
Informorion Systems Vol. 15, No. 1, pp. 85-l 16, 1990 0306-4379190 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright c 1990 Pergamon Press plc

A SOFTWARE PROCESS DATA MODEL FOR
KNOWLEDGE ENGINEERING IN

INFORMATION SYSTEMS

MATTHIAS JARKE, MANFRED JEUSFELD and THOMAS ROSE

University of Passau, P.O. Box 2540, D-8390 Passau. F.R.G.

(Submitted March 1989; Receiwdfor publication 18 October 1989)

Abstract-Knowledge engineering for information systems is a long-term, multi-person task that requires
tight control and memorization not only of what knowledge is acquired but also of why and how it is
acquired. We propose a software process data model as the foundation of a knowledge-based software
information system that emphasizes control, support and documentation of design decision-making and
tool integration in information systems environments.

The model is developed along two dimensions. Firstly, it defines how to represent and integrate design
objects (what), design decisions (why) and design tools (how). Secondly, it exploits the abstraction
mechanisms of the extensible hybrid knowledge representation language CML/Telos to manage the
evolution not only of particular software projects, but also of the software development environment in
which these projects operate. Modular aggregation relates design-in-the-small and design-in-the-large
support. Besides motivating and formalizing the model, we describe an operational prototype implemen-
tation called ConceptBase and report intitial application experiences in the DAIDA ESPRIT project.

Key words: Software databases, software process models, information systems engineering, knowledge
base management systems.

1. INTRODUCTION

Knowledge engineering has been publicized as
a technology to build and maintain the knowledge
base of so-called expert systems, systems intended
to mimick the performance of human experts in
specialized domains of diagnosis, design, medical and
business decision support, etc. An expert system uses
a narrow set of specialized algorithms, the “inference

engine”, to work on a generalized data structure
or “knowledge base” that represents the expert’s
domain knowledge and problem-solving strategies.

Expert system “shells” have evolved as a technology
to support knowledge engineering but knowledge
engineering has also been considered as a new kind
of human profession similar to software engineering.

While the last few years have seen strong interest
in integrating knowledge-based systems and infor-
mation systems technologies [I], the relationships
between knowledge engineering and information sys-
tems have captured less attention. One way to address
this problem is to view expert systems development as
a special case of information systems development in
which the target software environment (an expert
systems shell) offers richer data structures and differ-
ent kinds of processing methods. In particular, rapid
prototyping, expert knowledge consistency checking
and evolution support are often emphasized in expert
systems development methodologies.

In this paper, we shall be more interested
in another way of relating knowledge engineering
with information systems. Building large information

systems, and maintaining them over long periods of
time, has been shown to be a knowledge-intensive
activity [2]. Engineering an information system
requires many design decisions. They involve
knowledge about functional and non-functional
requirements, about conceptual, architectural and
physical designs, about implementation languages
and strategies, and most importantly, about the
relationships between all these levels of knowledge.
Recording the knowledge used for decisions-
especially important for maintenance and reusabil-
ity-requires the construction and management of a
large knowledge base, and can thus be legitimately
viewed as a special case of the knowledge engineering
idea. Starting with early work on languages such as
TAXIS [3] and RML [4], specialized languages,
methodologies and tools for information systems
development and maintenance have evolved from this
“IS knowledge engineering” paradigm. Of course,
these languages, methods and tools must be firmly
grounded in results gained earlier in areas of data
engineering and software engineering research such
as semantic data models, data model mappings, view
integration, relational design theory, automatic pro-
gramming, formally verified refinement. etc.

In this paper, we analyze the data modelling
(or-here synonymously-knowledge representation)
requirements of such a paradigm and propose a
software process data model, together with an associ-
ated knowledge base management system, to deal
with these requirements. The proposed data model
can be viewed as a substantial extension of

85

86 MATTHIAS JARKE et al

an entity-relationship approach which emphasizes
process orientation, design decision support and
integration of heterogeneous active objects into the
software process knowledge base.

There have been a number of efforts to deal
with the data management problems of large-scale
development and maintenance environments. In the
software engineering area, the most popular tools
have been enhanced file systems which address the
problems of version and configuration control [5].
Traditional database systems have proven less suit-
able [6] but several projects have extended their
concepts by complex objects, versions, redundant
derived data (such as compiled programs) and the
like [7]. However, there still seem to be several
shortcomings of these systems:

They typically deal with documents rather than
with conceptual design objects.
Many of them consider dependencies among
documents as a development history. Hardly any
systems document the design decisions underlying
these dependencies or the tools used to create
them; this, however, is important knowledge for
maintenance and reusability. Even fewer control
the choice among applicable decisions or tools by
enforcing organizational or project methodologies.
Software databases are typically not concerned
with tool integration and project management
issues although these are important with long-
term software processes.

A more comprehensive approach should therefore
stress the process aspect of software development,
and must provide more flexibility. Knowledge repre-
sentation languages which have already been shown
to be useful for requirements modelling purposes [4],
appear as a good starting point. In essence, software
development is seen here as a knowledge engineering
process to be supported by a knowledge base man-
agement system (KBMS) [8].

Maintenance and reusability are considered crucial
knowledge engineering tasks in long-lived infor-
mation systems. In the context of ESPRIT project
DAIDA 191, we have been developing a KBMS called
ConceptBase which provides a semantic theory of
objects, processes and tools in a heterogeneous infor-
mation systems development and usage environment,
together with the computational facilities of a soft-
ware database. Together with a semantic theory of
the application domain and of the system require-
ments (expressed in the same knowledge represen-
tation language), such a KBMS is intended to control

tin this paper, we shall not discuss prototyping further
although it is part of the DAIDA project. Therefore, we
usually simplify the model so that the process model is
described at the metalevel, an environment at the class
level, and a software project at the instance level.

and document a historical account of:

-what the information system knows about the
world,

--how the information system fits into the world,
-how and why these two kinds of system require-

ments were mapped into the design and implemen-
tation of an information system.

We wish to maintain this information to facilitate
maintenance and reusability of software objects
not only at the code level, but also at the levels of
user requirements or conceptual designs. Indeed, we
intend to reuse design process experiences rather than
just their outcomes.

The model described in this paper represents a first
step towards such a goal. Formally, it can be viewed
as an extension of the entity-relationship model in
databases [lo], of Petri net structures [ll], or of
incremental and iterative design methods proposed in
AI and software engineering [12, 131. Specifically, the
main ideas are:

l To represent the evolution of design objects by
tool-aided design decisions:
-covering conceptual design objects as well as

software documents,
-viewing design decisions as special kinds of

design objects that are explicitly represented,
can be justified by other decisions, and may
evolve over time,

-viewing design tools as reusable design de-
cisions, intended to support the execution of
other design decisions;

l To exploit the instantiation hierarchy of an exten-
sible knowledge representation language for inte-
grating heterogeneous languages, methodologies
and tools:
defining the process model at the metametaclass

level,
defining a particular software development en-

vironment at the metaclass level,
-documenting a particular software development

project at the class level,
-prototyping a particular design at the instance

level,?
l To integrate design-in-the-large with design-in-

the-small issues:
-offering modularization of the knowledge base,

in particular of design decisions, while provid-
ing semantic descriptions at all levels,

-allowing flexible precision of software process
control, potentially ranging from pure database
functionality (no semantic description) to rather
detailed temporal and/or predicative assertions.

After a brief overview of the DAIDA project as a
whole (which also relates our work to that of others),
Section 2 studies detailed requirements for a decision-
centered approach to conceptual software process
modelling. Section 3 briefly reviews the conceptual
modelling language CML, viewed in our system as a

A software process data model 87

hybrid knowledge representation mechanism which

integrates semantic networks, rule-based systems
and frames. Section 4 then applies this language to
formalize the software process model, using the same

example as in Section 2. Section 5 briefly describes
the ConceptBase prototype implementation. Finally,
Section 6 presents several applications in the DAIDA
context, in particular the representation of mapping
requirements to design and design to implementation,
as well as use of the process model in the Concept-
Base implementation itself.

2. REQUIREMENTS OF A
DECISION-BASED SOFTWARE

PROCESS MODEL

This section is devoted to analyzing the require-

ments for a KBMS that supports an environment for
information system evolution. First, we characterize
the concrete context in which we are working, i.e. the
DAIDA system. Then, we give a simple development
and maintenance example to provide an intuitive
feeling of what kind of support is needed. Finally, we
outline and justify requirements for a conceptual
model which relates the design objects and documents
generated in a software environment to the tools used
to generate them by a notion of design decision. It
is sketched how the combination of this decision-
centred approach with object-oriented construction
principles may address a large number of problems
arising in database software evolution.

2.1. DAIDA project objectives

It is the goal of DAIDA to exploit some specific

properties of data-intensive information systems to

come up with a specialized design KBMS which can
take maximum advantage of this application knowl-

edge. A decision-based documentation methodology
is chosen to support consistent maintenance,
reusability and configuration of multi-layered de-
scriptions. The architecture, summarized in Fig. 1. is
based on the following concepts and observations:

Multiple levels of representation_DAIDA views
an information system as a multi-layered de-
scription of requirements analyses, designs and

implementations [8]. The layers are represented
in similar but distinct languages: the knowledge
representation language CML/Telos [14, 151 for
requirements analysis; a purely declarative ver-
sion of the language Taxis [3], called TaxisDL
[16], for conceptual design and predicative
specification; and the database programming
language DBPL [171 for implementation design
and programming. Note that there is a break in
paradigm in the middle: CML and TaxisDL are
object-oriented conceptual models of the

world, and of the system embedded in it. but
have to be transformed into a set-theoretically
motivated database programming language.
Extensible set of interrelated transformation
assistants-The literature has developed a rich
set of transformation rules for refining and

implementing specifications. For example, the
CIP [18] and REFINE [19] projects propose
user-guided formal transformation strategies,
whereas the Programmer’s Apprentice [20]
views a program as a puzzle of adaptable cliches
which must be maintained in a consistent state
in case of changes, using dependency-directed

system

Analyst

SYStem

Designer

Database

GKBMS

Duig

PIOWZ

Knowledge

D&n

TOO1

Knowkdge

“I _ I ‘I
Programmer

Fig. I. DAIDA architecture.

88 MATTHIAS JARKE et al.

backtracking strategies. Most of these tools
have been successful only for programming-
in-the-small, whereas information systems are
often quite large. Therefore, DAIDA provides a
flexible “open” environment which can support
a range of development situations from (almost)
manual to (almost) automatic, depending on the
currently available set of transformation tools.
To achieve this, transformation tools are em-
bedded in a fairly large number of small “expert
systems”, called assistants, which communicate
via the common knowledge base to be described
below; due to the multi-layered structure of
DAIDA, language assistants for each level must
interact with mapping assistants between the
levels. The application domain of DAIDA,
data-intensive information systems, cannot only
exploit general software development expertise,
but also the special representations, theoretical
results and methods of database design re-
search. Moreover, certain mathematical trans-
formation methods, as e.g. expressible in Z [21],
appear particularly suited for this application
domain. Specifically, the need for assistants in
three major transformational tasks results from
the above-mentioned levels of languages:

l embedding a CML system model in the CML
world model, and narrowing it to a TaxisDL
conceptual design, remaining in the object-
oriented framework [22],

l validating the CML and TaxisDL models by
prototyping (in DAIDA, this is done in an
object-oriented extension of Prolog [23]),

l refining the object-oriented specifications to-
wards set-theoretic database programming,
using Abrial’s set-theoretic substitution cal-
culus and B-tool [24].

3. Formalization of information systems require-
ment-Most formal software development
methodologies start with a formal specification
of system functionality. Formalizing the re-
quirements analysis which leads to these specifi-
cations, has been traditionally considered
difficult or even impossible. Again, the concen-
tration on data-intensive information systems
improves the situation. Database schemata
naturally represent a system model of the rele-
vant world domain; the analysis underlying the
development of the initial database schema can
be reused as a starting point for the require-
ments analysis of new applications. However,
a knowledge representation language more
powerful than traditional data definition
languages, even for semantic data models, is
required to describe the relationship of the
system model (as in the database schema) to the
world model, and the development of this re-
lationship over time. The conceptual modelling
language CML [14, 151, evolved from the re-

quirements modelling language RML [4], offers
an object-oriented model with an embedded
time component to support this task.

