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Abstract: This paper investigates parallel structure general repetitive control (PSGRC) and its error 

convergence rate by using exponential function properties. PSGRC offers a general repetitive control 

solution for power converters to mitigate power harmonics distortions. PSGRC with appropriate settings 

will lead to various RCs with various error convergence rates at interested harmonic frequencies, e.g. 

conventional RC (CRC), dual-model RC (DMRC), and odd harmonics RC (OHRC). As application 

examples, PSGRC was applied into general grid-connected pulse-width-modulation (PWM) converter 

systems. Experimental results show the effectiveness and advantages of PSGRC: three/single-phase grid-

connected PWM converters can achieve zero-error current tracking and very fast current error 

convergence rate upon demand.  

 

1. Introduction 

Due to their high efficiency and controllability, power converters play a more and more important 

role in interfacing various generators and loads into electrical power systems [1]. However, power 

converter will induce power quality problems, e.g. harmonics distortion in the grid voltage/current [2-3]. 

To obtain “clean” interface, an accurate control solution is needed. 

Based on internal model principle (IMP) [4], conventional repetitive controller (CRC) [5] can 

achieve steady-state zero-error tracking or disturbance elimination for any periodic signal with known 

fundamental period. In many practical applications, harmonic frequency components of a periodic signal 

to be tracked/eliminated usually concentrate at some specific harmonic frequencies. For example, for a 

single-phase off-grid PWM inverter [6-7], 4k±1 (k=1,2,…) order harmonics (i.e. odd order harmonics) 

dominate the output voltage distortion. For a three-phase PWM rectifier [8], 6k±1 (k=1,2,…) order 

harmonics dominate the feeding current distortion. If CRC is used in these converter applications, its 

dynamic response is relatively too slow to eliminate these specific harmonics effectively even if it can 

achieve zero-error current tracking performance. To solve this problem, researchers have proposed various 

RCs for various specific converter applications [6-7, 9-13], such as DMRC [6-7] and OHRC [9,11] for 

single-phase off-grid inverter, 6k±1 RC [13] for three-phase off-grid inverter and so on. However, a 

general RC for various converters is not available until [14-15] proposed a parallel structure repetitive 

control (PSRC), which employs a series of paralleled nk+i (i=0,1,2,..,n-1) order harmonic internal models. 
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PSRC with appropriate settings can achieve the zero-error tracking or disturbance elimination for all 

harmonics and has faster error convergence rate without losing tracking accuracy compared with CRC. 

This paper will investigate the parallel structure based general RC (PSGRC) and its error 

convergence rate property in detail. PSGRC is proposed as a general controller for general grid-connected 

PWM converter systems. Case studies on PSGRC controlled grid-connected PWM converters are carried 

out to verify effectiveness and advantages of PSGRC.  

2. PSGRC 

2.1. PSGRC 
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Fig. 1.  Parallel structure general repetitive control (PSGRC) 

Fig. 1 shows the parallel structure based general RC (PSGRC) [14-15], whose transfer function is: 
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where, ki is the control gain of the nk+i-th harmonic internal model (IM) Gi(s) (i=0,1,…,n-1); n is integral 

and n≥0; To= 2π/ωo=1/fo is the fundamental period of signals with fo being the fundamental frequency, ωo 

being the fundamental angular frequency. From Eq. (1) and Fig. 1, it can be seen that PSGRC offers a 

general RC structure, which can be flexibly converted to CRC, DMRC, OHRC and so on. 

2.2. Equivalent CRC 

From Eq. (1), when n=1, PSGRC becomes CRC [8]. That is, CRC is one special case of PSGRC. Fig. 

2 shows the most used and applied RC, i.e. CRC, whose transfer function is 
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Fig. 2.  Conventional repetitive control (CRC) 

Moreover, from Eq. (1), when n>1, following Theorem shows that PSGRC is equivalent to CRC as 

some requirements being satisfied. 

Theorem 1: If let ki=krc/n,i=0,1,2,…,n-1, then the proposed PSGRC controller is equivalent to CRC 

controller, i.e. the following equation is tenable: 

  
 

   
2 /1

2 //
0 1oo

j i nn
rc rc

PSGRC CRCsTj i nsT n
i

k ke
G s G s

n ee e









  


  (3) 

Proof: When n=1, we can easily get that Eq. (3) is tenable; when n>1, let 
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x e  (4) 

Thus, if following equation can be proved, Eq. (3) is tenable: 
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Because the roots of xn-1=0 are ej2πk/n with k=0,1,…,n-1, we can obtain the following equation 
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Therefore, if the following equation can be proved, Eq. (5) is tenable. 
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Using the properties of exponential function 
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where both n and k are integer. 

