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Abstract-Knowledge engineering for information systems is a long-term, multi-person task that requires 
tight control and memorization not only of what knowledge is acquired but also of why and how it is 
acquired. We propose a software process data model as the foundation of a knowledge-based software 
information system that emphasizes control, support and documentation of design decision-making and 
tool integration in information systems environments. 

The model is developed along two dimensions. Firstly, it defines how to represent and integrate design 
objects (what), design decisions (why) and design tools (how). Secondly, it exploits the abstraction 
mechanisms of the extensible hybrid knowledge representation language CML/Telos to manage the 
evolution not only of particular software projects, but also of the software development environment in 
which these projects operate. Modular aggregation relates design-in-the-small and design-in-the-large 
support. Besides motivating and formalizing the model, we describe an operational prototype implemen- 
tation called ConceptBase and report intitial application experiences in the DAIDA ESPRIT project. 

Key words: Software databases, software process models, information systems engineering, knowledge 
base management systems. 

1. INTRODUCTION 

Knowledge engineering has been publicized as 
a technology to build and maintain the knowledge 
base of so-called expert systems, systems intended 
to mimick the performance of human experts in 
specialized domains of diagnosis, design, medical and 
business decision support, etc. An expert system uses 
a narrow set of specialized algorithms, the “inference 

engine”, to work on a generalized data structure 
or “knowledge base” that represents the expert’s 
domain knowledge and problem-solving strategies. 

Expert system “shells” have evolved as a technology 
to support knowledge engineering but knowledge 
engineering has also been considered as a new kind 
of human profession similar to software engineering. 

While the last few years have seen strong interest 
in integrating knowledge-based systems and infor- 
mation systems technologies [I], the relationships 
between knowledge engineering and information sys- 
tems have captured less attention. One way to address 
this problem is to view expert systems development as 
a special case of information systems development in 
which the target software environment (an expert 
systems shell) offers richer data structures and differ- 
ent kinds of processing methods. In particular, rapid 
prototyping, expert knowledge consistency checking 
and evolution support are often emphasized in expert 
systems development methodologies. 

In this paper, we shall be more interested 
in another way of relating knowledge engineering 
with information systems. Building large information 

systems, and maintaining them over long periods of 
time, has been shown to be a knowledge-intensive 
activity [2]. Engineering an information system 
requires many design decisions. They involve 
knowledge about functional and non-functional 
requirements, about conceptual, architectural and 
physical designs, about implementation languages 
and strategies, and most importantly, about the 
relationships between all these levels of knowledge. 
Recording the knowledge used for decisions- 
especially important for maintenance and reusabil- 
ity-requires the construction and management of a 
large knowledge base, and can thus be legitimately 
viewed as a special case of the knowledge engineering 
idea. Starting with early work on languages such as 
TAXIS [3] and RML [4], specialized languages, 
methodologies and tools for information systems 
development and maintenance have evolved from this 
“IS knowledge engineering” paradigm. Of course, 
these languages, methods and tools must be firmly 
grounded in results gained earlier in areas of data 
engineering and software engineering research such 
as semantic data models, data model mappings, view 
integration, relational design theory, automatic pro- 
gramming, formally verified refinement. etc. 

In this paper, we analyze the data modelling 
(or-here synonymously-knowledge representation) 
requirements of such a paradigm and propose a 
software process data model, together with an associ- 
ated knowledge base management system, to deal 
with these requirements. The proposed data model 
can be viewed as a substantial extension of 
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an entity-relationship approach which emphasizes 
process orientation, design decision support and 
integration of heterogeneous active objects into the 
software process knowledge base. 

There have been a number of efforts to deal 
with the data management problems of large-scale 
development and maintenance environments. In the 
software engineering area, the most popular tools 
have been enhanced file systems which address the 
problems of version and configuration control [5]. 
Traditional database systems have proven less suit- 
able [6] but several projects have extended their 
concepts by complex objects, versions, redundant 
derived data (such as compiled programs) and the 
like [7]. However, there still seem to be several 
shortcomings of these systems: 

They typically deal with documents rather than 
with conceptual design objects. 
Many of them consider dependencies among 
documents as a development history. Hardly any 
systems document the design decisions underlying 
these dependencies or the tools used to create 
them; this, however, is important knowledge for 
maintenance and reusability. Even fewer control 
the choice among applicable decisions or tools by 
enforcing organizational or project methodologies. 
Software databases are typically not concerned 
with tool integration and project management 
issues although these are important with long- 
term software processes. 

A more comprehensive approach should therefore 
stress the process aspect of software development, 
and must provide more flexibility. Knowledge repre- 
sentation languages which have already been shown 
to be useful for requirements modelling purposes [4], 
appear as a good starting point. In essence, software 
development is seen here as a knowledge engineering 
process to be supported by a knowledge base man- 
agement system (KBMS) [8]. 

Maintenance and reusability are considered crucial 
knowledge engineering tasks in long-lived infor- 
mation systems. In the context of ESPRIT project 
DAIDA 191, we have been developing a KBMS called 
ConceptBase which provides a semantic theory of 
objects, processes and tools in a heterogeneous infor- 
mation systems development and usage environment, 
together with the computational facilities of a soft- 
ware database. Together with a semantic theory of 
the application domain and of the system require- 
ments (expressed in the same knowledge represen- 
tation language), such a KBMS is intended to control 

tin this paper, we shall not discuss prototyping further 
although it is part of the DAIDA project. Therefore, we 
usually simplify the model so that the process model is 
described at the metalevel, an environment at the class 
level, and a software project at the instance level. 

and document a historical account of: 

-what the information system knows about the 
world, 

--how the information system fits into the world, 
-how and why these two kinds of system require- 

ments were mapped into the design and implemen- 
tation of an information system. 