4. Integrated decision-based documentation knowl-
edge base-Representing multiple layers of sys-
tem description as well as their relationship to
a description of the underlying real world can
offer powerful development and maintenance
support for information systems but requires
itself a knowledge base management system
for maintaining the different descriptions con-
sistent over time: the DAIDA global KBMS
(GKBMS). Rather than just modelling (ver-
sions of) development objects, the GKBMS
views the software development and main-
tenance process as a history of tool-supported
decision executions. These decision executions
are directly represented, they can be planned
for, reasoned about and selectively backtracked
in case of errors or requirements changes. Ex
ante, the GKBMS can be seen as an integrative
tool server which helps users in selecting tasks
and tools within a large development project; ex
post, it plays the role of a documentation service
in which development objects are related to the
decisions and tools that created or changed
them (i.e. justify their current status). Many
recent ideas from design database research [25]
apply to the implementation of such a system;
applying the DAIDA philosophy to the
GKBMS (viewed as a data-intensive infor-
mation system about the history of “software
worlds”), a dialect of CML is chosen as the
knowledge representation language. Concept-
Base is a prototype system that implements both
CML itself and the GKBMS model on top of
it.

2.2. A DAIDA example

Based on the architecture in Fig. 1, Fig. 2 illustrates
a simple DAIDA development process, using the
example of an information system for project meeting
support [26]. A CML world model starts from the
activity, Meeting, within a project and describes its
related activities and entities in a real world with time.
Among other things, meeting preparation, conduc-
tion and follow-up is different for people in different
roles, namely organizers and other participants.
Based on this observation, the CML system model is
positioned in the world model in two functional parts
(also called system activities or views), one support-
ing an organizer, the other a participant within the
same, given organization.

The combined world and system models are
mapped to a TaxisDL design model. The role of the
system model within long-term world model activities
is represented by a script, ofice-internal meeting
schedule; certain aspects of other activities and data
are mapped to data classes. transaction classes and
their corresponding constraints. Within the TaxisDL

LEVEL

A software process data model

EXAMPLE OBJECTS

89

MAIN TASKS

World Model
CMU

System Model
(CMU

DatabaseDesign
@BPL)

document document
database __) processing
hierarchy hierarchy

office
intemal
meeting
schedule

ldGiOMl do&ment
document 4 processing
database transactions

Fig. 2. Overview of the development example

model. data class hierarchies and corresponding
transaction hierarchies must be synthesized from the
mapping results. to achieve an integrated conceptual
design: this could be called a particular strategy for

ritw integrtrtiotz, to be supported by the TaxisDL
knowledge-based design assistant. In our example, we
detected that from the various outputs of meeting we
could compost a conceptual office document data-

dbmain a!escription

role of system
in

dataandtransaction
integratbn

so&we
development

Fig. 3. Browsing design objects on an IsA hierarchy of the conceptual design.

MATTHIAS JARKE et al.

Fig. 4. Graphical display of dependencies and code frames generated by mapping rules.

base, consisting of expense notes, working papers,
invitation letters, minutes and the like.

The design is mapped to a DBPL database struc-
ture and transaction design. Decisions involved in
mapping the TaxisDL generalization hierarchy of
papers and the related transaction hierarchy to
a modular DBPL program with relations, views,
integrity constraints and database transactions [24],
are presented below in a highly simplified manner to
elicit GKBMS requirements.

In Fig. 3 (screens simplified for readability in this
section), the developer has employed a hierarchical
text browser to determine unmapped TaxisDL ob-
jects. He has further decided tofocus on the mapping
of entity structures, in particular, invitations and
their generalization, papers. This selection causes the
display of a menu with appZ~cable decision classes and
took. There are several possible mapping strategies
[27,28]; distribute would generate one relation
per TaxisDL entity class, whereas move-down only
generates relations for leaves of the hierarchy and
represents the other ones by view definitions (called
constructors in DBPL [29]).

The graph in Fig. 4 shows dependencies created by
the decision for move-down, relating the new objects
to existing ones and to a representation of the applied
tool. Then, selection of the node InvitationRel causes
display of the corresponding sources (type and vari-
able definitions).

Invitation Type contains a set-valued attribute; a
normalization decision is therefore offered in the
menu, leading to the extended dependency graph in
Fig. 5. The new selector expresses the referential
integrity constraint among the two relations, whereas
the new constructor allows the reconstruction of the
initial, unnormalized invitation relation; for details,
see [26]. Additionally, Fig. 5 demonstrates how

automatic and manual execution of decisions could
interact. Observing that the system contains only
Invitations and no other Papers, the developer decides
to “make the system more user-friendly” by replacing
the artificial paperkey attribute (initially required to
map the object-oriented TaxisDL model which does
not have keys) with date, author. Of course, this
change also implies adaptation of the corresponding
constructor, selector and possibly transaction defini-
tions (outside the editor window in Figs 5 and 6).

Unfortunately, the assumption that Invitations are
the only kind of Papers leads to an inconsistency as
soon as the mapping of Minutes, the second subclass
of Papers, is considered (Fig. 6). Therefore, the
decision to choose associative keys must be retracted,
together with all its consequent changes, without
redoing all the rest of the design; supporting this
consistent, selective backtracking is one main purpose
of introducing the explicit documentation of design
decisions and dependencies. In the example, the
inconsistency can be resolved by selectively back-
tracking to the state before the introduction of as-
sociative keys; in other cases, or if the granularity of
representation in the dependency graph is insufficient,
additional manual or tool-aided corrections may
become necessary. Note that the graph in Fig. 6 only
highlights the objects to be changed when introducing
Minutes; the actual correction would need a more
detailed representation--the GKBMS must have
some kind of zooming facility for both design objects
and design decisions.

2.3. Requirements for a process-oriented software
information system

Although the above example is highly simplified
compared with real-world software projects, a num-
ber of requirements for effective KBMS support

A software process data model

Fig. 5. Dependency graph and code frames after normalization and key substjtution.

91

should have become obvious. First, we have a need
for representing design objects or documents at differ-
ent levels of abstraction, and at any of the DAIDA
language layers. Second, the GKBMS must know
about fools for supporting intra-lan~age refinement
(e.g. normalization within DBPL) and inter-language
mapping (e.g. generalization hierarchy mapping).
Third, a usage enuironment must offer interface tools,
including object and task dependent menus, and the

documentation of design object interrelationships,
both embedded in some methodology to aid in the
process of software development and, especially, soft-
ware maintenance (e.g. retraction of user-defined
keys in Fig. 6).

In fact, process support is the central concern of
our approach. In our view, the software process is
based on human design decisions. When executed,
these decisions lead to certain transformational oper-

InvRccdvTypc - RECORD

b~vitationRclTypc -
RELATION P4’=r*rY _~
OF fnvitationTypc;

Fig. 6. Code frames and dependency graph after backtracking the decision on key substitution

schema for design ObJ’ects

92 MATTHIAS JARKE et al.

abstract design objects

external world of sources, software engineers and design and managenlent tools

Fig. 7. Design object knowledge base structure.

ations in the software environment; transformations
establish relationships between design objects and
may be supported by tools. However, in a large
software project, software developers may not be
allowed to select arbitrary tools from, say, a toolkit
[30], to work arbitrarily on arbitrary objects. Rather,
a methodology with associated standards should be
enforced, constraining working sequences and tool
applications in a meaningful, theory-based manner,
as far as possible without impeding developer creativ-
ity. To allow the KBMS such a flexible definition of
methodology which could range from very open to
very formal, we introduce the notion of decision class
of which any design decision execution must be an
instance. Thus, we propose to couple object-oriented
construction principles with the notion of design
decision; in contrast to usual object-oriented systems
like SmallTalk [31], tools (called methods therein) are
not directly associated with object classes but only
indirectly via decision classes. In the following, the
requirements for the approach sketched above will be
outlined in more detail.

Although our main focus is the representation of
software processes, it appears best to start with
discussing the representational requirements for

tHowever. there is at least a possibility to activate and
control these external design objects (e.g. DBPL pro-
grams) and their building environments automatically.
This is in contrast to CAD applications relating to
non-computer projects [32]. but similar to CIM appli-
cations where the developed designs control and activate
flexible manufacturing equipment.

design objects. The term design object denotes any
software object and document involved in world or
system modelling, system design or database pro-
gramming. Note that in a heterogeneous software
environment like DAIDA, design objects reside out-

side the GKBMS and are represented in languages
not understandable for the GKBMS.1_ To deal with
external and unintelligible design object sources,
simple configuration managers [30] just represent
source references. This prevents any deeper reasoning
about design object semantics and interrelationships
with other design objects, decisions and tools. Taking
a knowledge management view, design objects should
not only have a source reference but also formalized
knowledge about the sources, and of the design
decisions that influenced their evolution. The control
of such a representation requires at least five levels of
abstraction (Fig. 7):

(a) management of specific design object sources
(software documents), often residing in a file
system such as UNIX under simple configur-
ation control;

(b) knowledge about specljic design object instances,
to document the sources in a formal way and
to reason about their interrelationship (e.g.
configurations, versions);

(c) knowledge about design object classes to gain a
powerful structuring mechanism which defines
the possible objects appearing in a particular
software environment (e.g. world model, sys-
tem model, TaxisDL and DBPL constructs in
DAIDA);

A software process data model 93

(d) a system-understandable terminology to talk
about design objects, defining formally the
GKBMS approach to modelling software
objects;

(e) a knowledge representation language to realize
all of the levels above.

This five-level model can be used to characterize
the flexibility of software databases (e.g. [33,6]). In
particular, the knowledge representation language
defines how precisely knowledge about objects can be
described, and how easily the object schema at level

(d) can be adapted to other languages and tools. Since
new languages, methods, theories and tools for soft-

ware development are continuously appearing, exten-
sibility of the language as well as of the object schema
is of great importance; it is well-known that this
implies the use of generalization (ISA) hierarchies of
object classes [34-361. We experience the need for
extensibility in the DAIDA project where languages
and tools evolve rapidly, as our research progresses.

Despite the large amount of knowledge that can be
made available in such a schema, design object
representation really only covers the static aspects,
i.e. the outcomes of development processes. There-
fore, we introduce conceptual models of design de-
cisions as first-class objects intended to control
and document directly the development process that
creates, alters and justifies design objects. As indi-
cated before, design decisions play multiple roles in
our approach and must be adaptable to multiple
levels of granularity (ranging from programming-
in-the-small to programming-in-the-large to pro-
gramming-in-the-many [30]) as well as to multiple
methodologies. A single set of evolution rules for a
predefined object schema, as given e.g. in [37], is very
useful in a well-understood task but not enough for
a heterogeneous environment; moreover, we want to
preserve human discretion in making decisions about
software evolution, rather than prescribing rigid
rules. As a consequence, the same five-level represen-
tational requirements as for design objects apply to
the modelling of design decision knowledge:

(a) design decisions made and executed in the
external world. possibly collaboratively by
(groups of) human designers and computerized
problem solvers;

(b) knowledge about executed design decision in-
stances, possibly including limited documen-
tation of the decision-making process;

(c) knowledge about feasible classes of design
decisions according to known development
theory, standards or methodologies;

(d) a terminolog,v and associated enforcement sys-
tem for design decisions that formally defines
the GKBMS model of design decision control
and documentation;

(e) a knowledge representation language to repre-
sent knowledge at all of the above levels.

The same remarks as before apply with respect to
the need for extensibility of language (e) and schema

(d). For example, in an evolving software en-

vironment such as DAIDA, this extensibility allows
developers to use the GKBMS initially as a simple
documentation tool where all transformations are
made manually, and recorded and controlled accord-
ing to very simple decision class definitions, basically
just distinguishing between three kinds of decisions:
refinement within a language, mapping between
languages and retraction of existing decisions to start
new versions. This distinction is closely related to a
versioning model described in [32], and can thus serve
as a basis for certain programming-in-the-large tasks.
As theory and tools for the mapping tasks sketched
in Section 2.2. are further developed, the same
schema can support an almost automated software
development and maintenance process.

Finally, design tools employed to execute decisions
can be described in a fashion similar to design
decisions, namely, at a class level which describes
what the tools can guarantee to do in general, and at
an instance level which describes what it guarantees
in executing a specific decision. The role of tool
modelling is best understood by studying the inter-
relationships between design objects, design decisions
and tools. Figure 8 extends Fig. 7 to illustrate these
interrelationships. For example, at the class level, a
design decision class should be related to object
classes and tool specifications as follows:

l Design object classes this decision can be applied
to (FROM)

l Design object classes allowed as outcomes
achieved by performing this decision (2’0)

l Associated tools supporting the execution of a
decision (BY)

l A formalized description decomposing a decision
in subdecisions, and finally into primitive de-
pendencies among incoming and outgoing design
objects

l A decision-procedure description (maybe just a
kind of comment) capturing developers’ beliefs
not expressible in the above representation.

