2,889 research outputs found

    Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing

    Get PDF
    Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.J.P.R. is an ARC Future Fellow (FT0992129). This project has been supported by Bioplatforms Australia through funding from the Commonwealth Government NCRIS and Education Investment Fund Super Science programs

    Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes

    Get PDF
    The wheat stem rust fungus Puccinia graminis f. sp. tritici (Pgt) is one of the most destructive pathogens of wheat. In this study, a draft genome was built for a founder Australian Pgt isolate of pathotype (pt.) 21-0 (collected in 1954) by next generation DNA sequencing. A combination of reference-based assembly using the genome of the previously sequenced American Pgt isolate CDL 75-36-700-3 (p7a) and de novo assembly were performed resulting in a 92 Mbp reference genome for Pgt isolate 21-0. Approximately 13 Mbp of de novo assembled sequence in this genome is not present in the p7a reference assembly. This novel sequence is not specific to 21-0 as it is also present in three other Pgt rust isolates of independent origin. The new reference genome was subsequently used to build a pan-genome based on five Australian Pgt isolates. Transcriptomes from germinated urediniospores and haustoria were separately assembled for pt. 21-0 and comparison of gene expression profiles showed differential expression in ∼10% of the genes each in germinated spores and haustoria. A total of 1,924 secreted proteins were predicted from the 21-0 transcriptome, of which 520 were classified as haustorial secreted proteins (HSPs). Comparison of 21-0 with two presumed clonal field derivatives of this lineage (collected in 1982 and 1984) that had evolved virulence on four additional resistance genes (Sr5, Sr11, Sr27, SrSatu) identified mutations in 25 HSP effector candidates. Some of these mutations could explain their novel virulence phenotypes.Authors wish to thank the Two Blades Foundation for financial support. Part of this work was supported through access to facilities managed by Bioplatforms Australia and funded by the Australian Government National Collaborative Research Infrastructure Strategy and Education Investment Fund Super Science Initiative

    Haustoria regulation in the facultative parasitic plant Phtheirospermum japonicum

    Get PDF
    Parasitic plants are important agricultural pests that lead to considerable yield losses annually. Parasitic plants that completely rely on their hosts for their survival are known as obligatory parasites, whereas those independent of their hosts but parasitize under the right conditions are known as facultative parasitic plants. All parasitic plants form a multicellular organ termed the haustorium via which they invade their host, establish vascular connections and uptake water and nutrients. Despite recent advances in our understanding of parasitic plants, the mechanisms of haustoria regulation remain largely unknown. Here we aimed to identify how the environmental nutrient status affects haustoria formation in the facultative parasitic plant Phtheirospermum japonicum. We showed that P. japonicum inhibits haustoria formation in response to the macronutrient nitrogen and that this nitrogen-mediated haustoria inhibition is mediated by the hormone abscisic acid (Paper I). Further investigation of haustorium regulatory mechanisms demonstrated that P. japonicum harbors a haustoria autoregulation mechanism (AOH) that utilizes a long-distance signalling mechanism that involves small mobile peptides (Paper II). Lastly, we investigated the role of cell wall modifying enzymes in haustoria and xylem bridge formation. We identified two genes encoding cell wall modifying enzymes, one pectin methylesterase and one pectin methylesterase inhibitor, that are involved in both haustoria and xylem bridge formation in P. japonicum (Paper III). Overall this thesis contributes to our understanding of haustoria regulation in response to nitrogen availability or pre-existing established haustoria

    LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi

    Get PDF
    Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa–HvLFGe and AtLFG1–AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant–powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant–powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation

    The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Get PDF
    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.This work was funded by a grant from the CSIRO Transformational Biology Capability Platform to Adnane Nemri. Claire Anderson was supported by an ARC Discovery Grant (DP120104044) awarded to David A. Jones and Peter N. Dodds

    De novo analysis of the haustorial transcriptome of the cucurbit powdery mildew fungus Podosphaera xanthii reveals new candidate secreted effector proteins

    Get PDF
    Backgrounds. Cucurbit crops are affected, among other pathogens, by the obligate biotrophic fungus Podosphaera xanthii, the main causal agent of powdery mildew in cucurbits. This fungus develops a specialized structure of parasitism termed haustorium. Haustoria are developed into epidermal cells and are responsible for nutrients uptake and effectors delivery. Objectives. The aim of this study was to obtain the haustorial transcriptome of P. xanthii to complete the panel of effector candidates of this fungal pathogen. Methods. To obtain the haustorial transcriptome, we have developed an effective method for isolation of haustoria without contaminants by flow cytometry. The cDNA library was built using a combination of dT primers and random primers followed by a depletion of ribosomal sequences. Sequencing was carried out by Illumina NextSeq550. Conclusions. After bioinformatic analysis, we were able to identify 25 new effector candidates secreted by the classic pathway (with signal peptide) and 269 new candidates secreted by the non-classic pathway (without signal peptide). Most proteins had no functional annotation. By protein modelling and ligand predictions, we are now being able to assign putative functions to some of these candidates to select those with potential roles in pathogenesis for subsequent functional in vivo analysis by HIGS (host-induced gene silencing). By these approaches, we are starting to shed some light into the molecular mechanisms of pathogenesis in this very important pathogen of cucurbits.This work was supported by a grant from the Ministerio de Economía y Competitividad (AGL2013-41938-R), co-financed with FEDER funds (EU). A grant form Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech, is also acknowledged

    Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies

    Get PDF
    Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors
    corecore