Then, we can obtain the following equation 
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Therefore, if the following equation can be proved, Eq. (7) is tenable. 
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We have 
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where  
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When i=n, we can obtain 
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when 0<i<n with i being integer, we can obtain 
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Therefore, in Eq. (11), all terms corresponding to Ai with 0<i<n with i being integer equal to zero 

and only the value of An is needed to calculate Eq.  (11) as follows 
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So we can obtain 
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Thus, Eq. (10) is proved and then both Eq. (7) and (5) are proved. In the end, Eq. (3) is proved, i.e. 

Theorem 1 is proved.  

2.3. Equivalent DMRC 

From Eq. (1), when n=2, PSGRC becomes DMRC [6-7], shown in Fig. 3. That is, DMRC is also one 

special case of PSGRC. Its transfer function is 
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where k0 and k1 are the control gains for even harmonics IM G0, only effective for even harmonics, and 

odd harmonics IM G1, only effective for odd harmonics, respectively.  

e(s) c(s)

+

+
+

G0(s)
GDMRC(s)

+

-
-

G1(s)

2

osT

e



2

osT

e


k1

k0

 
Fig. 3.  Dual-model repetitive control (DMRC) 

Obviously, using Theorem 1, when k0=k1, the DMRC shown in Eq. (17) is equivalent to a CRC with 

krc=2k0=2k1 in Eq.(2). 

Especially, from Eq.(17), when k0=0, k1=krc, DMRC is equivalent to OHRC [9, 11], shown in Fig. 4. 

That is, OHRC is one special case of DMRC, or PSGRC. Its transfer function is 
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Fig.4  Odd-harmonic repetitive controller (OHRC) 

Fig. 4.  Odd-harmonic repetitive controller (OHRC) 

It can be seen from Fig. 3-4 that DMRC is equivalent to the combination of one OHRC and one 

even-harmonics RC (EHRC) in parallel. The fundamental idea of DMRC is to categorize all harmonics 

into two groups, i.e. odd and even harmonics, controlled by parallel OHRC and EHRC respectively. The 

control gains k0 and k1 for OHRC and EHRC in DMRC can be tuned independently. 

3. Error Convergence Rate Analysis Using Exponential Function Properties 

3.1. Exponential function properties 

In order to investigate the error convergence rate of various RCs, especially the PSGRC, using the 

following exponential function properties [16]: 
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In Eq. (20), let x=s/ωo and following equation can be achieved: 
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Then, we have 
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and 
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3.2. CRC 

From Eq. (23), the CRC in Eq. (2) is equivalent to the sum of proportional (P), integral (I) and 

resonant (R) items shown in Fig.5. Its transfer function can be written as 
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where the control gains for P, I and R are the same, i.e. krc, although the internal coefficients are different, 

i.e. -1/2 for P, 1/To for I, and 2/To for every R.  
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Fig. 5.  Equivalent parallel PIR format of CRC 

As we know, the error convergence rate of CRC is directly proportional to the control gain krc. The 

larger krc is, the faster the error convergence rate is. From (24) since identical control gain is assigned to all 
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harmonic frequencies, it is impossible to independently tune control gain for specific harmonics for 

optimizing the dynamic performance of CRC.  

3.3. SHMRC 

In practical, the harmonic spectrum is not even distributed. If large control gains are assigned to 

dominant harmonics, the tracking error convergence rate can be improved. That is to say, it is unnecessary 

to let all control gains in Fig. 5 to be identical value. Based on this idea, selective harmonics multiple 

resonant control (SHMRC) [17] shown in Fig. 6 can be achieved naturally, whose transfer function is  
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where control gains kP, kI and kRi (i=1,2,…) with different values can be assigned. Therefore, through 

independently and flexibly tuning the control gains in Eq. (25), error convergence rate can be improved, 

and “tailor-made” tracking or eliminating for harmonics can be achieved. In practical application, it is 

impossible and unnecessary to assign nonzero values to infinity terms in Eq.  (25). However, there are still 

so many control gains to be tuned. It is not easy to optimize these control gains for a stable operation. 
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Fig. 6.  Selective harmonics multiple resonant controller(SHMRC) 

3.4. DMRC 

Similarly to CRC in Eq. (24), using the properties of the exponential function, the equivalent parallel 

PIR format of DMRC can be achieved as follows 
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When k0=0, k1=krc, DMRC is equivalent to OHRC. Thus, the equivalent parallel PIR format of 

OHRC can be derived in the similar way. 