Furthermore, both decision class and tool specifi-
cations come with constraints that define the relation-
ships between inputs and outputs. For decision
classes, the semantics of such a constraint is similar
to that of an integrity constraint in a database
transaction [38]: the constraint must be satisfied for
any completed instance of the class. For tool specifi-
cations, the semantics of a constraint is that of a
warranty the tool gives to its users; in particular,
satisfaction of constraints already guaranteed by the
supporting tool need not be checked any more in the
instantiation of a decision class (so to speak, at
transaction end), unless there was a chance for the
user to invalidate the tool results in between. The
implementation of such an approach requires a
theorem-proving approach to integrity checking [39].

94 MATTHIAS JARKE et al.

Fig. 8. Combining the design decision concept with layered knowledge representation.

For simplicity, the decomposition and decision-
procedure components of the model are not shown in
the figure; the former will be discussed when elaborat-
ing the formal model of design decisions in Section
4.3, whereas we have only begun to explore the latter.
Another important requirement is the modelling of
time, an important aspect of any process-oriented
model. We argue that an interval-based model of time
[40] should be chosen since it models aspects such as
versioning of design objects, or embedding of validity
intervals for design decisions-as implied by the
decision decomposition approach mentioned above.
Finally, it may be useful to add another level
of abstraction to the model, in order to represent
example data for prototyping in the model; this would
make the levels (b-d) above into classes, metaclasses
and metametaclasses, respectively. Since we do not
discuss prototyping further in this paper, we shall
stick with the simpler form although ConceptBase
supports this extension as well.

So far, we have focussed on representut~onal re-
quirements for a decision-o~ented GKBMS. In order
to get a feeling for the fimctional requirements, we
now discuss how a typical mapping task such as
illustrated in Section 2.2. could be supported by the
structure shown in Fig. 8. First of all, different
e~~p~orat~on facilities are required to exploit the docu-
mentation of design object and design decision repre-
sentation during the development and maintenance
phases:

l ~xpIoration of hierarchical structures such as
taxonomies of design object or design decisions
classes, possibly also of documented instances and
their static relationships, starting from a given
focus; e.g. input/output relationships between

DBPL transactions and data structures (crossing
of outcomes)
Exploration of dependency graph structures,
following chains of design decision instances at
various levels of granularity from a given focus;
e.g. finding requirements and design decisions a
relation attribute was derived from (browsing of
processes)
Predicative restriction of a set of design objects
and design decisions (e.g. for setting a.focus or for
reducing the complexity and size of a display)
Combined navigation in graphs starting at a given
focus; e.g. explore the design object space at the
level of system design, then explore possible imple-
mentation decisions.

From this list, it is obvious that a combined
predicative and direct-manipulation style of inter-
action is needed for the KBMS usage environment.
Exploration of the existing schema and instances is
required both during the initial development of a
system and in the maintenance phase. In a typical
development step, the interplay of design objects,
decisions and tools could proceed as follows:

I.

2.

3.

4.

5.

Explore (versions of) design objects and de-
cisions (instance level).
Select a design object to work on (instance level)
and finds its class (class level).
Explore decision classes applicable to this object
class and select one (class teuel).
Select a tool associated with the selected de-
cision class or one of its predecessors in the
generalization hierarchy of decision classes
(class level).
Make a decision within this class, execute it with

95

R- Mrin-a Swam

Fig. 9. Summary of KBMS requirements for software process support.

the selected tool, generating new design object
sources (external world level) and their represen-
tations in the knowledge base (instance level),
testing if these instantiate existing design object
classes (class level).

6. Try to create an instance for the previously
chosen decision class, testing the correctness of
the execution with respect to the class definition
and, if successful, documenting the execution
with its associated objects and tools (instance
and class level).

Introducing design decisions as a mediating con-

cept between objects and tools guides the user to-
wards applicable tools in a given task context (defined
by the theory or methodology embedded in a decision
class definition), controls the correct application of
these tools in a flexible way (using weaker or stronger
constraints for decision classes) and documents
the development process for subsequent expplanation,
critique (maintenance) and reuse. In the long range,
it would be desirable if the system would extend
its known set of decision classes by inducing new
subclasses from instances [2,41,42].

Summarizing, three dimensions of requirements for
modelling and supporting software processes in a
knowledge base have been pointed out:

-representational requirements for a software pro-
cess data model (GKBMS data model)

-funcfional requiremenfs (operational interface of
the GKBMS)

-required tools and techniques (implementation of
the GKBMS).

The details of these dimensions are repeated in
Fig. 9. In the remainder of this paper, we present our

approach to satisfy these requirements. The knowl-
edge representation language mentioned at level (e)
above for modelling both design objects and design
decisions must combine object-oriented abstraction
with multiple levels of instantiation, one or more
assertion languages for expressing object and process
constraints, natural concept visualization with pre-
dicative as well as navigational exploration, an em-
bedded (preferably interval-based) model of time,
and object identity as a basis for configuration man-
agement. Taken together, these requirements look
very similar to those needed for world and system
modelling in DAIDA; indeed, a software environ-
ment can be seen as a “software world” whose

structures, laws and history have to be represented in
the GKBMS. As a consequence, we choose a dialect
of CML, the world and system modelling language of
DAIDA (cf. Section 2. I), as the knowledge represen-
tation language for the GKBMS.

The next section presents a definition of this CML
dialect. Then, the level (b-d) representational require-
ments are addressed by defining formal constructs
for design objects and design decisions. Continuing
the example of Section 2.2, our approach to the
functional requirements is also briefly demonstrated.
Finally, we present the tools and techniques aspects by

96 MATTHIAS JARKE et al.

giving an overview of the ConceptBase prototype
implementation, and relate the model to specific
applications.

3. THE CONCEPTUAL MODELLING
LANGUAGE CML/TELOS

This section provides a brief review of the knowl-
edge representation language CML which will serve
as the basis for formalizing and implementing our
software process knowledge base. CML (and its
minor variants SML and Telos [15]) was derived
in several iterations [14,43] from the requirements
modelling language RML [4], and has been aug-
mented in DAIDA with special features for modelling
system requirements and external naming for system-
generated object identifiers.

CML combines structurally object-oriented prin-
ciples such as object identity, classification, general-
ization and aggregation, with a predicative assertion
language and a built-in time calculus. Major features
distinguishing CML from other similar knowledge
representation languages include:

attributes as first-class objects which can be in-
stantiated, specialized and have attributes of their
own;
potentially infinite hierarchy of metaclass levels,
thus ensuring extensibility of the language;
validity intervals for world objects described in the
system, as well as for the system’s knowledge
about them;
flexible hypertext-like syntax that allows for
arbitrary combination of semantic network and
frame-based views.

The remainder of this section sketches the network
(proposition) and the frame (object) levels of
the system as well as their interrelationships. A

knowledge-level formalization of the basic language
can be found in [43].

3.1. The network syntax

In CML, knowledge bases are seen as semantic
networks. A link (which is synonym to object in
CML) is interpreted as the proposition stating that
there is a connection between two nodes. A node
represents the proposition that there is such an
object. The object-oriented paradigms of classifi-
cation, generalization and aggregation [34] appear as
links, too, where a set of six language axioms defines
the well-formedness of the network. For example,
each object has to be an instance of at least one object
(its class). The uniform data-structure for prop-
ositions is:

id = (source, label, destination, interval).

Each proposition makes a statement about objects
and is itself an object. On the left stands the name (id)
of the statement, and on the right the definition: the
object “source” has a link labelled “label” to object
“destination” during time “interval”. Nodes are seen
as self-referential links, so-called individuals, denoted
by id = (id,-,id,interval), where the underscore
stands for an arbitrary label. Obviously, individuals
make no statement about other objects but only
about themselves; more exactly, they state that there
is an object with name “id.”

To support rule-based deduction and integrity
control, CML offers specialized object classes to
express constrainfs and rules. For example, a prop-
osition can link a class object to an object of class
“ConstraintClass” to express that the constraint has
to be satisfied for all instances of that class object.
Note that this method of introducing assertions
leaves the freedom to attach arbitrary assertion
languages and associated provers to the system [44].

Fig. 10. Propositional representation of mapInvitations (unlabelled links stand for *instance) of
propositions.

A software process data model 91

3.2. The frame syntax

By grouping a set of propositions together with
their class propositions around a common source, we
obtain a CML frame. For example, a piece of a
frame-level object maplnuitations that documents the
design decision shown in Fig. 4, can be written as:

PROPOSITION mapInvitations at version7
IN EntHierMapMoveDown WITH
tdlentities

entityl: Papers
entity2: Invitations

END (* mapInvitations *)

This states that mapInvitations is an instance of
the classes PROPOSITION and EntHierMapMove-
Down (the decision class activated in Fig. 3). It has
attributes entity1 and entity2 with values Papers
and Invitations which are instantiated from an at-
tribute category labelled tdlentities (defined in class
EntHierMapMoveDown). Version 7denotes the time
during which the frame shall be regarded as valid.
Part of the network of propositions representing the
frame is shown in Fig. 10.

Figure 10 also illustrates one of the CML axioms.
The attribute labelled entity1 (entity2) is declared
to be an instance of the tdlentities attribute of
EntHierMapMoveDown. The instantiation axiom of
CML demands that its source maplnvitations must be
an instance of the source of its class EntHierMap-
MoveDown; also, Papers (Invitations) must be in-
stances of TDL-ECDO.

The time components of the propositions are not
shown in the figure; for example:

generated, we extend the frame syntax by operator
expressions that reference links by their source
and label components. For example, the identifier
P8 can be referenced by the expression maplnvi-
tations!entity2. The operator “!” can be iterated for
accessing more distant links: the name of the instan-
tiation link of the entity2 attribute can be described
as mapInvitations!entity2!*instanceof At any given
point in time, this naming convention yields unique
identifiers since the CML aggregation axiom says that
there may be only one link with a given label at a
given time.

3.3. Querying and updating knowledge bases

Due to the close relationship between the two
syntax variations of CML, queries and updates can
be addressed to either of them; for simplicity, we
assume for the moment that internally, all frame
structures are converted to network structures, as
indicated in the example above [45]. Following [46],
CML views the knowledge base as an abstract data
type with two operations:

tell (s)

ask (q, a)

“tell” tests “s” for consistency with the knowledge
base and stores those propositions of “s” not already
retrievable. Applied to some knowledge base, “ask”
provides the answer “a” to query “9”. In accordance

mapInvitations = (maplnvitations, -, mapInvitations, version7)
PI = (mapInvitations, *instanceof, PROPOSITION, version7)
P2 = (PI, *instanceof, InstanceOf, 21-Mar-1989+)

P8 = (mapInvitations, entity2, Invitations, version7)
P9 = (PS, *instanceof, Kl, version7)
PI0 = (P9, *instanceof, InstanceOf, 21-Mar-1989+)

where

InstanceOf = (PROPOSITION, *instanceof, CLASS, Always)
K I = (EntHierMapMoveDown, tdlentities, TDL-EC-DO, Always)

The first propostion declares maplnvitations as an

individual. Its last component, version7, holds the
“valid time” of the object: the knowledge base re-
gards maplnvitations as valid during the time interval
version% Pl instantiates mapInvitations to the class
PROPOSITION. The next proposition makes P2 an
instance of the class InstanceOf (the class of all
instantiation links). Its time component is used to
store the “belief time” of maplnuitations and PI : the
knowledge base knows of them since 21 -Mar-1989.

CML treats all propositions (individuals, at-
tributes, instantiation and specialization links) as
objects. Since many object identifiers like those
for attributes and instantiation links are system-

with the hypertext-like structure of the language,
queries can be asked and answers can be displayed as
text (frame) objects, networks or combinations of
both. “q” can either be a closed predicative formula
over the knowledge base in which case “a” takes
one of the values yes, no or unknown; or “q” can
be considered a class definition of CML and “a”
contains all the objects classified as satisfying this
definition (cf. Section 5.1).

The following query asks for all attribute values of
all instances of the class EntHierMapMoveDown

98

which are valid during version7:

MATTHIAS JARKE et al.

INDIVIDUALCLASS Att~buteQuery
computedattributes

solution: TDL_EC_DO

query

IN QueryClass WITH

END

ql : $ each x/EntHierMapMoveDown
AttrValue (x, tdlentities, solution, version7) $

Since maplnvitations is one of the candidates, the answer is:

INDIVIDUAL answer1 IN AttributeQuery/WITH
solution

s 1: Papers
s2: Invitations

END . ”

4. FORMALIZATION OF THE properties but also to be directly usable as input to

SOFTWARE PROCESS MODEL reason maintenance facilities such as /12,47].