We wish to maintain this information to facilitate 
maintenance and reusability of software objects 
not only at the code level, but also at the levels of 
user requirements or conceptual designs. Indeed, we 
intend to reuse design process experiences rather than 
just their outcomes. 

The model described in this paper represents a first 
step towards such a goal. Formally, it can be viewed 
as an extension of the entity-relationship model in 
databases [lo], of Petri net structures [ll], or of 
incremental and iterative design methods proposed in 
AI and software engineering [12, 131. Specifically, the 
main ideas are: 

l To represent the evolution of design objects by 
tool-aided design decisions: 
-covering conceptual design objects as well as 

software documents, 
-viewing design decisions as special kinds of 

design objects that are explicitly represented, 
can be justified by other decisions, and may 
evolve over time, 

-viewing design tools as reusable design de- 
cisions, intended to support the execution of 
other design decisions; 

l To exploit the instantiation hierarchy of an exten- 
sible knowledge representation language for inte- 
grating heterogeneous languages, methodologies 
and tools: 
defining the process model at the metametaclass 

level, 
defining a particular software development en- 

vironment at the metaclass level, 
-documenting a particular software development 

project at the class level, 
-prototyping a particular design at the instance 

level,? 
l To integrate design-in-the-large with design-in- 

the-small issues: 
-offering modularization of the knowledge base, 

in particular of design decisions, while provid- 
ing semantic descriptions at all levels, 

-allowing flexible precision of software process 
control, potentially ranging from pure database 
functionality (no semantic description) to rather 
detailed temporal and/or predicative assertions. 

After a brief overview of the DAIDA project as a 
whole (which also relates our work to that of others), 
Section 2 studies detailed requirements for a decision- 
centered approach to conceptual software process 
modelling. Section 3 briefly reviews the conceptual 
modelling language CML, viewed in our system as a 
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hybrid knowledge representation mechanism which 

integrates semantic networks, rule-based systems 
and frames. Section 4 then applies this language to 
formalize the software process model, using the same 

example as in Section 2. Section 5 briefly describes 
the ConceptBase prototype implementation. Finally, 
Section 6 presents several applications in the DAIDA 
context, in particular the representation of mapping 
requirements to design and design to implementation, 
as well as use of the process model in the Concept- 
Base implementation itself. 

2. REQUIREMENTS OF A 
DECISION-BASED SOFTWARE 

PROCESS MODEL 

This section is devoted to analyzing the require- 

ments for a KBMS that supports an environment for 
information system evolution. First, we characterize 
the concrete context in which we are working, i.e. the 
DAIDA system. Then, we give a simple development 
and maintenance example to provide an intuitive 
feeling of what kind of support is needed. Finally, we 
outline and justify requirements for a conceptual 
model which relates the design objects and documents 
generated in a software environment to the tools used 
to generate them by a notion of design decision. It 
is sketched how the combination of this decision- 
centred approach with object-oriented construction 
principles may address a large number of problems 
arising in database software evolution. 

2.1. DAIDA project objectives 

It is the goal of DAIDA to exploit some specific 

properties of data-intensive information systems to 

come up with a specialized design KBMS which can 
take maximum advantage of this application knowl- 

edge. A decision-based documentation methodology 
is chosen to support consistent maintenance, 
reusability and configuration of multi-layered de- 
scriptions. The architecture, summarized in Fig. 1. is 
based on the following concepts and observations: 

Multiple levels of representation_DAIDA views 
an information system as a multi-layered de- 
scription of requirements analyses, designs and 

implementations [8]. The layers are represented 
in similar but distinct languages: the knowledge 
representation language CML/Telos [14, 151 for 
requirements analysis; a purely declarative ver- 
sion of the language Taxis [3], called TaxisDL 
[16], for conceptual design and predicative 
specification; and the database programming 
language DBPL [ 171 for implementation design 
and programming. Note that there is a break in 
paradigm in the middle: CML and TaxisDL are 
object-oriented conceptual models of the 

world, and of the system embedded in it. but 
have to be transformed into a set-theoretically 
motivated database programming language. 
Extensible set of interrelated transformation 
assistants-The literature has developed a rich 
set of transformation rules for refining and 

implementing specifications. For example, the 
CIP [18] and REFINE [19] projects propose 
user-guided formal transformation strategies, 
whereas the Programmer’s Apprentice [20] 
views a program as a puzzle of adaptable cliches 
which must be maintained in a consistent state 
in case of changes, using dependency-directed 
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backtracking strategies. Most of these tools 
have been successful only for programming- 
in-the-small, whereas information systems are 
often quite large. Therefore, DAIDA provides a 
flexible “open” environment which can support 
a range of development situations from (almost) 
manual to (almost) automatic, depending on the 
currently available set of transformation tools. 
To achieve this, transformation tools are em- 
bedded in a fairly large number of small “expert 
systems”, called assistants, which communicate 
via the common knowledge base to be described 
below; due to the multi-layered structure of 
DAIDA, language assistants for each level must 
interact with mapping assistants between the 
levels. The application domain of DAIDA, 
data-intensive information systems, cannot only 
exploit general software development expertise, 
but also the special representations, theoretical 
results and methods of database design re- 
search. Moreover, certain mathematical trans- 
formation methods, as e.g. expressible in Z [21], 
appear particularly suited for this application 
domain. Specifically, the need for assistants in 
three major transformational tasks results from 
the above-mentioned levels of languages: 

l embedding a CML system model in the CML 
world model, and narrowing it to a TaxisDL 
conceptual design, remaining in the object- 
oriented framework [22], 

l validating the CML and TaxisDL models by 
prototyping (in DAIDA, this is done in an 
object-oriented extension of Prolog [23]), 

l refining the object-oriented specifications to- 
wards set-theoretic database programming, 
using Abrial’s set-theoretic substitution cal- 
culus and B-tool [24]. 

