28 research outputs found

    Parallel structure general repetitive controller for general grid-connected PWM converters

    Get PDF
    This study investigates parallel structure general repetitive control (PSGRC) and its error convergence rate by using exponential function properties. PSGRC offers a general repetitive control solution for power converters to mitigate power harmonics distortions. PSGRC with appropriate settings will lead to various RCs with various error convergence rates at interested harmonic frequencies, e.g. conventional RC, dual-model RC, and odd harmonics RC. As application examples, PSGRC was applied into general grid-connected pulse-width-modulation (PWM) converter systems. Experimental results show the effectiveness and advantages of PSGRC: three/single-phase grid-connected PWM converters can achieve zero-error current tracking and very fast current error convergence rate upon demand

    Harmonic Current Suppression Strategy for Grid-Connected PWM Converters with LCL Filters

    Get PDF

    Development of a grid connected micro wind generator. A practical activity for the course on electric generation with wind energy

    Get PDF
    This paper describes a practical activity, part of the renewable energy course where the students have to build their own complete wind generation system, including blades, PM-generator, power electronics and control. After connecting the system to the electric grid the system has been tested during real wind scenarios. The paper will describe the electric part of the work surface-mounted permanent magnet machine design criteria as well as the power electronics part for the power control and the grid connection. A Kalman filter is used for the voltage phase estimation and current commands obtained in order to control active and reactive power. The connection to the grid has been done and active and reactive power has been measured in the system

    Higher harmonics compensation in grid-connected PWM converters for renewable energy interface and active filtering

    Get PDF
    The paper presents overview of high-order harmonics compensation methods applied for control of grid-connected converter. Two harmonic compensation methods are presented. One based on band-pass filers cooperating with Direct Power Control with Space Vector Modulation (DPC-SVM) is dedicated for renewable energy interface. Second method based on resonant controllers applied in Voltage Oriented Control (VOC) adds an active filtering function to PWM rectifier. Simulation and preliminary experimental results for these two methods are presented

    Design of new robust backstepping control for three-phase grid-connected fourleg source voltage PWM converters

    Get PDF
    Due to high performance demands of grid-connected pulse-width modulation (PWM) converters in power applications, backstepping control (BSC) has drawn wide research interest for its advantages, including high robustness against parametric variations and external disturbances. In order to guarantee these advantages while providing high static and dynamic responses, in this work, a robust BSC (RBSC) with consideration of grid-connected PWM converter parameter uncertainties is proposed for three-phase grid-connected four-leg voltage source rectifiers (GC-FLVSR). The proposed RBSC for GC-FLVSR is composed of four independent controllers based on the Lyabonov theory that control DC bus voltage and input currents simultaneously. As a result, unit power factor, stable DC-bus voltage, sinusoidal four-leg rectifier input currents with lower harmonics and zero-sequence (ZS), and natural currents can be accurately achieved. Furthermore, the stability and robustness against load, DC capacitor, and filter inductance variations can be tested. The effectiveness and superiority of the proposed RBSC compared to the PI control (PIC) have been validated by processor-inthe- loop (PIL) co-simulation using the STM32F407 discovery-development-board as an experimental study

    Analysis and mitigation of dead time harmonics in the single-phase full-bridge PWM converters with repetitive controllers

    Get PDF
    In order to prevent the power switching devices (e.g., the Insulated-Gate-Bipolar-Transistor, IGBT) from shoot through in voltage source converters during a switching period, the dead time is added either in the hardware driver circuits of the IGBTs or implemented in software in Pulse-Width Modulation (PWM) schemes. Both solutions will contribute to a degradation of the injected current quality. As a consequence, the harmonics induced by the dead time (referred to as "dead time harmonics" hereafter) have to be compensated in order to achieve a satisfactory current quality as required by standards. In this paper, the emission mechanism of dead time harmonics in single-phase PWM inverters is thus presented considering the modulation schemes in details. More importantly, a repetitive controller has been adopted to eliminate the dead time effect in single-phase grid-connected PWM converters. The repetitive controller has been plugged into a proportional resonant-based fundamental current controller so as to mitigate the dead time harmonics and also maintain the control of the fundamental frequency grid current in terms of dynamics. Simulations and experiments are provided, which confirm that the repetitive controller can effectively compensate the dead time harmonics and other low-order distortions, and also it is a simple method without hardware modifications

    Harmonics mitigation of dead time effects in PWM converters using a repetitive controller

    Get PDF
    corecore