research

Analysis and mitigation of dead time harmonics in the single-phase full-bridge PWM converters with repetitive controllers

Abstract

In order to prevent the power switching devices (e.g., the Insulated-Gate-Bipolar-Transistor, IGBT) from shoot through in voltage source converters during a switching period, the dead time is added either in the hardware driver circuits of the IGBTs or implemented in software in Pulse-Width Modulation (PWM) schemes. Both solutions will contribute to a degradation of the injected current quality. As a consequence, the harmonics induced by the dead time (referred to as "dead time harmonics" hereafter) have to be compensated in order to achieve a satisfactory current quality as required by standards. In this paper, the emission mechanism of dead time harmonics in single-phase PWM inverters is thus presented considering the modulation schemes in details. More importantly, a repetitive controller has been adopted to eliminate the dead time effect in single-phase grid-connected PWM converters. The repetitive controller has been plugged into a proportional resonant-based fundamental current controller so as to mitigate the dead time harmonics and also maintain the control of the fundamental frequency grid current in terms of dynamics. Simulations and experiments are provided, which confirm that the repetitive controller can effectively compensate the dead time harmonics and other low-order distortions, and also it is a simple method without hardware modifications

    Similar works