In this section, the software process model
sketched in Section 2.3 will be formalized in terms of
the CML language. Recalling the example of Section
2.2, we first formalize the design object hierarchy and
then address the modelling of design decisions
and methodologies; finally, a discussion of tool
specification is provided. In developing this model,
especially for design decision control and documen-
tation, we make extensive use of the ‘&!” operator
introduced in Section 3.2 to access system-generated
attribute identifiers in CML’s network syntax. This is
shown to yield not only a very compact represen-
tation of detailed dependencies among design object

4.1. overview of the model

As discussed, the software process model repre-
sents three basic kinds of objects, namely design
objects, design decisions and design tools. The intro-
duction of design tools gives the model an “active
database” flavor that distinguishes it from ap-
proaches such as entity-relationship [lo]. The explicit
modelling of design decisions distinguishes it from
most previous software databases, and the use of
CML’s abstraction mechanisms from design process
modelling in AI [131. We first define the metaclasses
(actually metametaclasses if prototyping is con-
sidered as well) for the three basic kinds of objects (cf.

from

rell

Fig. 11. Overview of the model and example.

A software process data model 99

also Figure 11); examples of the lower abstraction
levels are developed in the remaining subsections.

At the top level, Fig. 11 shows the three meta-
classes DesignObject, DesignDecision and Design -
Tool. Example of design object classes are
TDLK-DO (representing so-called TaxisDL entity
classes) and DBPL-Rel-DO which can be mapped
from the first ones. The tool MappingAssistnntZ
helps with such tasks. The lowest level represents
actual design objects, decisions and tools. In this case,
the mapping of two TaxisDL entity classes to a
DBPL relation called Zn~itutionRef-~ is documented.
Note that not all links are included in the figure. The
following frame definitions offer a more complete
description.

Design objects must be justified by some design
decision. Furthermore, the representation of these
objects should contain a reference where the source
object can be found, as well as a CML description of
that object. Finally, a design object may be recur-
sively configured from smaller ones. These require-
ments are formalized in the CML metaclass:

[NDIVIDUALCLASS DesignObject
IN MetaClass WITH

attribute
justification: DesignDecision
objectsource: ExternalReference
objectsemantic: CLASS
part: DesignObject

END
instances of DesignObject are specialized design

object classes corresponding to constructs available
in the languages of the chosen environment, in
DAIDA CML, TaxisDL and DBPL. In turn, their
instances are tokens representing actual design
objects defined in one of these languages.

Following the approach of Section 2.3, design
objects evolve due to the tool-aided execution of
human design decisions under the control of some
methodology expressed by decision classes. Design
decisions themselves can also be considered as design
objects that are worked upon by the design group
through other decisions. The CML sub-language
for talking about design decisions is defined by the
metaclass:

INDIVIDUALCLASS DesignDecision
IN MetaClass ISA DesignObject WITH

attribute
from: DesignObject
to: DesignObject

END

decisionsemantic: DecisionDescription
by: DesignTool
part: DesignDecision

Each instance of DesignDecision defines a decision
class whose instances in turn record actual decisions.
Attribute “from” references the input objects and
attribute “to” the resulting objects; time stamps are
implicit in the CML language. The “by” attribute

refers to the GKBMS representation of the applied
design tools. “Part” facilitates the decomposition of
design decisions in a modular way. For instance, all
specific mapping decisions during a mapping task can
be aggregated to a single one covering the whole task.

Our model considers design tools as design de-
cisions that implement other design decisions classes.
The language for talking about tools is defined as a
specialization of the metaclass DesignDecision where
the input to the decision is the design decision class
to be supported by the tool, and the output is a
procedure that executes the decision:

INDIVIDUALCLASS DesignTool IN MetaClass
ISA Des&Decision WITH

attribute
from: DesignDecision
to: BehaviourObject

END
This method of tool integration is intended to

consider tools as reusable software objects that
should, in principle, have been developed with the
same methodology as any other software. In the
following subsections, the above metaclasses are
discussed in more detail.

4.2. Semantic descriptions for design objects

If we wish to know more about a design object than
that it exists and where it exists, a semantic descrip-
tion in CML can be given. Note that these descrip-
tions are not equivalent to the sources in the
corresponding environments; this is true even for the
world and system model (see Fig. 1) where the same
language, CML, is used. Nevertheless, the abstract
description of design objects in CML helps utilize the
structural integrity mechanism of CML for software
process control. In the example, we need at least
two such classes, TaxisDL entity classes and DBPL
relations, for the schema of our software database
(containing the objects) respectively knowledge repre-
sentation (containing object descriptions defined at
any CML metalevel):

INDIVIDUALCLASS TDL-EC-DO
IN DesignObject WITH

justification
created-by: TDL-Decision

objectsource
tdlsource: String

objectsemantic
tdlentitydescr: TDL_EntityClass

END

INDIVIDUALCLASS TDL-EntityClass
IN MetaClass ISA TDL-Dataclass WITH

attribute
changing: TDL-DataClass
unchanging: TDL_DataClass
unique: TDL_DataClass
invariant: TDL-DataClass
setof: TDL_DataClass

END

Ta
xi

sD
L

de
si

gn
 o

bj
ec

ts

IN
D

IV
ID

U
A

L
 Pa

pe
rs

IN

 T
D

L
 E

C
 D

O
 W

IT
H

-

-
cr

ea
te

d
by

de

ci
si

on
:

m
ap

pd
ec

l’
l

L
d
l
?
.
O
U
r
C
e

fi
le

na
m

e:

*T
D

L
/P

A
PE

R
S.

td
l”

td

le
nt

lty
de

sc
r

de
sc

ri
be

db
y:

Pa

pe
rs

_t
dl

E

M
!

IN
D

IV
ID

U
A

L
C

L
A

SS

Pa
pe

rs
_t

dl

IN
 T

D
L

_E
nt

ity
C

la
ss

W

IT
H

un

iq
ue

da

te
:

D
at

e_
td

l
au

th
or

:
St

ri
ng

ch

an
gi

ng

co
nt

en
t:

St
ri

nq

E
N

D

IN
D

IV
ID

U
A

L
 In
vi

ta
tio

ns

IN
 T

D
L

 E
C

 D
o

W
IT

H

cr
ea

te
d

by

de
ci

si
on

:
m

ap
pd

ec
43

:d

ls
ou

rc
e

fi
le

na
m

e:

*T
D

L
/I

N
V

IT
A

T
IO

N
S.

td
l”

td

le
nt

ity
de

sc
r

de
sc

ri
be

db
y:

In

vi
ta

tio
ns

_t
dl

E

N
D

IN
D

IV
ID

U
A

L
C

L
A

SS

In
vl

ta
tio

ns
_t

dl

IN
 T

D
L

_E
nt

ity
C

la
ss

IS
A

 P
ap

er
s_

td
l

W
IT

H

ch
an

qi
nq

,s
et

of

re
ce

iv
er

:
O

rg
an

iz
at

io
n

td
l

ch
an

gi
ng

m

ee
tlo

c:

A
dd

re
ss

td

l
EN

C

D
B

PL

de
si

gn
 o

bj
ec

ts

IN
D

IV
ID

U
A

L
 In
vi

ta
tio

nR
el

_C
I

IN
 D

B
PL

_R
el

_D
O

 W
IT

H

cr
ea

te
d-

by

de
ci

si
on

:
m

ap
In

vi
ta

tio
ns

db

pl
so

ur
ce

fi

le
na

m
e:

*D

B
PL

/I
N

V
IT

A
T

IO
N

R
E

L
O

.d
bp

l*

db
pl

re
ld

es
cr

de

sc
ri

be
db

y:

In
vi

ta
tio

nR
el

0

db
pl

--

E

N
D

IN
D

IV
ID

U
A

L
C

L
A

SS

In
vi

ta
tlo

nR
el

0

db
pl

IN

 D
B

PL
_R

el
at

io
n

W
IT

H

ke
ya

ttr

pa
pe

rk
ey

:
Su

rr
og

at
e_

db
pl

no

nk
ey

at
tr

da

te
:

D
at

eT
yp

e_
db

pl

au
th

or
:

N
am

eT
yp

e_
db

pl

co
nt

en
t:

T
ex

t_
db

pl

m
ee

tlo
c:

A

dd
re

ss
T

yp
e_

db
pl

no

nk
ey

at
tr

,re
tv

al
ue

da
ttr

re

ce
iv

er
:

O
rg

an
iz

at
io

nT
yp

e_
db

pl

E
N

T
I

D
B

PL

de
si

gn
 o

bj
ec

ts
 (

no
rm

al
iz

ed
)

IN
D

IV
ID

U
A

L
 In
vi

ta
tlo

nR
el

_l

IN
 D

B
PL

_R
el

_D
O

 W
IT

H

cr
ea

te
d-

by

de
ci

si
on

l:
no

rm
al

ir
eI

nv
ita

tlo
ns

de

ci
si

on
2:

m

ap
an

dn
or

m
al

ir
eI

nv
ita

tlo
ns

db

pl
so

ur
ce

fi

le
na

m
e:

“D

B
PL

/I
N

V
IT

A
T

IO
N

R
E

L
l.d

bp
l*

db

pl
re

ld
es

cr

de
sc

rl
be

db
y:

In

vi
ta

tio
nR

el
_l

_d
bp

l
E

N
D

IN
D

IV
ID

U
A

L
C

L
A

SS

In
vi

ta
tio

nR
el

1

db
pl

IN

 D
B

PL
_R

el
at

io
n

W
IT

H

_-

ke
ya

ttr

da
te

:
D

at
eT

yp
e_

db
pl

au

th
or

:
N

am
eT

yp
e_

db
pl

no

nk
ey

at
tr

co

nt
en

t:
T

ex
t_

db
pl

m

ee
tlo

c:

A
dd

re
ss

T
yp

e_
db

pl

E
N

D

IN
D

IV
ID

U
A

L
 In
vR

ec
ei

vR
el

IN

 D
B

PL
_R

el
_D

O
 W

IT
H

cr

ea
te

d-
by

de

ci
si

on
l:

no
nr

al
iz

eI
nv

ita
tio

ns

de
ci

si
on

l:
m

ap
an

dn
on

na
liz

eI
nv

ita
tio

ns

db
pl

so
ur

ce

fi
le

na
m

e:

“D
B

PL
/I

N
V

R
E

C
E

IV
R

E
L

.d
bp

l”

db
pl

re
ld

es
cr

de

sc
ri

be
db

y:

In
vR

ec
ei

vR
el

_d
bp

l
E

N
D

IN
D

IV
ID

U
A

L
C

L
A

SS

In
vR

ec
ei

vR
el

_d
bp

l
IN

 D
B

PL
_R

el
at

io
n

W
IT

H

ke
ya

ttr

da
te

:
D

at
eT

yp
e_

db
pl

au

th
or

:
N

am
eT

yp
e_

db
pl

re

ce
iv

er
:

O
rg

an
iz

at
io

nT
yp

e-
db

pl

E
N

D

-
m

ap
 I

nv
lta

tlo
ns

+
-n

or
m

al
iz

e
In

vi
ta

tio
ns

+

Fi
g.

12

.
E

vo
lu

tio
n

of
 e

xa
m

pl
e

de
si

gn

ob
je

ct
s

an
d

th
ei

r
se

m
an

tic

de
sc

ri
pt

io
ns

.

A software process data model 101

INDIVIDUAL~LASS DBPL_Rel_DO
IN DesignObject WITH

justification
created-by: DBPL_Decision

source
dbplsource: String

objectsemantic
dbplreldescr: DBPL_Relation

END

INDIVIDUALCLASS DBPL-Relation
IN MetaClass WITH

attribute
keyattr: DBPL-SimpleType
nonkeyattr: DBPL-SimpleType
setvaiuedattr: DBPL_SimpleType

END

Thus, an instance of DBPL-Rel-DO specifies a
DBPL-Decision for its justification, a filename for
pointing to its source file, and a description summar-
izing the attributes of the relation:

INDIVIDUAL Papers IN TDL-EC-DO WITH
created-by

decision: mappdecl7
tdlsource

filename: “TDL/PAPERS . tdl”
tdlentitydescr

describedby: Papers_tdl
END

INDIVIDUALCLASS Papers_tdl
IN TDL_EntityClass WITH

unique
date: Date-tdl
author: String

changing
content: String

END

This specifies that there is an design object Papers
justified by mappdecl7 in the TaxisDL environment
and that this design object has two unchanging and
one changing attributes. Figure 12 completes the
design objects of our example. The left side contains
the TaxisDL design object Papers and its specializ-
ation Invitations. In the middle, a non-first-normal-
form DBPL relation implementing this conceptual

Fig. 13. Metaclass model of semantic descriptions of design
objects and design decisions.

design is presented. The two design objects on the
right represent the normalized version of Invitation-
RelO used in Figs 5 and 6. They specify for their
justification two design decisions which are explained
in detail in the next subsection.