From Eq. (26)-(28) and (24), it can be seen that the internal coefficient of every odd/even-harmonic 

R for DMRC, i.e. 4/To, is twice as large as that for CRC, i.e. 2/To. Thus, compared with CRC, DMRC with 

same control gain can offer up to twice faster error convergence rate at most.  

Therefore, through tuning the weighted coefficients ki (i=0,1) independently in accordance with the 

odd- and even- harmonics distribution, DMRC can perfectly tracked or eliminated all harmonics at optimal 

total error convergence rate. For example, if odd harmonics dominate the distortion, letting k1>k0, DMRC 

can achieve the improved overall error convergence rate without reducing tracking accuracy.  

3.5. PSGRC 

Similarly, the equivalent PIR format for Gi(s) (i=0,1,…,n-1) in PSGRC can be rewritten as: 
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From Eq. (29), the poles of Gi-PIR(s) or Gi(s) are located at (±nk+i)ωo, i=0,1,2,…,n-1, k=0,1,2,… . At 

these frequencies, the amplitude of Gi(s) approaches infinity, and thus the ±nk+i th -harmonic components 

can be completely tracked or eliminated. Paralleled nk+i th -harmonic internal model Gi(s) (i=0,1,2,…,n-1) 

shown in Fig. 1 enable PSGRC to  completely tracked or eliminated all these harmonics.  

Moreover, control gain ki (i=0,1,2,…,n-1) of PSGRC can be customized and independently tuned to 

optimize the total convergence rate. It can be seen from Eq. (29) that, the internal coefficient of ±nk+i th -

harmonic terms, i.e. 2n/To, is n times than that of CRC, i.e. 2/To in Eq. (24). Thus, with same control gain, 

the error convergence rate of PSGRC at ±nk+i th harmonic frequencies is n times faster than that of CRC. 

Therefore, through optimal tuning of these n control gains for Gi(s) (i=0,1,2,…,n-1) in accordance with the 

harmonics distribution, the total error convergence rate of PSGRC would be faster than that of CRC. For 

example, if odd-harmonics are the dominant components, PSGRC with (k1+k3)>(k0+k2) can improve its 

overall error convergence rate without reducing its tracking accuracy.  

4. General RC-controlled Grid-connected PWM Converter System 

4.1. General Grid-connected PWM Converters 

Fig. 7(a) and 7(b) show the general three-phase (3-P) and single-phase (1-P) grid-connected PWM 

converters. Both can work in the rectifier and inverter states. 
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Fig. 7.  Grid-connected PWM converters 

a Three-phase (3-P) 

b Single-phase (1-P) 

In the rectifier state, the mathematics model can be described into  

  1
j j j j

R
i i v v

L L
    ( j=a,b,c for 3-P; j=s for 1-P) (30) 

and 

 
1 1 1

dc dc dc L

L L

U U i E
CR C CR

    (for both 3-P & 1-P) (31) 

where C, L and R are the dc-side capacitor, ac-side inductance, and ac-side resistor, respectively; RL is the 

resistor load, EL is the inverse electromotive force; inductance currents ia, ib, ic, is and dc-side capacitor 

voltage Udc are the state variables; va, vb, vc are the a, b, c three-phase grid voltages; vs is the single-phase 

grid voltage; idc is the dc output current; iL is the dc load current; va′, vb′, vc′ are the a, b, c three-phase  

PWM modulation voltages; vs′ is the single-phase PWM modulation voltage. 
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In the inverter state, the mathematics model is the same with Eq. (30). The dc voltage Udc is assumed 

to be constant. PWM modulated voltages can be described by: 

    
1

2
j dc jv t U t s (j=a,b,c for 3-P) (32) 

and 

    s dc sv t U t s  (for 1-P) (33) 

DC output current can be written as: 

 dc a a b b c ci i s i s i s   (for 3-P) (34) 

and  

 dc s si i s (for 1-P) (35) 

where sa, sb, sc and ss are the switching functions of three-phase and single-phase bridges, defined as 