3. Formalization of information systems require- 
ment-Most formal software development 
methodologies start with a formal specification 
of system functionality. Formalizing the re- 
quirements analysis which leads to these specifi- 
cations, has been traditionally considered 
difficult or even impossible. Again, the concen- 
tration on data-intensive information systems 
improves the situation. Database schemata 
naturally represent a system model of the rele- 
vant world domain; the analysis underlying the 
development of the initial database schema can 
be reused as a starting point for the require- 
ments analysis of new applications. However, 
a knowledge representation language more 
powerful than traditional data definition 
languages, even for semantic data models, is 
required to describe the relationship of the 
system model (as in the database schema) to the 
world model, and the development of this re- 
lationship over time. The conceptual modelling 
language CML [14, 151, evolved from the re- 

quirements modelling language RML [4], offers 
an object-oriented model with an embedded 
time component to support this task. 

4. Integrated decision-based documentation knowl- 
edge base-Representing multiple layers of sys- 
tem description as well as their relationship to 
a description of the underlying real world can 
offer powerful development and maintenance 
support for information systems but requires 
itself a knowledge base management system 
for maintaining the different descriptions con- 
sistent over time: the DAIDA global KBMS 
(GKBMS). Rather than just modelling (ver- 
sions of) development objects, the GKBMS 
views the software development and main- 
tenance process as a history of tool-supported 
decision executions. These decision executions 
are directly represented, they can be planned 
for, reasoned about and selectively backtracked 
in case of errors or requirements changes. Ex 
ante, the GKBMS can be seen as an integrative 
tool server which helps users in selecting tasks 
and tools within a large development project; ex 
post, it plays the role of a documentation service 
in which development objects are related to the 
decisions and tools that created or changed 
them (i.e. justify their current status). Many 
recent ideas from design database research [25] 
apply to the implementation of such a system; 
applying the DAIDA philosophy to the 
GKBMS (viewed as a data-intensive infor- 
mation system about the history of “software 
worlds”), a dialect of CML is chosen as the 
knowledge representation language. Concept- 
Base is a prototype system that implements both 
CML itself and the GKBMS model on top of 
it. 

2.2. A DAIDA example 

Based on the architecture in Fig. 1, Fig. 2 illustrates 
a simple DAIDA development process, using the 
example of an information system for project meeting 
support [26]. A CML world model starts from the 
activity, Meeting, within a project and describes its 
related activities and entities in a real world with time. 
Among other things, meeting preparation, conduc- 
tion and follow-up is different for people in different 
roles, namely organizers and other participants. 
Based on this observation, the CML system model is 
positioned in the world model in two functional parts 
(also called system activities or views), one support- 
ing an organizer, the other a participant within the 
same, given organization. 

The combined world and system models are 
mapped to a TaxisDL design model. The role of the 
system model within long-term world model activities 
is represented by a script, ofice-internal meeting 
schedule; certain aspects of other activities and data 
are mapped to data classes. transaction classes and 
their corresponding constraints. Within the TaxisDL 
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model. data class hierarchies and corresponding 
transaction hierarchies must be synthesized from the 
mapping results. to achieve an integrated conceptual 
design: this could be called a particular strategy for 
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Fig. 4. Graphical display of dependencies and code frames generated by mapping rules. 

base, consisting of expense notes, working papers, 
invitation letters, minutes and the like. 

The design is mapped to a DBPL database struc- 
ture and transaction design. Decisions involved in 
mapping the TaxisDL generalization hierarchy of 
papers and the related transaction hierarchy to 
a modular DBPL program with relations, views, 
integrity constraints and database transactions [24], 
are presented below in a highly simplified manner to 
elicit GKBMS requirements. 

In Fig. 3 (screens simplified for readability in this 
section), the developer has employed a hierarchical 
text browser to determine unmapped TaxisDL ob- 
jects. He has further decided tofocus on the mapping 
of entity structures, in particular, invitations and 
their generalization, papers. This selection causes the 
display of a menu with appZ~cable decision classes and 
took. There are several possible mapping strategies 
[27,28]; distribute would generate one relation 
per TaxisDL entity class, whereas move-down only 
generates relations for leaves of the hierarchy and 
represents the other ones by view definitions (called 
constructors in DBPL [29]). 

The graph in Fig. 4 shows dependencies created by 
the decision for move-down, relating the new objects 
to existing ones and to a representation of the applied 
tool. Then, selection of the node InvitationRel causes 
display of the corresponding sources (type and vari- 
able definitions). 

Invitation Type contains a set-valued attribute; a 
normalization decision is therefore offered in the 
menu, leading to the extended dependency graph in 
Fig. 5. The new selector expresses the referential 
integrity constraint among the two relations, whereas 
the new constructor allows the reconstruction of the 
initial, unnormalized invitation relation; for details, 
see [26]. Additionally, Fig. 5 demonstrates how 

automatic and manual execution of decisions could 
interact. Observing that the system contains only 
Invitations and no other Papers, the developer decides 
to “make the system more user-friendly” by replacing 
the artificial paperkey attribute (initially required to 
map the object-oriented TaxisDL model which does 
not have keys) with date, author. Of course, this 
change also implies adaptation of the corresponding 
constructor, selector and possibly transaction defini- 
tions (outside the editor window in Figs 5 and 6). 

Unfortunately, the assumption that Invitations are 
the only kind of Papers leads to an inconsistency as 
soon as the mapping of Minutes, the second subclass 
of Papers, is considered (Fig. 6). Therefore, the 
decision to choose associative keys must be retracted, 
together with all its consequent changes, without 
redoing all the rest of the design; supporting this 
consistent, selective backtracking is one main purpose 
of introducing the explicit documentation of design 
decisions and dependencies. In the example, the 
inconsistency can be resolved by selectively back- 
tracking to the state before the introduction of as- 
sociative keys; in other cases, or if the granularity of 
representation in the dependency graph is insufficient, 
additional manual or tool-aided corrections may 
become necessary. Note that the graph in Fig. 6 only 
highlights the objects to be changed when introducing 
Minutes; the actual correction would need a more 
detailed representation--the GKBMS must have 
some kind of zooming facility for both design objects 
and design decisions. 