4.3. Semantic description of design decisions

The semantics of design decision (at a given level
of abstraction) is defined by relating descriptions of
design objects to each other. The “decisionsemantic”
attribute of metaclass DesignDec~sio~t is based on
special properties of the class “CLASS”:

INDIVIDUALCLASS CLASS WITH
attribute

attribute: CLASS
dependson: CLASS

END

The CML system class CLASS defines that
classes may have attributes. Above, we extend this
definition by so-called dependencies: CML objects
may depend on (the existence of) other objects.
This can be individuals, attributes, instantiation and
specialization relations because they are all objects.
When used for the design objects we are able to
express how the “object semantic” of the “from”
design objects was mapped the object semantic of the
“to” design objects.

The class DecisionDescription aggregates such
dependencies:

INDIVIDUALCLASS DecisionDescription
IN MetaClass WITH

attribute
dependencies: CLASS!dependson

END

The semantic network syntax for the extended
metaclass model is shown in Fig. 13. Returning to our
running example, instances of DesignDecision define
how to map TaxisDL entity hierarchies to normal-
ized DBPL relations. Recall from Section 2.2.
that this requires two steps (or part decisions). The
decision class EntHierMapMoveDown shows the
general knowledge of the GKBMS about how to map
a TaxisDL entity hierarchy (like Papers and InzY-
tutions in the previous section) to a DBPL relation
which is in general not in first-normal-form. The
mapping of the attributes is described by three state-
ments on how the resulting DBPL relation looks:

l the key attributes derive from certain “unchang-
ing” attributes of the TDL entity.

l the non-key attributes are mapped from the other
attributes, and

l the set-valued attributes come from the corre-
sponding “setof” attributes.

These constraints are simplified; their full form
should include a lot of knowledge about mapping of
semantic data models [27] or even complex theories
of transaction refinement [24]:

102 MATTHIAS JARKE et 01.

Below, the CML formalization of this class is side shows how detailed knowledge about software
given. It instantiates the metaclass scheme of design evolution is represented. The design decision map-
decisions. Formal attributes and dependencies be- Invitations is an instance of the class EntHierMap-
tween them are denoted by the “!” operator:

INDIVIDUAL~LASS EntHierMapMoveDown IN DesignDecision WITH
from

tdlentities: TDL_EC-DO
to

nonfirstrelations: DBPL_Rel_DO
decisionsemantic

mappingdescription: EntHierMapMoveDownDescription

by
tool: MappingAssistant

END

INDIVIDUALCLASS EntHiermapMoveDownDescr IN DecisionDescription
WITH

dependencies
keydep: DBPL_Relation!keyattr!dependson
nonkeydep: DBPL_Relation!nonkeyattr!dependson
nonfirstdep: DBPL_Relation!setvaluedattr!de~ndson

END

ATTRIBUTECLASS DBPL_Relation!keyattr WITH
dependson

dependson: TDL_EntityClass!unchanging
END

ATTRIBUTECLASS DBPL_Relation!nonkeyattr WITH.. END

ATTRIBUTECLASS DBPL_Relation!setvaluedattr WITH . . . END

For a visualization of this formalization and its
internal compactness, Fig. 14 shows the correspond- MoveDown. It records the actual mapping of the two
ing semantic network representation. On the left side, TaxisDL entities Papers and Invitations to the unnor-
the scheme of the software database is defined by the malized DBPL relation ZnvitationReLU. The corre-
design object and design decision classes. The right sponding instance of EntHierMapMoveDownDescr

Software knowledge
representation

Fig. 14. Design decision class and related object classes with their descriptions.

A software process data model

aggregates the dependencies:

INDIVIDUAL mapInvitations IN EntHierMapMoveDown WITH
tdlentities

entity 1: Papers
entity2: Invitations

nonfirstrelations
rell: InvitationRel-0

mappingdescription
describedby: mapInvitationsDescr

tool

doneby: MA-execl
END

INDIVIDUAL mapInvitationDescr IN EntHierMapMoveDownDescription WITH
nonfirstdep

depl: InvitationRel_O_dbpl!receiver!depon
nonkeydep

dep2: InvitationRel_O_dbpl!meetLoc!depon

dep5: InvitationRel_O_dbpl!date!depon
END

ATTRIBUTE InvitationRel_O_dbpl!receiver IN DBPL_Relation!nonkeyattr
WITH

dependson
depon: Invitations_tdl!receiver

END

‘same , for other attributes}

ATTRIBUTE InvitationRel_O_dbpl!date IN DBPL_Relation!nonkeyattr WITH

103

dependson
depon: Papers_tdl!date

END

Figure IS shows the design object tokens Papers,
InvitationRelLO. The description of maplnvitations
contains the dependencies between attributes of the

InvitationRelL0. The description of maplnvitations
contains the dependencies between attributes of the
participating design objects which must be instances
of the model shown in Fig. 13; following chains of
such dependencies determine repercussions of design
modifications, as discussed in Section 2.2.

4.4. Decision modules and methodologies

To summarize the discussion so far, each design

decision is characterized by its inputs, outputs and
a semantic description, as well as by a pragmatic
(tool) characterization of the detailed input-output

tAccording to the DAIDA methodology, constraints at the
CML level relate the implementation to the interface,
and the parts to each other. Typically, the decompo-
sition of a design decision is itself a design decision. This
could be supported by AI-based planning and schedul-
ing tools, also considering the goals of the design in a
decision support setting [13]. The implementation of a
module from the imported pieces is only characterized
by constraints since the CML model just modularizes the
requirements; typically, a TaxisDL script would be used
to design the actual implementation.

relationships. While this may be sufficient for small
examples and uniform-language situations, it is not
enough for large-scale, multi-layered information sys-
tems development and maintenance. For this kind of
problem, we need a mechanism to aggregate minor
decisions to larger ones, or, conversely, to decompose
complex decision problems into smaller ones.

The traditional approach to achieve such a de-
composition is the introduction of a modularization
abstraction. In our model, the above-mentioned at-
tribute categories (from, to, by, decisionsemantic)
characterize the interface of a conceptual decision
module, whereas the “part” attribute not discussed so
far characterizes the import interface of the decision
modu1e.t

In the planning phase of software development,
modular decomposition is used for assigning system
development work. In the usage phase of the infor-
mation system, modular composition may be used for
configuration management. A category of complex
design decisions of particular interest to the DAIDA
methodology are implementation hierarchies that re-
late a reasonably isolated world submodel, subsystem
specification or conceptual design to its completed
implementation. When generalized to a class defi-

104 MATTHIAS JARKE et al.

nition by introducing parameters [48], such a compo-
nent can be reused by re-instantiation; even
incomplete hierarchies (e.g. requirements together
with an associated design blueprint but no implemen-
tation) can be useful reusable objects [49].

In the following, we demonstrate the decompo-
sition of design objects by introducing the complex
decision class mapandnormalizelnvitations which ag-
gregates the two decision instances introduced earlier.
It takes as input the two TaxisDL entity classes
Papers and Invitations and produces two normalized
DBPL relations InvitationRel-1 and InvReceivRel
(see Section 4.1). The first part has already been
done by mapping the TaxisDL design objects to a
non-first-normal-form relation ZnvitationRelL0. The
missing part is the mapping of ZnvitationRelL0 to
normalized relations. For this purpose we define
a decision class DBPL-RefNormalization which
models such mappings, and use this class for record-
ing the normalization of InvitationRel-0:

INDIVIDUAL mapandnormalizeInvitations
IN StrucMapMoveDown WITH

tdlentities
entityl: Papers
entity2: Invitations

normalizedrelations
rell: InvitationRel-1
re12: InvReceivRel

hiermap
stepl: maplnvitations

normalize
step2: normalizeInvitations

END

The decomposition of design decision objects
allows for the definition of complex methodologies,
and reduces the size of dependency networks,
combining ideas from programming-in-the-large (e.g.
configuration management) with those for program-

INDIVIDUALCLASS DBPL-RefNormalization IN DesignDecision WITH
from

nonfirstrelations: DBPL-Rel-DO
to

normalizedrelations: DBPL-Rel-DO
description

normalizationdescr: NormDescription
END

INDIVIDUAL normalizeInvitations IN DBPL-RefNormalization WITH
nonfirstrelations

nfrel: InvitationRel-0
normalizedrelations

normrell: InvitationRel-I
normre12: InvReceivRel

END

Finally, we aggregate the two parts to a complex ming-in-the-small, such as constraint propagation for
decision class StrucMapMoveDown. The constraint requirements or design modifications.
expresses that for each instance, the part decisions Note, that complex decision objects can also have
must talk about the same objects as the complex one. descriptions, and thus dependencies relating their
One can easily see that it is fulfilled for the instance parts directly to each other, rather than having to go
mapandnormalizelnvitations:

INDIVIDUALCLASS StrucMapMoveDown IN DesignDecision WITH
from

tdlentities: TDL-EC-DO
to

normalizedrelations: DBPL-Rel-DO
part

hiermap: EntHierMapMoveDown
normalize: DPBL-RefNormalization

constraint

END

properdecomposition:
$ hiermap. tdlentities = tdlentities &

hiermap. nonfirstrelations = normalize. nonjirstrelations &
normalize. normalizedrelations = normalizedrelations $

A software process data model

date
descrlbedby

deacribedby
p_ Invitations tdl -

descrIbedby
k mapInvltationsDescr

recolver

describedby Invitationkl 0 _T InvitationRel 0 dbpl
/

_ --

Fig. 15. Design object and decision modelling at the instance level.

via all subdecisions. In this way, design-in-the-large
can use a derived, more compact dependency net-
work for configuration, constraint propagation and
search than the detailed recording of small-scale
design decisions would allow. Another important
advantage of the modularization is that decision
classes can be used to define design-in-the-large
methodologies such as the overall DAIDA meth-
odology of decomposing the software development
process in CML-based requirements analysis,
CML-TaxisDL mapping, TaxisDL conceptual de-
sign, TaxisDL-DBPL program design and DBPL

a horizontal configuration, composing design objects
and decisions from smaller ones, respectively decom-
posing complex tasks into more manageable ones.
McMenamis and Palmer [52] provide some guidelines
of how to do this (e.g. event based or data centered
partitioning).

For example, when talking about the mapping of
the generalization hierarchy of Papers and Inui-
tations, we may wish to view this hierarchy as a single
complex object, used as an input to a common
decision. If more than one relation should result from
the first subdecision (e.g. with the distribute strategy

coding: t

INDIVIDUALCLASS DAIDAMethodology IN DesignDecision WITH
from

requirements: CML-DO
t0

databaseprogram: DBPL_DO
description

implementationconstraint: DatabaseprogramSatisfiesRequirements

by
globaldaidenvironment: GKBMS

part
system-embedding: RequirementsAnalysis
requirements-to-design: CML-TDL-Mapping
design-consolidation: TDL-Integration
design-to-program: TDL-DBPL-Refinement

END

Besides the vertical aggregation of decisions to
development histories (at the instance level) respect- to use one relation per class), normalization could be

ively methodologies (at the class level), we also need performed in two separate subdecisions for the next
step. An extension currently under development

tin contrast to standard modularization approaches, how- handles not onlv this case but also addresses the __ I
ever, it may be necessary to have multiple modulariz-
ations (or views) of the same structure; a deep discussion

question of source configuration management, i.e.

of the problems associated with such a multiple-
what happens if the desired conceptual configuration

viewpoint mechanism, often intended to support group of objects does not coincide with physical file

work, is beyond the scope of this paper [50,5]. boundaries.

106 MATTHIAS JARKE et al.

4.5. Design tool modelling

If all software were developed by the DAIDA
methodology, a design tool would be simply a
reusable implementation hierarchy to be described at
the levels of its CML systems requirements, TaxisDL
conceptual design, implementation in some program-
ming language, and possibly executable object code
(derived automatically by compilation and thus not
shown in Fig. 1).

At the CML level, the requirements of a tool are
those of the design decision the tool is supposed to
automate, typically a subdecision expected to occur
in many design tasks. Thus, the class structure of
design decisions can be used for describing the re-
quirements of design tools. At the TaxisDL level,
simple tools would be designed as transactions,
whereas more complex ones would be specified as
scripts for interactive problem-solving. In DAIDA,
the CML-TaxisDL mapping assistant would help in
generating these kinds of designs [9,22]; the TaxisDL
specification could also serve as a user guide through
a complex tool.

