2,125 research outputs found

    Semantic Versioning Checking in a Declarative Package Manager

    Get PDF
    Semantic versioning is a principle to associate version numbers to different software releases in a meaningful manner. The correct use of version numbers is important in software package systems where packages depend on other packages with specific releases. When patch or minor version numbers are incremented, the API is unchanged or extended, respectively, but the semantics of the operations should not be affected (apart from bug fixes). Although many software package management systems assumes this principle, they do not check it or perform only simple syntactic signature checks. In this paper we show that more substantive and fully automatic checks are possible for declarative languages. We extend a package manager for the functional logic language Curry with features to check the semantic equivalence of two different versions of a software package. For this purpose, we combine CurryCheck, a tool for automated property testing, with program analysis techniques in order to ensure the termination of the checker even in case of possibly non-terminating operations defined in some package. As a result, we obtain a software package manager which checks semantic versioning and, thus, supports a reliable and also specification-based development of software packages

    Putting the Semantics into Semantic Versioning

    Full text link
    The long-standing aspiration for software reuse has made astonishing strides in the past few years. Many modern software development ecosystems now come with rich sets of publicly-available components contributed by the community. Downstream developers can leverage these upstream components, boosting their productivity. However, components evolve at their own pace. This imposes obligations on and yields benefits for downstream developers, especially since changes can be breaking, requiring additional downstream work to adapt to. Upgrading too late leaves downstream vulnerable to security issues and missing out on useful improvements; upgrading too early results in excess work. Semantic versioning has been proposed as an elegant mechanism to communicate levels of compatibility, enabling downstream developers to automate dependency upgrades. While it is questionable whether a version number can adequately characterize version compatibility in general, we argue that developers would greatly benefit from tools such as semantic version calculators to help them upgrade safely. The time is now for the research community to develop such tools: large component ecosystems exist and are accessible, component interactions have become observable through automated builds, and recent advances in program analysis make the development of relevant tools feasible. In particular, contracts (both traditional and lightweight) are a promising input to semantic versioning calculators, which can suggest whether an upgrade is likely to be safe.Comment: to be published as Onward! Essays 202

    Semantic Component Composition

    Full text link
    Building complex software systems necessitates the use of component-based architectures. In theory, of the set of components needed for a design, only some small portion of them are "custom"; the rest are reused or refactored existing pieces of software. Unfortunately, this is an idealized situation. Just because two components should work together does not mean that they will work together. The "glue" that holds components together is not just technology. The contracts that bind complex systems together implicitly define more than their explicit type. These "conceptual contracts" describe essential aspects of extra-system semantics: e.g., object models, type systems, data representation, interface action semantics, legal and contractual obligations, and more. Designers and developers spend inordinate amounts of time technologically duct-taping systems to fulfill these conceptual contracts because system-wide semantics have not been rigorously characterized or codified. This paper describes a formal characterization of the problem and discusses an initial implementation of the resulting theoretical system.Comment: 9 pages, submitted to GCSE/SAIG '0

    A Case Study in Refactoring Functional Programs

    Get PDF
    Refactoring is the process of redesigning existing code without changing its functionality. Refactoring has recently come to prominence in the OO community. In this paper we explore the prospects for refactoring functional programs. Our paper centres on the case study of refactoring a 400 line Haskell program written by one of our students. The case study illustrates the type and variety of program manipulations involved in refactoring. Similarly to other program transformations, refactorings are based on program equivalences, and thus ultimately on language semantics. In the context of functional languages, refactorings can be based on existing theory and program analyses. However, the use of program transformations for program restructuring emphasises a different kind of transformation from the more traditional derivation or optimisation: characteristically, they often require wholesale changes to a collection of modules, and although they are best controlled by programmers, their application may require nontrivial semantic analyses. The paper also explores the background to refactoring, provides a taxonomy for describing refactorings and draws some conclusions about refactoring for functional programs

    Web service composition: A survey of techniques and tools

    Get PDF
    Web services are a consolidated reality of the modern Web with tremendous, increasing impact on everyday computing tasks. They turned the Web into the largest, most accepted, and most vivid distributed computing platform ever. Yet, the use and integration of Web services into composite services or applications, which is a highly sensible and conceptually non-trivial task, is still not unleashing its full magnitude of power. A consolidated analysis framework that advances the fundamental understanding of Web service composition building blocks in terms of concepts, models, languages, productivity support techniques, and tools is required. This framework is necessary to enable effective exploration, understanding, assessing, comparing, and selecting service composition models, languages, techniques, platforms, and tools. This article establishes such a framework and reviews the state of the art in service composition from an unprecedented, holistic perspective

    17th Edition of ECOOP Doctoral Symposium and PhD Workshop : Proceedings

    Get PDF
    • …
    corecore