strategy provides the
best ISE, TAE, and ITAE error for temperature output. From Fig. 10 it
can be seen that by applying model uncertainty to GTPP, in the case of
H,, there are some oscillations in the IGV control signal. Although these
oscillations are limited, they can negatively affect H., control performance
and, as consequence the performance of GTPP. As Fig. 10 and Table 5
show, a sudden increase in fuel flow leads to overshoots in MPC and AMPC
outputs. In the case of speed output, based on the Table 6, H,, presents the
best control performance.

Figure 11 and Table 7 depict the gas turbine plant responses for a 17, in-
stantaneous speed (frequency) deviation. As this figure and Table show, the
AMPC strategy provides the best fuel control signal and power output. Also,
it can provides a lower overshoot in fuel control signal, and especially tem-
perature, power and speed outputs. Based on Fig. 11, H,, shows a high level
of overshoot for temperature, speed, IGV, power demand, and fuel flow sig-
nals. Although an effective action of H,, leads to a minimum error for speed
output, as Table 7 shows, in a real power plant a high level of overshoot in
any output can be unacceptable and lead to serious problems. In Table 7,
the minimum error for temperature output belongs to MPC controller.
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Table 5: Optimum time indices for MPC, AMPC, H,, and p— synthesis controllers with

low model uncertainty
Output Mp (%) Tr(sec) Ts(sec) Output Mp (%) Tr(sec) Ts(sec)

MPC Hoo

Power 27.32 1.63 63.45 Power 25.83 0.86 60.37
Te 0.34 74.95 153.70 Te 1.76 79.61 156.56
AMPC "

Power 27.57 1.65 63.51 Power 22.41 1.41 89.71
Te 0.63 74.90 153.67 Te 9.85 81.11 468.65

Table 6: Error indices for MPC, AMPC, H,, and u — synthesis controllers with low
model uncertainty

Error ISE IAE ITSE ITAE Error ISE IAE ITSE ITAE
MPC Hoo

Power 8.74 x 10~01 6.95 1246 9917 Power 8.58 X 1091 6.74 1223 9613
T, 4.95 x 10~°1  7.00 709 10124  T. 4.94 x 107°1 710 707 10279
N 9.38 x 10704 0.096 1.36 140 N 2.10 x 10794  0.12 0.31 178
AMPC w

Power 8.74 x 10~01 6.95 1246 9921 Power  8.64 x 10~01 6.97 1232 9954
T. 4.95 x 10701 6.99 710 10106 T. 5.35 x 10~01 8.94 770 13372
N 9.50 x 10704 0.10 1.38 141 N 1.40 x 10793 0.40 2.06 614
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Figure 11: Control and output responses of the different controllers for 1% frequency drop
and low levels of model uncertainties

5.3. Nonlinear gas turbine response in the presence of high levels of model
uncertainties

The dynamic responses and optimum time indices of the gas turbine
power plant at the presence of a high model uncertainty for the MPC, AMPC,
H,, and p — synthesis controllers are illustrated in Fig. 12 and Tables 8
and 9. The uncertainty is applied to the plant by increasing the gain of the
gas turbine fuel system from 1 to 3.0.

27



Table 7: ISE, TAE, ITSE, ITAE, mean, standard deviation (SD) and maximum deviation

(MD) of output errors for 1% frequency drop with low model uncertainty

Method ISE IAE ITSE ITAE Mean SD MD

H

Power 2.94 x 10702 0.363  88.129 1090 0.756 1.53 x 10722 1,61 x 10791
Te 6.07 x 10704 0.079  1.822 239 0.996 2.23 X 10793 264 x 10792
N 8.13 x 10795 0.018 0.244 55 1.000 1.44 x 10793 3.21 x 10793
IGV 5.61 X 10—92  (0.245 168.348 737 0.518 1.90 x 10792 3.21 x 10701
Fuel 1.19 x 10791 0.615  357.894 1847 0.805 4.17 x 10702 4.42 x 10701
7