In a real environment, of course, we wish to
integrate pre-existing tools written in any program-
ming language, as well as to develop new ones.
We therefore have to construct CML and TaxisDL
“envelopes” to make such tools known to the
GKBMS (cf. [30] for the concept of envelopes in tool
integration for software environments). The inter-
action with such tools can then be accomplished in
several ways: a purely documentative one in which
the user is just given information about the tool and
then invokes it manually; an embedded procedure-
call mechanism as in active databases (e.g. Postgres
[62]); or a distributed message-passing protocol where
GKBMS and tools are communicating active objects
[53]. The current implementation only supports the

normalize ([I, _).

first one while the second one is being implemented
for the second prototype.

Of course, we assume that it has been established
during the tool development process that the “to”
object is a correct and complete implementation of
the “from” object, i.e. that the tool does what it
promises. Moreover, the description of any design
tool relates the “from/to” parameters of the “from”
DesignDecisionObject to the interface parameters of
the called procedure, thus clarifying the meaning of
these parameters in terms of the tool requirements.
Note that, while ExecutabIeProcedureCalls basically
introduce the active database functionality provided
by object-oriented languages such as SmallTalk [31],
the GKBMS approach embeds the use of these
methods in the pre-/postcondition controls defined by
the calling decision classes to provide some knowl-
edge about the semantics of the methods. This also
defines something like (nested) design transactions.

Instances of DesignTool are specifications of tools
available in a concrete software engineering environ-
ment. The corresponding tool objects normally have
system-generated identifiers; therefore, we allow to
substitute some surface representation of the pro-
cedure call in the same way we introduced the “ !”
notation for naming attribute objects implicitly. In
fact, the user would normally only see these surface
representations while the input-output information
would be internal information generated and used by
the system. This information hiding can be used
to identify applicable tools in an efficient way by
linking them physically directly to object classes (i.e.
storing redundant derived information), or for other
optimizations.

As an example, assume that the “mapping assist-
ant” supporting the normalization sub-decision in
Section 4.2 is a Prolog procedure whose highest level
might be defined roughly as follows:

normalize ([-firstelI _restinput], [firstrel (_restoutput]):-
hasnosetvaluedattr (firstrel),
normalize (_restinput, _restoutput).

normalize ([_firstrelI _restinput], _restoutput):-
hassetvaluedattr (_attrlistl, firstrel),
haskey (_atrlist2, -!irstrel),
formrel (_attrlist2, _attrlistl, _newrel),
append (_newrel, _restinput, _newrestinput),
subtractattributes (firstrel, _attrlistl, _firstrelreduced),
normalize ([_firstrelreduced]_newrestinput], _restoutput).

The corresponding tool object might look like this:

INDIVIDUALCLASS $normalize (nonfirstrelations, normalizedrelations)$
IN DesignTool WITH

from
toolspec: DBPL_RetNormalization

to
toolexec: PrologCall

END

A software process data model 107

DesiqnDecisionObject

DBPL_RefNormali.zation

NormToolDecisionObject

$normalize(nonfirstrelation,normalizedrelation)$

Fig. 16. Tool embedding in the GKBMS software process model.

Figure 16 gives the semantic network structure for
this example. This tool mode1 is also used to describe
the tools for the ConceptBase environment itself, in
particular, the user interface tools, the inference
engines and consistency checkers for rule and con-
straint processing, and the secondary storage man-
agement (see Section 6.3).

5. CONCEPTBASE: A PROTOTYPE
IMPLEMENTATION

Like other data-intensive information systems con-
structed with the DAIDA approach, the software
process data model should be realized with the
DAIDA tools sketched in Section 2.1. However, since
these are far from completed and would themselves

need support from the GKBMS, the initial GKBMS
implementation is based on a simpler support system
named ConceptBase (Conceptual Mode1 Base Man-
agement System) from which more efficient imple-
mentations for very large knowledge bases will be
bootstrapped.

ConceptBase implements a CML kernel and usage
environment based on the definitions in Section 3,
augmented with features to describe multiple views
of knowledge, system behaviours, complex object
configurations and display facilities. This kernel can
also serve as an implemented semantic specification
for other implementations. A first prototype has been
operational since spring 1988 [45]; a second one is
scheduled for completion in April, 1989 [64]. The
system runs on SUN-Workstations under Unix and

108 MATTHIAS JARKE et al.

currently (February 1989) comprises about 40,000 sented as a knowledge base graph with efficient main
lines of BIM-Prolog, C and interface code; the second memory-oriented database access. To work on these
prototype also runs on VAX under VMS. objects, three operations are provided:

The ConceptBase architecture, shown in Fig. 17,
follows the three language levels of network, frame
and conceptual model, offering extensibility and opti-
mization strategies at each level to achieve efficiency.
In the figure, strong boxes indicate modules which
have been implemented and integrated into the sys-
tem, whereas dotted boxes indicate modules either
not yet integrated or not even fully implemented. Our
software process data model can be considered one
particular conceptual model; others, e.g. for team
support (design conversation base) are being studied.

create_proposition(_p)*reate the proposition -p
in the knowledge base,
retrieve_proposition(_p)-search for a proposition
matching -p,
store_proposition(_p)<reate -p if not already
existent and
delete_proposition(_p)+lelete the proposition

-P.

5.1. The ConceptBase kernel system

The interface of the Proposition Processor repre-
sents CML propositions at the network level by
Prolog 5-tuples:

propval (id, source, label, destination, interval).

which are internally further subdivided and repre-

The client of the proposition processor, the Object
Processor, configures sets of propositions according
to certain criteria, usually around a common source
to build a frame. A frame object is internally repre-
sented as a CML-fragment which resembles the parse
tree of the frame-level syntax; the exact translations
between frames and fragments, and between frag-
ments and propositions is described in [45]. The tell
and ask operations of the frame-level interface are
translated to corresponding updates and queries at

- tdl_objpmc - ask_objpmc

Fig. 17. ConceptBase architecture and implementation status.

A software process data model 109

the fragment level. The feasibility of an object-level

update transaction is verified by the Consistency
Checker which utilizes information of the proposition

processor. A special feature of ConceptBase, pio-
neered by the KRYPTON system [46], is that the
consistency checker has to integrate several kinds of
integrity checking: enforcing the above-mentioned
CML axioms, taking into account temporal con-
sistency, and supporting one or more predicative
assertion languages (subclasses of attribute class
“constraint”). Recently proposed simplification
algorithms for deductive databases (e.g. [54, 391) only
support the assertional part of this problem; since a
whole set of operations may be passed to the prop-
osition processor together, set-oriented optimization
of the consistency check is being studied.

The Inference Engines may support various proof
strategies for querying object properties via first-
order logic expressions over CML objects. Since the
same assertion language is used in rules (see rule
propositions above), the inference engines are also
capable of evaluating deduction rules. Several time
calculi, e.g. Allen’s interval calculus [40] may be
supported as well.

In the first prototype, the Query Processor is mostly
geared towards a focusing/browsing style of search;
the second prototype also contains full rule-based
querying facilities. The interface is implemented by
the operation, ask_objproc(_q,_a), where -q stands
for the query and _a for the answer. Possible values
for _q are:

exists(n)

The answer is “yes” if there is an object
with identifier _x in the proposition processor.

get_object(_x)
Information connected to _x is collected
and returned as a frame data structure (called
CML-fragment).

get_links(), get_ids(.)
A list of connected links (nodes) with
common properties is computed and returned.

[each, -pattern, where, -11. . , _ln]

The answer contains all terms matching
-pattern which satisfy the conjunction of the
literals -11, . _ln.

The second operation of the object processor,
tell_objproc(_i,_r), passes new information to it. The
parameter _i contains the information as a list of
CML-fragments. If there are no syntactic or semantic
errors, the object transformer translates the infor-
mation into a set of equivalent propositions which is
stored in the proposition processor and returned in
parameter _r. Otherwise, _r holds the value “error”.

5.2. The ConceptBase usage environment

The ConceptBase usage environment is intended to
make the hypertext-like style of CML practically

available to the user. As a consequence, browsing,
viewing and editing of knowledge bases should be
possible symmetrically on the network as well as on
the textual frame representation. In a typical knowl-
edge engineering process for information systems
development, an initial sketch of the knowledge base
is obtained with graphical tools, then the details are
worked out using textual tools.

Formally, the interface tools are tools as described
in Section 4.4, relating the content of the knowledge
base to a (screen) view of it, according to a view
definition that characterizes both the content and the
layout of the view. By restricting the possible view
definitions, most views can be made updatable; more-
over, to gain different perspectives on the software
process knowledge base, different symbols can be
associated with objects of particular classes, thus
mimicking well-known representational views such as

data flow diagrams, entity-relationship diagrams, etc.
In the following, we give a brief overview of the tools
that are available for the current prototype [45].

The Conceptual Model Processor uses the object
processor to combine tools for the manipulation of
models which consist of all objects relevant to
an application of ConceptBase, e.g. the CKBMS.
Models constitute highly complex multi-level object
structures which are maintained in hierarchies.
Different models may share some objects or (sub-)-
models. Configuring a model for a specific appli-
cation means the activation of the corresponding
nodes in the lattice, i.e. making their objects access-
ible for the proposition processor. This work is done
by the Model Configuration module which corre-
sponds to a complex object database; to date, only a
simple main memory version of this component has
been implemented.

The Display and Interaction module integrates
man-machine communication into ConceptBase ob-
jects and models; individual frame objects can be
displayed and modified interactively, and models can
be displayed, browsed and possibly reorganized in
textual and graphical style.

For the sake of modularity, the display and inter-
action module is implemented in two layers. The
bottom layer provides a set of interface tools which
process uninterpreted strings (e.g. object identifiers)
and structures; these interface tools do not know
anything about the semantics of displayed objects
and structures. The usuge environment relates these
interface tools to the object processor by requesting
object identifiers to be used in the interface tools. The
current ConceptBase prototype offers the following
interface development tools:

declaration of menus and associated tools;
textual and graphical editing of CML objects with
syntactic and semantic checking;
relational display with selection facilities;
textual and graphical browsing of tree-like struc-
tures (also with selection);

110 MATTHIAS JARKE ei al.

o interaction to obtain text commands from a user;
l error window to record and display error messages

of ConceptBase.

These tools are embedded in a usage environment
accessible through the ~~ne~~~~~T~~3~, which
itself is realized by the menu declaration tool. Three
main kinds of interaction with the knowledge base
are currently offered:

textual browsing of user-defined sub-networks
(TextBrowser),
graphical browsing of user-defined sub-networks
(GraphBrow~r~,
syntactically and semanti~lly controlled object
display and update (Editor).

Additionally, a system menu offers internal system
operations (bulk-loading CML objects stored on
externaf files, executing Prolog calls and stopping
the system) and a configuration menu supports
composition of conceptual models from submodels
(invoking the Model C~n~g~~a#io~ module).

The TextBrowser queries the user for a specifi-

cation of the structure to be browsed by calling the
interaction tool. Basically, such a specification con-
sists of two parts. The first one specifies thefocus, i.e.
the root of the hierarchical structure. The other one
specifies how to compute the lower levels. The latter
specifications are founded on the net-like represen-
tation of CML in the PropositionProcessor, but
accessed through the get-ids operation of the object
processor. After completing the system, we noted its
similarity to recent, independently developed so-
called “idea processors” which allow a user to play
with different alternative organizations for texts [55].

Similarly, but using the get-links rather than the
get-ids operation, the Grap~~rowser obtains a net-
like specification by calling the interaction tool, com-
putes the corresponding structure of object identifiers
using the object processor, and passes this structure
to the graphical browsing tool.

Both browsers permit the selection of objects, and
invocation of tools such as the editor. The E&or
allows displaying, analyzing, modifying and creating
CML objects. Scanning, parsing and transfo~ation
to CML-fragments is performed by Prolog programs
automatically generated from definite clause gram-

Fig. 18. Interaction of ConceptBase kernel and usage environment (mapping example).

A software process data model 111

Fig. 19. interaction of ConceptBase kernei and usage environment (hierarchical browsing).

mars [56]. Thus, the editor can be easily adapted
to a modified syntax or ObjectProcessor interface.
Semantic integrity is checked by the ObjectProcessor
during the tell operation. Each detected error is
reported to an error window.