2.3. Requirements for a process-oriented software 
information system 

Although the above example is highly simplified 
compared with real-world software projects, a num- 
ber of requirements for effective KBMS support 
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should have become obvious. First, we have a need 
for representing design objects or documents at differ- 
ent levels of abstraction, and at any of the DAIDA 
language layers. Second, the GKBMS must know 
about fools for supporting intra-lan~age refinement 
(e.g. normalization within DBPL) and inter-language 
mapping (e.g. generalization hierarchy mapping). 
Third, a usage enuironment must offer interface tools, 
including object and task dependent menus, and the 

documentation of design object interrelationships, 
both embedded in some methodology to aid in the 
process of software development and, especially, soft- 
ware maintenance (e.g. retraction of user-defined 
keys in Fig. 6). 

In fact, process support is the central concern of 
our approach. In our view, the software process is 
based on human design decisions. When executed, 
these decisions lead to certain transformational oper- 

InvRccdvTypc - RECORD 

b~vitationRclTypc - 
RELATION P4’=r*rY _~ 
OF fnvitationTypc; 

Fig. 6. Code frames and dependency graph after backtracking the decision on key substitution 



schema for design ObJ’ects 

92 MATTHIAS JARKE et al. 

abstract design objects 

external world of sources, software engineers and design and managenlent tools 

Fig. 7. Design object knowledge base structure. 

ations in the software environment; transformations 
establish relationships between design objects and 
may be supported by tools. However, in a large 
software project, software developers may not be 
allowed to select arbitrary tools from, say, a toolkit 
[30], to work arbitrarily on arbitrary objects. Rather, 
a methodology with associated standards should be 
enforced, constraining working sequences and tool 
applications in a meaningful, theory-based manner, 
as far as possible without impeding developer creativ- 
ity. To allow the KBMS such a flexible definition of 
methodology which could range from very open to 
very formal, we introduce the notion of decision class 
of which any design decision execution must be an 
instance. Thus, we propose to couple object-oriented 
construction principles with the notion of design 
decision; in contrast to usual object-oriented systems 
like SmallTalk [31], tools (called methods therein) are 
not directly associated with object classes but only 
indirectly via decision classes. In the following, the 
requirements for the approach sketched above will be 
outlined in more detail. 

Although our main focus is the representation of 
software processes, it appears best to start with 
discussing the representational requirements for 

tHowever. there is at least a possibility to activate and 
control these external design objects (e.g. DBPL pro- 
grams) and their building environments automatically. 
This is in contrast to CAD applications relating to 
non-computer projects [32]. but similar to CIM appli- 
cations where the developed designs control and activate 
flexible manufacturing equipment. 

design objects. The term design object denotes any 
software object and document involved in world or 
system modelling, system design or database pro- 
gramming. Note that in a heterogeneous software 
environment like DAIDA, design objects reside out- 

side the GKBMS and are represented in languages 
not understandable for the GKBMS.1_ To deal with 
external and unintelligible design object sources, 
simple configuration managers [30] just represent 
source references. This prevents any deeper reasoning 
about design object semantics and interrelationships 
with other design objects, decisions and tools. Taking 
a knowledge management view, design objects should 
not only have a source reference but also formalized 
knowledge about the sources, and of the design 
decisions that influenced their evolution. The control 
of such a representation requires at least five levels of 
abstraction (Fig. 7): 

(a) management of specific design object sources 
(software documents), often residing in a file 
system such as UNIX under simple configur- 
ation control; 

(b) knowledge about specljic design object instances, 
to document the sources in a formal way and 
to reason about their interrelationship (e.g. 
configurations, versions); 

(c) knowledge about design object classes to gain a 
powerful structuring mechanism which defines 
the possible objects appearing in a particular 
software environment (e.g. world model, sys- 
tem model, TaxisDL and DBPL constructs in 
DAIDA); 
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(d) a system-understandable terminology to talk 
about design objects, defining formally the 
GKBMS approach to modelling software 
objects; 

(e) a knowledge representation language to realize 
all of the levels above. 

This five-level model can be used to characterize 
the flexibility of software databases (e.g. [33,6]). In 
particular, the knowledge representation language 
defines how precisely knowledge about objects can be 
described, and how easily the object schema at level 

(d) can be adapted to other languages and tools. Since 
new languages, methods, theories and tools for soft- 

ware development are continuously appearing, exten- 
sibility of the language as well as of the object schema 
is of great importance; it is well-known that this 
implies the use of generalization (ISA) hierarchies of 
object classes [34-361. We experience the need for 
extensibility in the DAIDA project where languages 
and tools evolve rapidly, as our research progresses. 

Despite the large amount of knowledge that can be 
made available in such a schema, design object 
representation really only covers the static aspects, 
i.e. the outcomes of development processes. There- 
fore, we introduce conceptual models of design de- 
cisions as first-class objects intended to control 
and document directly the development process that 
creates, alters and justifies design objects. As indi- 
cated before, design decisions play multiple roles in 
our approach and must be adaptable to multiple 
levels of granularity (ranging from programming- 
in-the-small to programming-in-the-large to pro- 
gramming-in-the-many [30]) as well as to multiple 
methodologies. A single set of evolution rules for a 
predefined object schema, as given e.g. in [37], is very 
useful in a well-understood task but not enough for 
a heterogeneous environment; moreover, we want to 
preserve human discretion in making decisions about 
software evolution, rather than prescribing rigid 
rules. As a consequence, the same five-level represen- 
tational requirements as for design objects apply to 
the modelling of design decision knowledge: 

(a) design decisions made and executed in the 
external world. possibly collaboratively by 
(groups of) human designers and computerized 
problem solvers; 

(b) knowledge about executed design decision in- 
stances, possibly including limited documen- 
tation of the decision-making process; 

(c) knowledge about feasible classes of design 
decisions according to known development 
theory, standards or methodologies; 

(d) a terminolog,v and associated enforcement sys- 
tem for design decisions that formally defines 
the GKBMS model of design decision control 
and documentation; 

(e) a knowledge representation language to repre- 
sent knowledge at all of the above levels. 