  
1, on for upper & off for lower switches for phase

, ,
1, on for lower & off for uper switches for phase

j

j
s j a b c

j


  


 (36) 

and  

 
1 4 2 3

2 3 1 4

1, on for S S & off for S S

-1, on for S S & off for S S
ss


 


 (37) 

In the rectifier state, the control objective is to achieve unit power factor, high current tracking 

accuracy and constant output dc voltage. Output equations are: 

 [ ]T

a b c dci i i Uy (for 3-P), (38) 

and  

 [ ]T

s dci Uy (for 1-P), (39) 

respectively, where both DC voltage and AC current(s) need to be controlled. 

In the inverter state, the control objective is to achieve adjustable power factor and high current 

tracking accuracy. Output equations are:  

 [ ]T

a b ci i iy (for 3-P) (40) 

and 

 sy i (for 1-P) (41) 

respectively, where only AC current(s) need to be controlled.  

4.2. General RC Control System 
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Fig. 8 shows the traditional closed-loop feedback control system with RC plugged into, where Grc(z) 

is the plug-in RC; Gc(z) is the traditional feedback controller; Gp(z) is the plant; y(z) is the real output; 

yref(z) is the reference input; e(z)=yref (z)-y(z) is the tracking error and the input of Grc(z); c(z) is the output 

of Grc(z); u(z) is the output of Gc(z); d(z) is the external disturbance signal. 

Gc(z) Gp(z)
+

-

+
+

+

+ y(z)

d(z)

yref(z)

u(z)

e(z)

c(z)
Grc(z)

 
Fig. 8.  Structure of the plug-in repetitive control system 

The output y(z) with plug-in RC is 

 

         

   

   
 

   

   
 

1

11

1 1

ref d

c prc

ref

rc rc

y z G z y z G z d z

G z G zG z H z
y z d z

G z H z G z H z



   

     
 

 

 (42) 

where G(z) is the transfer function from yref(z) to y(z); Gd(z) is the transfer function from d(z) to y(z); H(z) 

is the transfer function without plug-in RC, as follows: 

  
   

   1

c p

c p

G z G z
H z

G z G z



 (43) 

The closed-loop RC control system is asymptotically stable if the following two conditions hold: 

(1) The poles of H(z) (i.e. the roots of 1+Gc(z)Gp(z)=0) are inside the unit circle;  

(2) Both the poles of G(z) and Gd(z) (i.e. the roots of 1+Grc(z)H(z)=0) are inside the unit circle. 

For plug-in PSGRC, the condition (2) is also equivalent to the following inequation [14-15]: 

 
1

0

0 2
n

i

i

k




  with ki≥0 (i=0,1,2,…, n-1) (44) 

For plug-in CRC, the condition (2) is equivalent to the following inequation [8]: 

 0 2rck   (45) 

Note that both PSGRC and CRC have the same stability range (0, 2) for control gain.  

The practical control systems for three-phase and single-phase grid-connected PWM converters are 

shown in Fig. 9(a) and 9(b), both having the same inner-loop controller and having capability to work in 

both rectifier and inverter states. 
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Fig. 9.  Control systems 

a Three-phase 

b Single-phase 

In the inner-loop control (see section 4.3), hybrid controller, including the traditional dead-beat (DB) 

controller and plug-in RC, i.e. CRC and PSGRC, is used to achieve high accuracy tracking the inductance 

current reference signal(s), generated by outer-loop controller.  

In the outer-loop control, (1) in the rectifier state (dc voltage control outer-loop): PI controller is 

used to achieve zero-error tracking of the dc voltage reference; (2) in the inverter state (power control 

outer-loop): instantaneous power theory [18] is used to generate reference current amplitude signal.  

4.3. General Inner-loop Controller 

The data-sample format of Eq. (30) can be achieved as follows: 

          1 2 1

1 1 1

1
1j j j dc j

b b c
i k i k v k U k u k

b b b


     (46) 

where uj(k) is the duty cycle; j=a,b,c and c1=1/2 for three-phase and j=s and c1=1 for single phase; b1=L/T, 

b2=R. 
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To obtain a uniform and simple controller, both three-phase and single-phase current DB controllers 

are chosen as: 

  
 

       1 1 2

2
j j jref j

dc

u k v k b i k b b i k
U k

       (47) 

where ijref(k)=ij(k+1). Thus, the closed-loop transfer function without RC is H(z)=z-1. Therefore, the control 

delay with DB is only one step, i.e. one sample period in theory, which means very fast dynamic response.  