The screendump in Fig. 18 illustrates the inter-
action between (graphical) browser, editor and
ObjectProcessor, using a small subproblem from the
mapping example in Section 2.2. First, the user
invoked the GraphBrowser to display all instances
of DesignDecision and all instances of these
instances (the object muphuitations is an instance
of EntHierMapMoveDown which is an instance of
DesignDecision, cf. Fig. 10). The user query was
transformed into an appropriate call of ask-objproc
returning a list of edges ready for layout by the graph
browser.

In the next step, the user mouse-selected the map-
Inuitations node, and chose the editor tool from the
displayed menu to zoom into and document the
execution of this design decision (cf. also Fig. 3 and
Section 2.3). The editor obtained the object frame
(as known before the execution of the decision)

by asking the ObjectProcessor for the existence of
mupZnvitations and, since it existed, for the corre-
sponding CML fragment (shown at the top of the
session protocol in the “shelltool” window). Then,
the user added the output attribute for mapinvitations
and pressed the “tell” button, After successful
parsing (shown in the upper part of the editor
window), the corresponding CAL-fragment was
passed to the Object Processor which stored it tem-
porarily and checked the structural integrity of the
new information, In this example, an error was
detected and reported in the error window: attribute
“rell” does not match its category “nonfirstrela-
tions” since the design object InviteSelector is not an
instance of DBPL_Rel_DO (it represents a DBPL
selector rather than a DBPL relation).

Subsequently, the screen dump in Fig. 19 demon-
strates the use of the hierarchical TextBrowser for
obtaining an overview of the work done so far. It
shows the situation after the first sub-decision of
our example; the pop-up menu option “applicable
decisions” is just being activated, ostensibly leading
to the second sub-decision (normalization).

112 MATTHIAS JARKE et al.

6. APPLICATIONS

The software process data model exploits the
combination of the design decision idea and object-
oriented construction principles to offer sufficient
extensibility so that not only new tools but also new
theories can be continuously added to the environ-
ment and can be made reusable with little effort. Most
importantly, of course, this should apply to the
knowledge-based development support theories and
tools developed in other subprojects of DAIDA. At
least for the two mapping tasks from SML to
TaxisDL, and from TaxisDL to DBPL, as well as for
the requirements analysis task within SML, exper-
iments have already started to classify and formalize
these sub-environments so that they can utilize the
GKBMS fully. Additionally, we are using the model
extensively in the design and implementation of the
ConceptBase system itself.

6.1. Requirements modelling and design mapping

CML and TaxisDL are formally rather similar
languages, however, with different tasks in the
DAIDA methodology. The CML level is concerned
with collecting and organizing the requirements for
the system to be developed. In doing so, it also has
an important function in steering the subsequent
design process, especially by considering design goals
which can later be used for helping users choose
among applicable decision classes [13]. So far,
DAIDA has mostly consideredfunctional goals as the
driving force for the decision classes (this is also what
the first ConceptBase prototype supports) while other
goals (performance, modularity, . . .) were at best
treated as constraints or only as comments. Recently,
experiments with integrating goal-oriented multiple
criteria decision support into the model have begun

[571.
Within the requirements level, decisions have to be

made what views of the world model to represent in
the system model. Assuming this has been done, the
CML-TaxisDL mapping [22] then decides how to
represent the system model specification in TaxisDL
terms, especially considering how much to represent
the system model specification in TaxisDL terms,
especially considering how much of the historical
information present in the CML model should be
retained for the TaxisDL model. Furthermore, class
hierarchies can be reorganized with a view on efficient
implementation, e.g. defining a new subclass for
current information and storing the rest in another
subclass that the TaxisDL-DBPL mapping could
then relegate to a slow storage medium.

A first attempt at classifying the kinds of decision
classes to be made at these levels has given rise to the
hope that an orthogonal combination of the follow-
ing two kinds of decision classes could represent a
structured and fairly complete coverage:

l Ontology-Design objects at both levels come
as informations about either entities, activities,

l

constraints or goals. Thus, we need classes for:
(a) developing requirements for these; (b) deciding
which of them to represent in the system; and
(c) to what degree and with what methods (es-
pecially concerning time) to map them between
CML and TaxisDL. The choice between the poss-
ible decisions should be governed by the design
goals specified in the requirements analysis.
Epistemology-CML and TaxisDL provide
(slightly different versions of) abstraction prin-
ciples like aggregation, generalization and class@-
cations, together with their reverse operations of
decomposition, specialization and instantiation.
Each of these six abstraction (resp. specification)
operators corresponds to a decision class that
specifies a relationship between smaller and larger
objects or subtasks. For example, aggregation can
be used to relate the mapping of a whole class to
the mapping of its attributes; similarly, mapping
of ISA relates the mapping of a complete hierarchy
of objects (as in our TaxisDL-DBPL example) to
that of its individual members. Goal decompo-
sition as a strategy for elaborating requirements
within the CML level is another example of an
aggregation class, whereas (as in our software
process model definition) classification can be
provided to define suitable application-specific
sublanguages for a mapping task. Note that
classification differs between CML and TaxisDL:
a CML metaclass heirarchy has to be flattened in
the mapping to TaxisDL, using metalevel amalga-
mation similar to the one proposed in [%I.

Ideally, there should only be a smail set of basic
mapping decisions for each of the above types, rather
than separate rules for all conceivable combinations
or even sequences of combinations. Using orthogonal
aggregation of such decision classes, more complex
methodologies for the mapping can be formed. This
would clarify the structure of dependencies at the
description level as well as facilitating communication
between the individual tools and the GKBMS.

6.2. TaxisDL-DBPL mapping

In the examples of this paper, the mapping task
from the object-oriented knowledge representation
language TaxisDL to the set-based, module-oriented
database programming language DBPL has been
highly oversimplified. Indeed, we only considered
some of the data structure aspects; the mapping of
transactions turns out to be much more difficult and
requires full support by formal software development
methods. The method used in DAIDA exploits ex-
perience with mathematical specification techniques,
using the language Z and its derivatives [21]. In this
approach, design objects correspond to so-called
abstract machines that represent data structures,
operations and constraints of a particular application
module; decisions correspond to formal transfor-
mations supported by theorem-proving assistance
tools.

A software process data model 113

Based on these experiences, the TaxisDL-DBPL
mapping is intended to proceed in three steps with
corresponding decision classes [24]:

l translation of TaxisDL model to abstract machine
i la Abrial,

l refinement of abstract machine towards efficient,
modular implementation,

l translation of final machines to DBPL program.

Disregarding the initial and final steps (which are
automated translations), the intermediate design ob-
jects are abstract machines whose descriptions have
roughly the following structure:

INDIVIDUALCLASS AbstractMachine
IN DesignObject WITH
attribute

context: DataObjects
variable: Name
invariant: FunctionalConstraintClass
operations: FunctionText

END

The decision classes of this mapping correspond
to generalized substitutions in abstract machines;
in contrast to the CML-TaxisDL mapping, such
substitutions consider entity, activity and constraint
mapping simultaneously. Among the abstraction
operations mentioned above, aggregation of such
objects plays the central role. There is no generaliz-
ation (although the notion of substitutions is closely
related to that of inheritance) while metaclass-like
notation extensions are simulated by import from
other abstract machines. An important aspect of
decision semantics in the sense of our model is the
documentation and management of proof obligations
and already proven lemmata.

6.3. ConceptBase development

The software process data model has also played
a major role in designing and implementing the
ConceptBase system itself. The main emphasis has
been on dealing with very large software knowledge
bases, and on providing multiple views with user-
friendly interaction facilities in a uniform framework.
In [44], three specific application areas are described
in detail.

Eficient deductive query processing and integrity
checking-CML rules and constraints are modelled
internally as particular (deterministic?) decision
classes for which tools-triggered query processors
and constraint checkers-are automatically gener-
ated by tools associated with the predefined meta-
classes RuleClass and ConstraintClass. Luckily, the

tThere is an interesting relationship between the design
decision concept in general with non-deterministic data-
base update operations as discussed in [59]. This rela-
tionship could serve as the foundation of a theory of the
power of particular design decision class languages but
we have hardly begun to study this idea.

decision class structure turns out to provide exactly
the kind of graphs needed for the plethora of algor-
ithms proposed for deductive query optimization [60]
and integrity control [54, 391. Specialized graph
structures can be defined by specialized attribute
categories for the input-output attributes. Thus, the
structure is independent of a particular style of rule
or optimization algorithm; specific optimization ideas
can be defined at the metalevel as in rule-based
optimizer generators, thus serving as a testbed for
various optimization procedures. An extension of the
algorithm in [54] is currently being integrated into the
second ConceptBase prototype [61]. Note that, using
redundant design object and design decision classes
together with the dependency structures defined in
their descriptions, we can also integrate the redun-
dant storage and maintenance of derived data to
increase efficiency.

Version and configuration management-Configur-
ations are viewed as composite objects put together
according to configuration decisions. The use of the
decision-based version and configuration model has
substantially simplified the portation of the initial
SUN-UNIX prototype to the VAX-VMS version.
Commercial configuration tools such as MAKE in
UNIX or MMS in VMS support such decisions at the
source level and administer the ConceptBase system
components (currently about 80 system modules, plus
many example applications). In combination with a
conceptual configuration decision model under devel-
opment in our group, version and configuration
management will become possible even across
heterogeneous hardware and system software
environments [63].

Knowledge base perspectives and user interfaces-
The above models can be applied to the handling of
multi-window interactions with the system in a hyper-
text-like style. A window is viewed as a particular
configuration of derived objects which corresponds to
a configuration of internal knowledge base objects,
thus giving a clean semantics to window-based up-
dates. For this purpose, the configuration model had
to be extended by equivalent representation mapping
decisions.

Summarizing, the software process data model
provides us with a way to describe a large number of
important implementation issues not just with ob-
scure internal languages but with the surface knowl-
edge representation language of the system itself, thus
facilitating experimentation with, and extensibility of,
the system.

7. CONCLUSIONS

In this paper, we proposed a data model which
represents software development as a process of
tool-supported design decisions operating on abstract
design objects. This model is different from other
attempts in that it explicitly considers the functional-
ity of tools, but at the same time emphasizes the

114 MATTHIASJARKE~~ al.

non-deterministic nature of human design decisions. the other DAIDA partners for valuable discussions. and to
many students, notably Michael Gocek, Eva Kruger, Hans
Nissen and Martin Staudt for implementation work. Com-
ments by John Mylopoulos helped to put our work better
in perspective.

Moreover, the way how tools are attached to design
decisions seems to point a way out of the integrity
control problems associated with freely usable
methods in some object-oriented languages and
databases.

Although the experience with various experimental
applications is quite encouraging, several extensions
appear useful or even necessary.

Firstly, we would like to broaden the scope of

development paradigms beyond the initial DAIDA
approach. One alternative method, followed in the
new ESPRIT project ITHACA, is to strengthen the
emphasis on reusability beyond the context of tool
modelling; based on a requirements model, existing
building blocks are selected from a software library
and configured to application systems, rather than
developing new programs each time. Another alter-
native, currently being studied for envjronmental
protection applications in collaboration with the
FAW Institute in Ulm, West Germany, is the loose
coupling of independently developed software sys-
tems under the common conceptual umbrella of a
“competence model”. Here, the idea is to make
organi~tional knowledge available to users even
if no coherent requirements analysis has been
conducted.

The second group of extensions concerns more
explicit support for the decision-making process. In
particular, we wish to take seriously the ISA link
between the metaclasses ~e~~g~~ecj~~o~ and Design -
object in our model, i.e. design decisions are objects
that can evolve, be talked about, justified by other
decisions, etc. On the one hand, this requires a better
understanding of decision support methodologies for
goal-driven design. On the other, we have to set up
a design conversation network among the stake-
holders and workers in a software project. This
involves the conceptual representation of agents,
structural messages, negotiation positions, commit-
ments and the like, but also the introduction of group
support tools such as multi-media real-time confer-
encing support. Corresponding extensions of our
model and of the ConceptBase prototype are
implemented in the second prototype [64].

A final set of research questions is concerned with
broadening the scope of application areas to design
and maintenance tasks beyond the information
systems domain. Co-authoring of technical natural
language documents (e.g. user d~umentation for
software) is a typical candidate we are currently
beginning to investigate [65].

Acknowledgements-This work was supported in part by
the European Commission under ESPRIT Contract 892
(DAIDA) and by the Deutsche Forschungsgemein~haft in
the “Objectbanks for Experts” program (Grant Ja445/1-1).
DAIDA nartners include the software houses BIM/Belgium,
GFI/France, SCS/Germany; and the research institutions
FORTH/Greece, University of Frankfurt/Germany and
University of Passau/Germany. The authors are grateful to

REFERENTS

[I] M. L. Brodie and J. Mylopoulos (Eds). On Knowledge
Base Management Systems. Springer-Verlag, New
York (1986).