The same remarks as before apply with respect to 
the need for extensibility of language (e) and schema 

(d). For example, in an evolving software en- 

vironment such as DAIDA, this extensibility allows 
developers to use the GKBMS initially as a simple 
documentation tool where all transformations are 
made manually, and recorded and controlled accord- 
ing to very simple decision class definitions, basically 
just distinguishing between three kinds of decisions: 
refinement within a language, mapping between 
languages and retraction of existing decisions to start 
new versions. This distinction is closely related to a 
versioning model described in [32], and can thus serve 
as a basis for certain programming-in-the-large tasks. 
As theory and tools for the mapping tasks sketched 
in Section 2.2. are further developed, the same 
schema can support an almost automated software 
development and maintenance process. 

Finally, design tools employed to execute decisions 
can be described in a fashion similar to design 
decisions, namely, at a class level which describes 
what the tools can guarantee to do in general, and at 
an instance level which describes what it guarantees 
in executing a specific decision. The role of tool 
modelling is best understood by studying the inter- 
relationships between design objects, design decisions 
and tools. Figure 8 extends Fig. 7 to illustrate these 
interrelationships. For example, at the class level, a 
design decision class should be related to object 
classes and tool specifications as follows: 

l Design object classes this decision can be applied 
to (FROM) 

l Design object classes allowed as outcomes 
achieved by performing this decision (2’0) 

l Associated tools supporting the execution of a 
decision (BY) 

l A formalized description decomposing a decision 
in subdecisions, and finally into primitive de- 
pendencies among incoming and outgoing design 
objects 

l A decision-procedure description (maybe just a 
kind of comment) capturing developers’ beliefs 
not expressible in the above representation. 

Furthermore, both decision class and tool specifi- 
cations come with constraints that define the relation- 
ships between inputs and outputs. For decision 
classes, the semantics of such a constraint is similar 
to that of an integrity constraint in a database 
transaction [38]: the constraint must be satisfied for 
any completed instance of the class. For tool specifi- 
cations, the semantics of a constraint is that of a 
warranty the tool gives to its users; in particular, 
satisfaction of constraints already guaranteed by the 
supporting tool need not be checked any more in the 
instantiation of a decision class (so to speak, at 
transaction end), unless there was a chance for the 
user to invalidate the tool results in between. The 
implementation of such an approach requires a 
theorem-proving approach to integrity checking [39]. 
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Fig. 8. Combining the design decision concept with layered knowledge representation. 

For simplicity, the decomposition and decision- 
procedure components of the model are not shown in 
the figure; the former will be discussed when elaborat- 
ing the formal model of design decisions in Section 
4.3, whereas we have only begun to explore the latter. 
Another important requirement is the modelling of 
time, an important aspect of any process-oriented 
model. We argue that an interval-based model of time 
[40] should be chosen since it models aspects such as 
versioning of design objects, or embedding of validity 
intervals for design decisions-as implied by the 
decision decomposition approach mentioned above. 
Finally, it may be useful to add another level 
of abstraction to the model, in order to represent 
example data for prototyping in the model; this would 
make the levels (b-d) above into classes, metaclasses 
and metametaclasses, respectively. Since we do not 
discuss prototyping further in this paper, we shall 
stick with the simpler form although ConceptBase 
supports this extension as well. 

So far, we have focussed on representut~onal re- 
quirements for a decision-o~ented GKBMS. In order 
to get a feeling for the fimctional requirements, we 
now discuss how a typical mapping task such as 
illustrated in Section 2.2. could be supported by the 
structure shown in Fig. 8. First of all, different 
e~~p~orat~on facilities are required to exploit the docu- 
mentation of design object and design decision repre- 
sentation during the development and maintenance 
phases: 

l ~xpIoration of hierarchical structures such as 
taxonomies of design object or design decisions 
classes, possibly also of documented instances and 
their static relationships, starting from a given 
focus; e.g. input/output relationships between 

DBPL transactions and data structures (crossing 
of outcomes) 
Exploration of dependency graph structures, 
following chains of design decision instances at 
various levels of granularity from a given focus; 
e.g. finding requirements and design decisions a 
relation attribute was derived from (browsing of 
processes) 
Predicative restriction of a set of design objects 
and design decisions (e.g. for setting a.focus or for 
reducing the complexity and size of a display) 
Combined navigation in graphs starting at a given 
focus; e.g. explore the design object space at the 
level of system design, then explore possible imple- 
mentation decisions. 

From this list, it is obvious that a combined 
predicative and direct-manipulation style of inter- 
action is needed for the KBMS usage environment. 
Exploration of the existing schema and instances is 
required both during the initial development of a 
system and in the maintenance phase. In a typical 
development step, the interplay of design objects, 
decisions and tools could proceed as follows: 

I. 

2. 

3. 

4. 

5. 

Explore (versions of) design objects and de- 
cisions (instance level). 
Select a design object to work on (instance level) 
and finds its class (class level). 
Explore decision classes applicable to this object 
class and select one (class teuel). 
Select a tool associated with the selected de- 
cision class or one of its predecessors in the 
generalization hierarchy of decision classes 
(class level). 
Make a decision within this class, execute it with 
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Fig. 9. Summary of KBMS requirements for software process support. 

the selected tool, generating new design object 
sources (external world level) and their represen- 
tations in the knowledge base (instance level), 
testing if these instantiate existing design object 
classes (class level). 