In practical applications, RC is usually employed in its digital form, and low-pass filter Q(z) and 

phase compensator Gf(z) are added to guarantee the stability and robustness of the control system. The 

plug-in digital CRC and pulg-in digital PSGRC are given as follows 

  
 

 
 CRC

1

N

rc fN

z Q z
G z k G z

z Q z







 (48) 

and 

    
   
   

2 / /1

PSGRC 2 / /
0 1

j i n N nn
i

f i j i n N n
i i

e z Q z
G z G z k

e z Q z










  
  

    
  (49) 

where N=To/Ts=fs/fo with Ts being the system sampling interval and fs being the system sampling frequency; 

Gf(z) is the phase lead compensation filter to stabilize the overall closed-loop system; Q(z) and Qi(z)(i = 0, 

1, ... , n−1) are low-pass filters (LPFs). In Eq. (48)-(49), N is the time delay steps in the digital CRC 

controller while N/n is the time delay steps in the digital PSGRC controller. To simplify the design and 

implementation of phase lead compensator [14], Gf(z)=zd is usually chosen to compensate the delays in the 

experimental setup. Q(z) and Qi(z)(i = 0, 1, ... , n−1) are employed to make a good tradeoff between the 

tracking accuracy and the system robustness with |Q(ejω)|≤1 and |Qi(ejω)|≤1, e.g., Q(z)=α1z+α0+α1z−1 with 

2α1+α0=1, α0≥0 and α1≥0 [14]. In the experiments, if ki, the control gain for the ith internal model Gi(z), 

and kn-i, the control gain of the (n-i)th internal model Gn-i(z), are same, i.e. ki=kn-i, and Qi(z)=Qn-i (z), we can 

get that: 

       

 

 

 

 

 
 

   

2 2

2
2 2 2

2cos 2 2

2cos 2

i i n i n i i i n i

N
i i

nj j
n n i

i i

i i i N Ni iN Nj j
n nn nn n

i ii i

k G z k G z k G z G z

i
z Q z

e Q z e Q z n
k k Q z

i
z z Q z Q zz e Q z z e Q z

n

 

 





  

   
    

   

   
    

   

    

            
     

                    

 (50) 

where the imaginary parts of complex operators are counteracted if Gi(z) and Gn-i(z) have the same control 

gains and same low-pass filters.  
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For three-phase grid-connected converter application, let n=6, and corresponding PSGRC (PSGRC-6) 

can be given: 

    
   
   

/3 /65

PSGRC-6 /3 /6
0 1

j i N

i

f i j i N
i i

e z Q z
G z G z k

e z Q z










  
  

    
  (51) 

For single-phase grid-connected converter application, let n=4, and corresponding PSGRC (PSGRC-

4) can be given: 

    
   
   

/2 /43

PSGRC-4 /2 /4
0 1

j i N

i

f i j i N
i i

e z Q z
G z G z k

e z Q z










  
  

    
  (52) 

Another option for single-phase application is letting n=2, and corresponding PSGRC (PSGRC-2, i.e. 

DMRC [6-7]) can be achieved: 

    
 

 

 

 

/2 /2

0 1

PSGRC-2 0 1/2 /2

0 11 1

N N

f N N

z Q z z Q z
G z G z k k

z Q z z Q z

 

 

  
  

    
 (53) 

5. Experimental Results 

5.1. System Parameters 

In order to verify the effectiveness and advantages of PSGRC controlled three/single-phase grid-

connected converter system, a dSAPCE1104 based PWM IGBT experimental setup is built up. System 

parameters are shown in Tab I. 

By substituting the parameters of Tab. I into Eq. (47), the DB controller can be achieved as follows 

  
 

     
2

30 29.5j j jref j

dc

u k v k i k i k
U k

        (54) 

where subscript j=a,b,c for three-phase and j=s for single-phase.  