[2] V. Dhar and M. Jarke. Dependency-directed reasoning
and iearning in systems maintenance support. IEEE
Trans. Software Engng SE-14(2), 21 l-227 (1988).

[3] J. Mylopoulos, P. A. Bernstein and H. K. T. Wong.
A language for designing interactive data-intensive
applications. ACM Trans. Database Systems 5(2),
185-207 (1980).

[4] S. Greenspan, A. Borgida and J. Mylopoulos. A
requirements modelling language and its logic. In]I]
pp. 471-502 (1986).

[5] J. Winkler (Ed.). Prof. Int Workshop on Software
Versioning and Configuration Control, Grassau, F.R.G.
Teubner, Stuttgart, F.R.G. (1988).

[6] P. A. Bernstein. Database support for software engin-
eering. Proc. 9th Int. Conf Software Engineering, San
Francisco, pp. 166-178 (1987).

[7l L. A. Rowe and S. Wensel (Eds). Proc. ACM-
SICMOL, Workshop on Software CAD Datab~es,
Napa, Calif. (I 989).

[8] A. Borgida, M. Jarke, J. Mylopoulos, J. W. Schmidt
and Y. Vassiliou. The software development en-
vironment as a knowledge base management system.
Foundations of Knowledge Base Management (Edited by
J. W. Schmidt and C. Thanos). Springer-Verlag,
Heidelberg (1989).

[9] M. Jarke. DAIDA Team. The DAIDA environment
for knowledge-based information systems develop-
ment. Proc. ESPRIT Conf ‘88: Putting the Technology
to Use, Brussels, Belgium, pp. 405422 (1988).

[IO] P. P. S. Chen. The entity-relationship model: towards
a unified view of data. ACM Trans. Database Systems
l(l), 9-36 (1976).

[ll] J. L. Peterson. Petri nets. ACM Comput. Sure. 9(3),
223-252 (I 977).

[12] J. Doyle. A truth maintenance system. ArtiJcint Inrelf.
12, 231-272 (1979).

[13] J. Mostow. Towards better models of the design pro-
cess. AI Mug. 6(l), 44-57 (1985).

[14] M. T. Stanley. CML: a knowledge representation
language with application to requirements modeling.
MS. Thesis, University of Toronto, Canada (1986).

[is] M. Koubarakis, J. Mylopoulos, M. Stanley and M.
Jarke. Telos: a knowledge representation language for
requirements modellinn. Technical Reuort CSRI-222,
University of Toronto-(1988). _

[16] A. Borgida, E. Meirlaen, J. Mylopoulos and J. W.
Schmidt. The TAXIS design language (TDL). Report,
ESPRIT Project 892 (DAIDA), Institute of Computer
Science, Research Center of Crete, Greece (1987).

[17] J. W. Schmidt, H. Eckhardt and F. Matthes. Exten-
sions to DBPL: towards a type-complete database
programming language. Report ESPRIT Project 892
(DAIDA), Universitlt Frankfurt, F.R.G. (1988).

[18] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F.
Geiselbrechtinger, R. Gnatz, E. Hangel, W. Hesse, B.
Krieg-Bruckner, A. Laut, T. Matzner, B. Mbller, F.
Nick], H. Partsch, P. Pepper, K. Samuelson, M. Wirsing
and H. Wiissner. The Munich Project CIP, Volume I:
The Wide Spectrum Language CIP-L, Lecture Notes in
Computer Science 183. Springer-Verlag, Berlin (1985).

[19] D. R. Smith, G. B. Kotik and S. J. Westfold. Research

A software process data model 115

on knowledge-based software engineering environ- [38] J. Gray. The transaction concept: virtues and limi-

ments at Kestrel Institute. IEEE Trans. Software Engng tations Proc. 7th Int. Conf Very Large Data Bases,
SE-ll(ll), 12781295 (1985). Cannes, pp. 144154 (1981).

[20] R. C. Waters. The programmer’s apprentice: a session
with KBEmacs. IEEE Trans. Software Engng SE-
ll(ll), 12961320 (1985).

[21] J. M. Spivey. An introduction to 2 and formal specifi-
cations Tutorial Notes, Oxford University, U.K., Pre-
sented at ESEC ‘87, Strasbourg, France (1987).

1221 M. Mamalaki. M. Marakakis. M. Mertikas. T.

[39] F. Sadri and R. A. Kowalski. A theorem-proving
approach to database integrity checking. Foundations
of Deductive Databases and Logic Programming (Edited
by J. Minker), pp. 313-362. Morgan Kaufmann. Los
Altos, Calif. (1988).

[40] J. Allen. Maintaining knowledge about temporal inter-
vals Commun. ACM 26(1 l), 832-843 (1983).

[41] R. G. Smith, T. M. Mitchell, P. H. Winston and B. G.
Buchanan. Representation and use of explicit justifi-
cations for knowledge base refinement. Proc. Yth
Int. Joint Conf Artificial Intelligence. Los Angeles.
pp. 673680 (1985).

. _
Topaloglou and Y. Vassiliou. On the development of
information systems: from requirements modelling
to system design. Proc. EURINFO ‘88, Athens,
pp. 560-567 (1988).

[23] E. Meirlaen and J.-M. Trinon. An object-based proto-
typing workbench for Prolog. Proc. ESPRIT Conf ‘88:
Putting the Technology to Use, Brussels, Belgium,
pp. 423437 (1988).

[24] M. Weigele and I. Wetzel. TDL-DBPL mapping:
methodology and first experiences. Report, ESPRIT
Project 892 (DAIDA), Universitlt Frankfurt, F.R.G.
(1988).

[25] D. Batory and W. Kim. Modeling concepts for VLSI
CAD objects. ACM Trans. Database Systems 10(3),
3222346 (1985).

[26] M. Jarke, M. Jeusfeld and T. Rose. A global KBMS for
database software evolution: design and development
strategy. Report MIP-8722, Universitat Passau, F.R.G.
(1987).

[27] M. Bouzeghoub, G. Gardarin and E. Metais. Database
design tools: an expert systems approach Proc. 11th Int.
Conf Very Large Data Bases, Stockholm, Sweden,
pp. 82295 (1985).

[28] G. E. C. Weddell. Physical design and query compi-
lation for a semantic data model. Ph.D. Thesis, Dept
Computer Science, University of Toronto (1987).

[29] M. Jarke, V. Linnemann and J. W. Schmidt,
Data constructors: on the integration of rules and
relations. Proc. 11th Int. Conf. Very Large Data Bases,
Stockholm, pp. 227-240 (1985).

[30] S. A. Dart, R. J. Ellison, P. Feiler and N. Habermann.
Software development environments. IEEE Comput.
20(11), 18-28 (1988).

[31] A. Goldberg and D. Robson. SMALLTALK 80: The
Language and its Implementation. Addison Wesley,
Reading, Mass. (1983).

[32] R. Katz, E. Chang and R. Bhateja. Version modeling
concepts for computer-aided design databases. Proc.
SIGMOD Int. Conf Management of Data, Washington,
pp. 3799386 (1986).

[33] K. Abramowicz, K. R. Dittrich, W. Gotthard, R.
Langle. P. C. Lockemann, T. Raupp, S. Rehm and
T. Wenner. Datenbankunterstiitzung fur Software-
Produktionsumgebungen. Proc. Datenbanken in
Biiro, Technik und Wissenschaft, Darmstadt, F.R.G.,
pp. 116-131 (1987).

[34] J. M. Smith and D. C. P. Smith. Database abstraction:
aggregation and generalization. ACM Trans. Database
Systems 212). 1055133 (1977).

]351

1361

[371

P. Lyngbadk and W. Kent. A data modelling
methodology for the design and implementation of
information systems. Proc. Int. Workshop on Object-
Oriented Database Systems, Pacific Grove, Calif.
(1986).
S. E. Hudson and R. King. Object-oriented database
support for software engineering. Proc. ACM-
SIGMOD Int. Conf Management of Data, San
Francisco, pp. 491-503 (1987).
J. Banerjee, W. Kim, H.-J. Kim and H. F. Korth.
Semantics and implementation of schema evolution in
object-oriented databases, Proc. ACM-SIGMOD Int.,
Conf Management of Dafa, San Francisco, pp. 31 l-322

[42] A. Borgida, T. Mitchell and K. Williamson. Learning
improved integrity constraints and schemas from
exceptions in databases and knowledge bases. In [1]
pp. 259-286 (1985).

[43] M. Koubarakis, J. Mylopoulos, M. Stanley and A.
Borgida. Telos: features and formalization. Technical
Report FORTH/CSI/TR/ 1989/018, Computer Science
Institute, Iraklion, Greece (1989).

[44] M. Jarke, M. Jeusfeld and M. Rose. Software process
modelling as a strategy for KBMS implementation.
Proc. First Int. Conf. on Deductive and Object-Oriented
Dntabases, Kyoto, Japan, pp. 4955515 (1989).

[45] M. Jarke, M. Jeusfeld and T. Rose. A global KBMS for
database software evolution: implementation of first
ConceptBase prototype. Report MIP-8819. Universitit
Passau, F.R.G. (1988).

[471

[481

1491

[46] R. J. Brachman and H. Levesque. Tales from the far
side of KRYPTON. Proc. First Int. Con/. Exoert
Database Systems, pp. 343. Benjamin Cummings;
Menlo Park, Calif. (1987).
J. de Kleer. An assumption-based TMS. Artificial
Infell. 28(2). 127-163 (1986).
F. Bancilhon. Object-oriented databases. Proc. 7th
ACM Symp. Principles of Database S.ystems, Austin,
pp. 152-163 (1988).
S. Katz, C. A. Richter and K.-S. The. PARIS: a
system for reusing partially interpreted schemata. Proc.
9th Int. Confi Software Engng. Monterev. DD. 3777386 (1987). . .I ., . . I

G. Attardi and M. Simi. Metalanguage and reasoning
across viewpoints. Proc. ECAI ‘84, Pisa. Italy,
pp. 315-324 (1984).
D. S. Wile and D. G. Allard. Worlds: an organizing
structure for obiect-bases. Proc. 2nd Svmn. on Practical
Software Environments (1986). . ’
S. M. McMenamis and J. F. Palmer. Essential Systems
Analysis. Yourdon Press, Englewood Cliffs, New Jersey
(1984).

1501

]511

[521

1531

1541

D. Tsichritzis (Ed.). Active object environments. Re-
port, Centre Universitaire d’Informatique, Universite
de Geneve, Switzerland (1988).
F. Bry, H. Dekker and M. Manthey. A uniform
approach to constraint satisfaction and constraint satis-
liability in deductive databases. Proc. EDBT, Venice,
Italy, pp. 4888505 (1988).

[55] L. F. Young. Decision Support and Idea Processing
Systems. Dubuque. Brown, Iowa (1988).

[56] F. C. N. Pereira and D. H. D. Warren. Definite clause
grammars for language analysis-a survey of the for-
malism and a comparison with augmented transition
networks. Artificial Intell. 13, 23 l-278 (1980).

[57] L. Pletz. Mehrkriterienunterstiitzung fur Entwurfsent-
scheidungen in Softwareprozessen. Diploma Thesis,
University of Passau, F.R.G. (1989).

[58] K. A. Bowen and R. A. Kowalski. Amalgamating
language and metalanguage in logic programming.
Logic Programming (Edited by S. A. Tarnlund),
pp. 1533172. Academic Press, New York (1982) (1987).

116 MATTHIAS JARKE et al.

I.591 S. Abiteboul and V. Vianu. Dataiog extensions for process model. Proc. 12th int. ConjY on Software Engng,
database queries and updates. INRIA Research Report Nice, France (1990).
900, Rocquencourt, France (1988). [63] S. Eherer, M. Jarke, M. Jeusfeld, A. Miethsam and T.

[60] J. D. Ullman. Principles of Database and Knowledge- Rose. Concept&use V2.0 User Manual. Report MIP-
base Systems, Vol. 2. Computer Science Press, 8936, University of Passau, F.R.G. (1989).
Rockville (1989). [64] U. Mahn, M. Jarke, K. Kreplin, M. Farusi and F.

[61] E. Kriiger. Integritgtspriifung in deduktiven Objekt- Pimpinelli. COAUTHOR: a hypermedia group author-
banken am Beispiel von ConceptBase. Diploma Thesis, ing environment. Proc. European Conf: on Computer-
University of Passau, F.R.G. (1989). Supported Cooperative Work, Gatwick, U.K. (1989).

[62] T. Rose and M. Jarke. A decision-based configuration