Power 1.42 x 10792 0.335  42.656 1008 0.756 1.85 x 10792 9.32 x 10792
T. 1.03 x 10793 0.122  3.100 368 0.995 4.87 x 10703 2.03 x 10792
N 1.16 x 10794 0.031 0.347 94 1.000 1.90 x 10793 2.26 x 10793
IGV 5.93 x 10704 0.047 1.782 141 0.519 3.66 x 10793  1.74 x 10702
Fuel 4.47 x 10702 0.528  134.141 1586 0.806 3.56 x 10702 1.85 x 10791
MPC

Power 1.13 x 10792 0.238  33.839 716 0.756 1.64 x 10792 8.33 x 10702
T. 2.92 x 10794  0.065 0.878 195 0.996 2.55 x 10793 1.33 x 10702
N 1.70 x 10794 0.035  0.510 106 1.000 2.18 x 10793 3.00 x 10793
IGV 4.91 x 10793 0.135 14.752 406 0.517 1.06 x 10792 4.76 x 10702
Fuel 3.07 x 10702 0.454  92.144 1365 0.807 2.76 x 10792 1.25 x 1001
AMPC

Power 1.04 x 10792  0.205 31.110 615 0.756 1.57 x 10792 8.54 x 10702
T. 4.35 x 10704 0.106  1.308 320 0.995 2.73 x 10703 1.42 x 10792
N 1.51 x 10794 0.042  0.453 125 1.000 2.06 x 10793 1.79 x 10793
IGV 2.49 x 1003 0.095  7.472 286 0.518 7.54 x 10793 4.34 x 10702
Fuel 2.58 x 10792 0.391 77.560 1175 0.807 2.52 x 10792 138 x 1001
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As Fig. 12 and Table 8 show, the AMPC controller provides the best
minimum overshoot for power output, also this controller improves temper-
ature output for GTPP. As this figure and Table show, by increasing the
uncertainty, all outputs experience a high level of overshoot, however this is
especially severe for p — synthesis and H,, controllers. Based on Table 9,
H, controller provides the lowest power demand output error, while MPC
controller provides a better responses in speed and temperature outputs.

As Fig. 13 and Table 10 shows for 1/ frequency deviation, by increasing
uncertainty, similar to H,, and p — sunthesis cases, the maximum overshoot
for all outputs controlled by MPC controller will increase dramatically. Here,
the noticeable results is that, compared with MPC, H.,, and u — sunthesis
controller, AMPC controller can tolerate a wider range of uncertainties. This
is mainly because AMPC controller uses an online parameter estimation to
follow any change in GTPP model, and then updates the control rules based
on the new identified model. As Table 10 shows, AMPC controller provides
the best power, fuel flow, and temperature signals. As figure shows, the
it — sunthesis controller experiences some oscillations in power, speed, tem-
perature and fuel flow signals. Considering the stability of IGV signal, it can
be concluded that these oscillations are in a direct connection with speed
loop and especially fuel control system. Based on Fig. 13, although H.
provides the best minimum error for speed output N, considering maximum
overshoot, the outputs provided by AMPC seem to be more reasonable. The
AMPC strategy provides the lowest overshoot for power, temperature, and
speed outputs, and also fuel flow control signal.
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Figure 12: Control and output responses for different controllers in the presence of high
levels of model uncertainties
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Table 8: Optimum time indices for MPC, AMPC, H,, and pu— synthesis controllers with
high model uncertainty

Output Mp (%) T,(sec) Ts(sec) Output Mp (%) Tr(sec)  Ts(sec)
MPC Hoo

Power 32.41 1.26 62.17 Power 38.46 0.66 58.77
Te 0.35 76.70 154.83 Te 1.16 79.72 156.88
AMPC "

Power 27.57 1.65 63.51 Power 29.72 1.07 89.61

Te 0.63 74.90 153.67 Te 9.65 80.77 462.68

Table 9: Error indices for MPC, AMPC, H.,, and u — synthesis controllers with high
model uncertainty

Error ISE IAE ITSE ITAE Error ISE IAE ITSE ITAE
MPC Ho

Power 8.71 x 1001 6.88 1241 9821 Power 8.57 X 10791  6.73 1222 9591
T, 4.87 x 10~°1  6.95 697 10064 T. 4.89 x 10~01 7.10 701 10302
N 4.87 x 10704 0.06 0.71 93 N 1.00 X 1079¢  0.08 1.47 119
AMPC "