Table 1 System parameters 

 
common only in the rec. state only in the inv. state 

 

L=5mH Udcref=120V Pref=100W (3-P) 

R=0.5Ω kp=0.5 Pref=50W (1-P) 

C=1100μF ki=20 Qref=0 

fs=fc=6kHz vab, bc, ca, s =50V(rms) vab, bc, ca, s =25V(rms) 

 RL=60Ω Udc=50V 

 
For plug-in CRC and PSGRC, major parameters are as follows: (1) phase lead filter Gf(z)=z3 is 

obtained through practical experimental tests. (2) low-pass filter Q(z)=0.25z+0.5+0.25z-1 is chosen for 

CRC, Qi(z)=0.1z+0.8+0.1z-1 (i=0,1,2,3,4,5) for PSGRC-6,  Qi(z)=0.1z+0.8+0.1z-1 (i=0,1,2,3) for PSGRC-4 
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and Qi(z)=0.2z+0.6+0.2z-1 (i=0,1) for PSGRC-2. (3) krc=0.2 is chosen for CRC, k0=k2=k3=k4=0.05*krc, 

k1=k5=0.4*krc are chosen for PSGRC-6, k0=k2=0.1*krc, k1=k3=0.4*krc for PSGRC-4, and k0=0.2*krc, 

k1=0.8*krc for PSGRC-2. To facilitate the comparison among various RCs, the sum of all control gains are 

the same, i.e. k0+k1+k2+k3+k4+k5=krc=0.2 for PSGRC-6, k0+k1+k2+k3 =krc=0.2 for PSGRC-4 and k0+k1 

=krc=0.2 for PSGRC-2. 

5.2. With only DB Controller 

Fig. 10 shows the experimental results with only DB controller for three-phase (3-P) and single-

phase (1-P) grid-connected PWM converters in the rectifier (rec.) and inverter (inv.) states.  

 (a) 3-P in the rectifier state:  

Fig. 10(a) shows dc voltage Udc can track its reference value 120V. However, because of the 

multiple delay factors in the experimental setup, inductance current ia lags phase voltage va by 2~3 

sampling periods. That is, ia still lags phase voltage va 2~3 steps.  

(b) 3-P in the inverter state:  

Fig. 10(b) shows current distortion is relatively serious. That is, current ia is not a pure sine.  

(c) 1-P in the rectifier state:  

Fig. 10(c) shows dc voltage Udc can track the reference voltage 120V. However, because of the 

multiple delay factors, inductance current is still lags grid voltage vs by two sampling periods.  

(d) 1-P in the inverter state:  

Fig. 10(d) shows current harmonics distortion is relatively serious.  

 
a                                    b 

 
c                                    d 

Fig. 10.  Steady-state response with only DB controller (x label: 2.5ms/div, y label: 50V/div & 5A/div for (a)(c) and 20V/div & 

2A/div for (b)(d)) 

a 3-P in the rectifier state 

b 3-P in the inverter state 

c 1-P in the rectifier state 

vab

Udc

ia
vca vab vbc

ia

vca

vs

Udc

is

vs

is
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d 1-P in the inverter state 

5.3. DB+RC 

Fig. 11 and Fig. 12 show the steady response and current error tracking histories with CRC and 

PSGRC plugged into DB for 3-P and 1-P grid-connected converters at rectifier and inverter states.  

(a) 3-P in the rectifier state:  

Fig. 11(a) shows that, with both plug-in CRC and PSGRC-6, the phase differences between current 

ia and voltage va in Fig. 10(a) can be compensated, i.e. unit power factor is achieved.  

Fig. 12(a) shows that, with both plug-in CRC and PSGRC-6, the current tracking errors are 

eliminated, i.e. accurate current control is achieved. Moreover, the current error convergence times for 

CRC and PSGRC-6 are 0.32s and 0.14s, respectively. Therefore, PSGRC-6 can greatly enhance the 

current error convergence rate, up to three times at most, compared with CRC, i.e. fast current control is 

achieved.  

(b) 3-P in the inverter state:  

Fig. 11(b) shows that, with both plug-in CRC and PSGRC-6, the current distortion in Fig. 10(b) can 

be significantly reduced. 

Fig. 12(b) shows that, with both plug-in CRC and PSGRC-6, the tracking errors can be eliminated, 

i.e. accurate current control is achieved. Moreover, the current error convergence times for CRC and 

PSGRC-6 are 0.32s and 0.14s, respectively. Therefore, PSGRC-6 can greatly increase the current error 

convergence rate, up to three times at most, compared with CRC, i.e. fast current control is achieved.  