6. Try to create an instance for the previously 
chosen decision class, testing the correctness of 
the execution with respect to the class definition 
and, if successful, documenting the execution 
with its associated objects and tools (instance 
and class level). 

Introducing design decisions as a mediating con- 

cept between objects and tools guides the user to- 
wards applicable tools in a given task context (defined 
by the theory or methodology embedded in a decision 
class definition), controls the correct application of 
these tools in a flexible way (using weaker or stronger 
constraints for decision classes) and documents 
the development process for subsequent expplanation, 
critique (maintenance) and reuse. In the long range, 
it would be desirable if the system would extend 
its known set of decision classes by inducing new 
subclasses from instances [2,41,42]. 

Summarizing, three dimensions of requirements for 
modelling and supporting software processes in a 
knowledge base have been pointed out: 

-representational requirements for a software pro- 
cess data model (GKBMS data model) 

-funcfional requiremenfs (operational interface of 
the GKBMS) 

-required tools and techniques (implementation of 
the GKBMS). 

The details of these dimensions are repeated in 
Fig. 9. In the remainder of this paper, we present our 

approach to satisfy these requirements. The knowl- 
edge representation language mentioned at level (e) 
above for modelling both design objects and design 
decisions must combine object-oriented abstraction 
with multiple levels of instantiation, one or more 
assertion languages for expressing object and process 
constraints, natural concept visualization with pre- 
dicative as well as navigational exploration, an em- 
bedded (preferably interval-based) model of time, 
and object identity as a basis for configuration man- 
agement. Taken together, these requirements look 
very similar to those needed for world and system 
modelling in DAIDA; indeed, a software environ- 
ment can be seen as a “software world” whose 

structures, laws and history have to be represented in 
the GKBMS. As a consequence, we choose a dialect 
of CML, the world and system modelling language of 
DAIDA (cf. Section 2. I), as the knowledge represen- 
tation language for the GKBMS. 

The next section presents a definition of this CML 
dialect. Then, the level (b-d) representational require- 
ments are addressed by defining formal constructs 
for design objects and design decisions. Continuing 
the example of Section 2.2, our approach to the 
functional requirements is also briefly demonstrated. 
Finally, we present the tools and techniques aspects by 
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giving an overview of the ConceptBase prototype 
implementation, and relate the model to specific 
applications. 

3. THE CONCEPTUAL MODELLING 
LANGUAGE CML/TELOS 

This section provides a brief review of the knowl- 
edge representation language CML which will serve 
as the basis for formalizing and implementing our 
software process knowledge base. CML (and its 
minor variants SML and Telos [15]) was derived 
in several iterations [14,43] from the requirements 
modelling language RML [4], and has been aug- 
mented in DAIDA with special features for modelling 
system requirements and external naming for system- 
generated object identifiers. 

CML combines structurally object-oriented prin- 
ciples such as object identity, classification, general- 
ization and aggregation, with a predicative assertion 
language and a built-in time calculus. Major features 
distinguishing CML from other similar knowledge 
representation languages include: 

attributes as first-class objects which can be in- 
stantiated, specialized and have attributes of their 
own; 
potentially infinite hierarchy of metaclass levels, 
thus ensuring extensibility of the language; 
validity intervals for world objects described in the 
system, as well as for the system’s knowledge 
about them; 
flexible hypertext-like syntax that allows for 
arbitrary combination of semantic network and 
frame-based views. 

The remainder of this section sketches the network 
(proposition) and the frame (object) levels of 
the system as well as their interrelationships. A 

knowledge-level formalization of the basic language 
can be found in [43]. 

3.1. The network syntax 

In CML, knowledge bases are seen as semantic 
networks. A link (which is synonym to object in 
CML) is interpreted as the proposition stating that 
there is a connection between two nodes. A node 
represents the proposition that there is such an 
object. The object-oriented paradigms of classifi- 
cation, generalization and aggregation [34] appear as 
links, too, where a set of six language axioms defines 
the well-formedness of the network. For example, 
each object has to be an instance of at least one object 
(its class). The uniform data-structure for prop- 
ositions is: 

id = (source, label, destination, interval). 

Each proposition makes a statement about objects 
and is itself an object. On the left stands the name (id) 
of the statement, and on the right the definition: the 
object “source” has a link labelled “label” to object 
“destination” during time “interval”. Nodes are seen 
as self-referential links, so-called individuals, denoted 
by id = (id,-,id,interval), where the underscore 
stands for an arbitrary label. Obviously, individuals 
make no statement about other objects but only 
about themselves; more exactly, they state that there 
is an object with name “id.” 

To support rule-based deduction and integrity 
control, CML offers specialized object classes to 
express constrainfs and rules. For example, a prop- 
osition can link a class object to an object of class 
“ConstraintClass” to express that the constraint has 
to be satisfied for all instances of that class object. 
Note that this method of introducing assertions 
leaves the freedom to attach arbitrary assertion 
languages and associated provers to the system [44]. 

Fig. 10. Propositional representation of mapInvitations (unlabelled links stand for *instance) of 
propositions. 
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3.2. The frame syntax 

By grouping a set of propositions together with 
their class propositions around a common source, we 
obtain a CML frame. For example, a piece of a 
frame-level object maplnuitations that documents the 
design decision shown in Fig. 4, can be written as: 

PROPOSITION mapInvitations at version7 
IN EntHierMapMoveDown WITH 
tdlentities 

entityl: Papers 
entity2: Invitations 

END (* mapInvitations *) 

This states that mapInvitations is an instance of 
the classes PROPOSITION and EntHierMapMove- 
Down (the decision class activated in Fig. 3). It has 
attributes entity1 and entity2 with values Papers 
and Invitations which are instantiated from an at- 
tribute category labelled tdlentities (defined in class 
EntHierMapMoveDown). Version 7denotes the time 
during which the frame shall be regarded as valid. 
Part of the network of propositions representing the 
frame is shown in Fig. 10. 