Power 8.74 x 10~01 6.95 1246.32 9921 Power  8.64 x 10791 7.01 1232 10007
T, 4.95 x 10~01 6.99 710 10106 T, 5.19 x 10701 8.74 746 13074
N 9.50 x 10704 0.10 1.38 141 N 6.68 x 1004 0.27 0.98 412
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Figure 13: Control and output responses of the different controllers for 1% frequency drop
and high levels of model uncertainties

Overall, considering all three applied uncertainties to the V94.2 GTPP,
and all controllers’ results, it can be concluded that though under nominal
conditions it is hard to distinguish the difference in performance between all
controllers, when uncertainties are introduced to the systems, the superior
performance of AMPC became apparent, especially as uncertainties increased
in magnitude. AMPC controller uses an online parameter estimation and
adaptive mechanism to follow any change in V94.2 GTPP model and provide
the best control performance possible.
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Table 10: ISE, TAE, ITSE, ITAE, mean, standard deviation (SD) and maximum deviation

(MD) of output errors for 1% frequency drop with high model uncertainty

Method ISE IAE ITSE ITAE Mean SD MD
H

Power 4.88 x 10702 0.468  146.350 1407 0.759 3.64 x 10702 2.11 x 10~01
T. 2.86 x 10703 0.130  8.580 392 0.997 8.36 x 1003 4.32 x 10702
N 7.95 x 10—9  0.019 0.239 56 1.000 2.39 x 10793 4.57 x 10793
IGV 1.26 x 10701 0.394  378.484 1183 0.509 5.80 x 10792 4.81 x 10701
Fuel 2.69 x 1001 1.000  808.711 3004 0.792 1.02 x 10—01 6.60 x 10~01
7

Power 2.63 x 10702 0.613  78.953 1846 0.756 2.51 x 10792 1.22 x 10791
T. 2.38 x 10703 0.173  7.137 521 0.995 7.53 x 10793 3.84 x 10792
N 1.15 x 10794 0.035  0.346 107 1.000 1.91 X 10793 3,14 x 10793
IGV 1.67 X 10793  0.079 5.014 236 0.518 6.05 X 10793 2,67 x 10702
Fuel 8.32 x 10702 0.852  249.800 2564 0.805 4.78 x 10702 2.74 x 10701
MPC

Power 1.77 x 10792 0.268  53.056 805 0.756 2.07 x 10792 1.11 x 10791
T. 8.60 x 1004 0.096 2.583 288 0.996 4.63 x 107093 2.13 x 10792
N 1.53 x 10794 0.030  0.459 91 1.000 2.08 x 10793 3.97 x 10703
IGV 1.58 x 10702 0.234  47.577 704 0.514 1.91 x 10792 1.01 x 1001
Fuel 6.33 x 10702 0.682  190.043 2049 0.807 3.98 x 10702 1.85 x 10701
AMPC

Power 1.04 x 10792  0.205 31.110 615 0.756 1.57 x 10792  8.54 x 1002
Te 4.35 x 107%4  0.106  1.308 320 0.995 2.73 X 10793  1.42 x 10702
N 1.51 x 10794 0.042  0.453 125 1.000 2.06 x 10793 1.79 x 10793
IGV 2.49 x 10703 0.095  7.472 286 0.518 7.54 x 10793 4.34 x 10702
Fuel 2.58 x 10792 0.391 77.560 1175 0.807 2.52 x 10792  1.38 x 10701
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6. Conclusions

In this paper, an AMPC controller has been designed and successfully im-
plemented to the speed and temperature control loops of a V94.2 gas turbine
power plant. This controller used online parameters estimation to compen-
sate for any difference between the estimated ARX linear model and the main
gas turbine nonlinear model. The performance and effectiveness of the pro-
posed AMPC controller has been assessed compared to H,, and p—synthesis
robust control strategies and an MPC controller. The simulations and analy-
ses clearly showed that the online parameters estimation procedure can assist
AMPC controller to follow any change or compensate any inconsistency in
the model parameters. Finally, though all the controllers were able to im-
prove the gas turbine’s speed and temperature output responses, the AMPC
controller outperformed all the other approaches in terms of transient and
steady-state responses, disturbance rejection properties, and robustness per-
formance, especially as model uncertainty levels increased.
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