(c) 1-P in the rectifier state:  

Fig. 11(c) shows that, with all plug-in CRC, PSGRC-4 and PSGRC-2, the phase differences between 

current is and voltage vs in Fig. 10(c) can be compensated, i.e. unit power factor is achieved.  

Fig. 12(c) shows that, with all plug-in CRC, PSGRC-4 and PSGRC-2, the current tracking errors can 

be eliminated, i.e. accurate current control is achieved. Moreover, the current error convergence times for 

CRC, PSGRC-4 and PSGRC-2 are 0.32s, 0.18s and 0.20s, respectively. Therefore, PSGRC-4 and PSGRC-

2 can greatly increase the current error convergence rate, up to twice at most, compared with CRC, i.e. fast 

current control is achieved.  

(d) 1-P in the inverter state:  

Fig. 11(d) shows that, with all plug-in CRC, PSGRC-4 and PSGRC-2, current distortions in Fig. 

10(d) are significantly reduced.  

Fig. 12(d) shows that, with all plug-in CRC, PSGRC-4 and PSGRC-2, the current tracking errors can 

be eliminated, i.e. accurate current control is achieved. Moreover, the current error convergence times for 

CRC, PSGRC-4 and PSGRC-2 are 0.32s, 0.20s and 0.20s, respectively. Therefore, PSGRC-4 and PSGRC-
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2 can greatly increase the current error convergence rate, up to twice at most, compared with CRC, i.e. fast 

current control is achieved.  

 

 
a                                    b 

 

 

 
c                                    d 

Fig. 11.  Steady-state response with RCs plugged into DB (x label: 2.5ms/div, y label: 50V/div & 5A/div for (a)(c) and 20V/div 

& 2A/div for (b)(d)) 

a 3-P in the rectifier state 

b 3-P in the inverter state 

c 1-P in the rectifier state 

d 1-P in the inverter state 
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d2: DB+PSGRC-4 

d3: DB+PSGRC-2 

c1: DB+CRC d1: DB+CRC 



18 

 

 

 
a                                    b 

 

 

 
c                                    d 

Fig. 12.  Current tracking error histories with RCs plugged into DB 

a 3-P in the rectifier state 

b 3-P in the inverter state 

c 1-P in the rectifier state 

d 1-P in the inverter state 

In addition, it should be pointed out that, from above experimental results shown in Fig. 10-12, for 

the three-phase grid-connected PWM converter systems, both CRC and PSGRC, successfully reduce the 

current tracking errors from about ±2A to be less than ±0.2A, and force the THDs of the feed-in currents 

to be about 2%~4%; for the single-phase grid-connected PWM converter systems, both CRC and PSGRC, 

a1: DB+CRC 

a2: DB+PSGRC-6 

b1: DB+CRC 

b2: DB+PSGRC-6 

c1: DB+CRC d1: DB+CRC 

c2: DB+PSGRC-4 d2: DB+PSGRC-4 

c3: DB+PSGRC-2 d3: DB+PSGRC-2 
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successfully reduce the current tracking errors from about ±4A to be less than ±0.2A, and force the THDs 

of the feed-in currents to be about 1%~2%.  

Apparently, both PSGRC and CRC can achieve very high control accuracy. Moreover, by tuning the 

control gains, PSGRC can achieve faster error convergence rate compared with CRC. PSGRC offers a 

very effective control scheme for power converters to mitigate power harmonics distortions. Therefore, the 

effectiveness and advantages of PSGRC for three/single-phase grid-connected PWM converter system are 

verified. 

6. Conclusions 

In this paper, parallel structure general repetitive control (PSGRC) is investigated, which includes a 

series of paralleled nk+i (i=0,1,2,..,n-1) order harmonic internal models. PSGRC can be converted to 

various RCs for custom demands, such as CRC, DMRC, and so on. PSGRC is applied into general grid-

connected PWM converter systems, including three-phase and single-phase converters in the rectifier and 

inverter states. Experimental results show the effectiveness and advantages of PSGRC. PSGRC controlled 

three/single-phase grid-connected PWM converter system can achieve the zero-error current tracking and 

very fast current error convergence rate. Therefore, PSGRC provides a general high performance but low 

cost control solution to general grid-connected PWM converters. 

However, there will be lots of work ahead in the future. Further tests on the proposed PSGRC can be 

done for many other power converters, such as active power filters with nonlinear load. 
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