Figure 10 also illustrates one of the CML axioms. 
The attribute labelled entity1 (entity2) is declared 
to be an instance of the tdlentities attribute of 
EntHierMapMoveDown. The instantiation axiom of 
CML demands that its source maplnvitations must be 
an instance of the source of its class EntHierMap- 
MoveDown; also, Papers (Invitations) must be in- 
stances of TDL-ECDO. 

The time components of the propositions are not 
shown in the figure; for example: 

generated, we extend the frame syntax by operator 
expressions that reference links by their source 
and label components. For example, the identifier 
P8 can be referenced by the expression maplnvi- 
tations!entity2. The operator “!” can be iterated for 
accessing more distant links: the name of the instan- 
tiation link of the entity2 attribute can be described 
as mapInvitations!entity2!*instanceof At any given 
point in time, this naming convention yields unique 
identifiers since the CML aggregation axiom says that 
there may be only one link with a given label at a 
given time. 

3.3. Querying and updating knowledge bases 

Due to the close relationship between the two 
syntax variations of CML, queries and updates can 
be addressed to either of them; for simplicity, we 
assume for the moment that internally, all frame 
structures are converted to network structures, as 
indicated in the example above [45]. Following [46], 
CML views the knowledge base as an abstract data 
type with two operations: 

tell (s) 

ask (q, a) 

“tell” tests “s” for consistency with the knowledge 
base and stores those propositions of “s” not already 
retrievable. Applied to some knowledge base, “ask” 
provides the answer “a” to query “9”. In accordance 

mapInvitations = (maplnvitations, -, mapInvitations, version7) 
PI = (mapInvitations, *instanceof, PROPOSITION, version7) 
P2 = (PI, *instanceof, InstanceOf, 21-Mar-1989+) 

P8 = (mapInvitations, entity2, Invitations, version7) 
P9 = (PS, *instanceof, Kl, version7) 
PI0 = (P9, *instanceof, InstanceOf, 21-Mar-1989+) 

where 

InstanceOf = (PROPOSITION, *instanceof, CLASS, Always) 
K I = (EntHierMapMoveDown, tdlentities, TDL-EC-DO, Always) 

The first propostion declares maplnvitations as an 

individual. Its last component, version7, holds the 
“valid time” of the object: the knowledge base re- 
gards maplnvitations as valid during the time interval 
version% Pl instantiates mapInvitations to the class 
PROPOSITION. The next proposition makes P2 an 
instance of the class InstanceOf (the class of all 
instantiation links). Its time component is used to 
store the “belief time” of maplnuitations and PI : the 
knowledge base knows of them since 21 -Mar-1989. 

CML treats all propositions (individuals, at- 
tributes, instantiation and specialization links) as 
objects. Since many object identifiers like those 
for attributes and instantiation links are system- 

with the hypertext-like structure of the language, 
queries can be asked and answers can be displayed as 
text (frame) objects, networks or combinations of 
both. “q” can either be a closed predicative formula 
over the knowledge base in which case “a” takes 
one of the values yes, no or unknown; or “q” can 
be considered a class definition of CML and “a” 
contains all the objects classified as satisfying this 
definition (cf. Section 5.1). 

The following query asks for all attribute values of 
all instances of the class EntHierMapMoveDown 
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INDIVIDUALCLASS Att~buteQuery 
computedattributes 

solution: TDL_EC_DO 

query 

IN QueryClass WITH 

END 

ql : $ each x/EntHierMapMoveDown 
AttrValue (x, tdlentities, solution, version7) $ 

Since maplnvitations is one of the candidates, the answer is: 

INDIVIDUAL answer1 IN AttributeQuery/WITH 
solution 

s 1: Papers 
s2: Invitations 

END . ” 

4. FORMALIZATION OF THE properties but also to be directly usable as input to 

SOFTWARE PROCESS MODEL reason maintenance facilities such as /12,47]. 

In this section, the software process model 
sketched in Section 2.3 will be formalized in terms of 
the CML language. Recalling the example of Section 
2.2, we first formalize the design object hierarchy and 
then address the modelling of design decisions 
and methodologies; finally, a discussion of tool 
specification is provided. In developing this model, 
especially for design decision control and documen- 
tation, we make extensive use of the ‘&!” operator 
introduced in Section 3.2 to access system-generated 
attribute identifiers in CML’s network syntax. This is 
shown to yield not only a very compact represen- 
tation of detailed dependencies among design object 

4.1. overview of the model 

As discussed, the software process model repre- 
sents three basic kinds of objects, namely design 
objects, design decisions and design tools. The intro- 
duction of design tools gives the model an “active 
database” flavor that distinguishes it from ap- 
proaches such as entity-relationship [lo]. The explicit 
modelling of design decisions distinguishes it from 
most previous software databases, and the use of 
CML’s abstraction mechanisms from design process 
modelling in AI [ 131. We first define the metaclasses 
(actually metametaclasses if prototyping is con- 
sidered as well) for the three basic kinds of objects (cf. 

from 

rell 

Fig. 11. Overview of the model and example. 
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also Figure 11); examples of the lower abstraction 
levels are developed in the remaining subsections. 

At the top level, Fig. 11 shows the three meta- 
classes DesignObject, DesignDecision and Design - 
Tool. Example of design object classes are 
TDLK-DO (representing so-called TaxisDL entity 
classes) and DBPL-Rel-DO which can be mapped 
from the first ones. The tool MappingAssistnntZ 
helps with such tasks. The lowest level represents 
actual design objects, decisions and tools. In this case, 
the mapping of two TaxisDL entity classes to a 
DBPL relation called Zn~itutionRef-~ is documented. 
Note that not all links are included in the figure. The 
following frame definitions offer a more complete 
description. 

Design objects must be justified by some design 
decision. Furthermore, the representation of these 
objects should contain a reference where the source 
object can be found, as well as a CML description of 
that object. Finally, a design object may be recur- 
sively configured from smaller ones. These require- 
ments are formalized in the CML metaclass: 

[NDIVIDUALCLASS DesignObject 
IN MetaClass WITH 

attribute 
justification: DesignDecision 
objectsource: ExternalReference 
objectsemantic: CLASS 
part: DesignObject 

END 
instances of DesignObject are specialized design 

object classes corresponding to constructs available 
in the languages of the chosen environment, in 
DAIDA CML, TaxisDL and DBPL. In turn, their 
instances are tokens representing actual design 
objects defined in one of these languages. 

Following the approach of Section 2.3, design 
objects evolve due to the tool-aided execution of 
human design decisions under the control of some 
methodology expressed by decision classes. Design 
decisions themselves can also be considered as design 
objects that are worked upon by the design group 
through other decisions. The CML sub-language 
for talking about design decisions is defined by the 
metaclass: 

INDIVIDUALCLASS DesignDecision 
IN MetaClass ISA DesignObject WITH 

attribute 
from: DesignObject 
to: DesignObject 

END 

decisionsemantic: DecisionDescription 
by: DesignTool 
part: DesignDecision 

Each instance of DesignDecision defines a decision 
class whose instances in turn record actual decisions. 
Attribute “from” references the input objects and 
attribute “to” the resulting objects; time stamps are 
implicit in the CML language. The “by” attribute 

refers to the GKBMS representation of the applied 
design tools. “Part” facilitates the decomposition of 
design decisions in a modular way. For instance, all 
specific mapping decisions during a mapping task can 
be aggregated to a single one covering the whole task. 

Our model considers design tools as design de- 
cisions that implement other design decisions classes. 
The language for talking about tools is defined as a 
specialization of the metaclass DesignDecision where 
the input to the decision is the design decision class 
to be supported by the tool, and the output is a 
procedure that executes the decision: 

INDIVIDUALCLASS DesignTool IN MetaClass 
ISA Des&Decision WITH 

attribute 
from: DesignDecision 
to: BehaviourObject 

END 
This method of tool integration is intended to 

consider tools as reusable software objects that 
should, in principle, have been developed with the 
same methodology as any other software. In the 
following subsections, the above metaclasses are 
discussed in more detail. 

4.2. Semantic descriptions for design objects 

If we wish to know more about a design object than 
that it exists and where it exists, a semantic descrip- 
tion in CML can be given. Note that these descrip- 
tions are not equivalent to the sources in the 
corresponding environments; this is true even for the 
world and system model (see Fig. 1) where the same 
language, CML, is used. Nevertheless, the abstract 
description of design objects in CML helps utilize the 
structural integrity mechanism of CML for software 
process control. In the example, we need at least 
two such classes, TaxisDL entity classes and DBPL 
relations, for the schema of our software database 
(containing the objects) respectively knowledge repre- 
sentation (containing object descriptions defined at 
any CML metalevel): 

INDIVIDUALCLASS TDL-EC-DO 
IN DesignObject WITH 

justification 
created-by: TDL-Decision 

objectsource 
tdlsource: String 

objectsemantic 
tdlentitydescr: TDL_EntityClass 

END 

INDIVIDUALCLASS TDL-EntityClass 
IN MetaClass ISA TDL-Dataclass WITH 

attribute 
changing: TDL-DataClass 
unchanging: TDL_DataClass 
unique: TDL_DataClass 
invariant: TDL-DataClass 
setof: TDL_DataClass 

END 
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INDIVIDUAL~LASS DBPL_Rel_DO 
IN DesignObject WITH 

justification 
created-by: DBPL_Decision 

source 
dbplsource: String 

objectsemantic 
dbplreldescr: DBPL_Relation 

END 

INDIVIDUALCLASS DBPL-Relation 
IN MetaClass WITH 

attribute 
keyattr: DBPL-SimpleType 
nonkeyattr: DBPL-SimpleType 
setvaiuedattr: DBPL_SimpleType 

END 

Thus, an instance of DBPL-Rel-DO specifies a 
DBPL-Decision for its justification, a filename for 
pointing to its source file, and a description summar- 
izing the attributes of the relation: 

INDIVIDUAL Papers IN TDL-EC-DO WITH 
created-by 

decision: mappdecl7 
tdlsource 

filename: “TDL/PAPERS . tdl” 
tdlentitydescr 

describedby: Papers_tdl 
END 

INDIVIDUALCLASS Papers_tdl 
IN TDL_EntityClass WITH 

unique 
date: Date-tdl 
author: String 

changing 
content: String 

END 

This specifies that there is an design object Papers 
justified by mappdecl7 in the TaxisDL environment 
and that this design object has two unchanging and 
one changing attributes. Figure 12 completes the 
design objects of our example. The left side contains 
the TaxisDL design object Papers and its specializ- 
ation Invitations. In the middle, a non-first-normal- 
form DBPL relation implementing this conceptual 

Fig. 13. Metaclass model of semantic descriptions of design 
objects and design decisions. 

design is presented. The two design objects on the 
right represent the normalized version of Invitation- 
RelO used in Figs 5 and 6. They specify for their 
justification two design decisions which are explained 
in detail in the next subsection. 

4.3. Semantic description of design decisions 

The semantics of design decision (at a given level 
of abstraction) is defined by relating descriptions of 
design objects to each other. The “decisionsemantic” 
attribute of metaclass DesignDec~sio~t is based on 
special properties of the class “CLASS”: 

INDIVIDUALCLASS CLASS WITH 
attribute 

attribute: CLASS 
dependson: CLASS 

END 

The CML system class CLASS defines that 
classes may have attributes. Above, we extend this 
definition by so-called dependencies: CML objects 
may depend on (the existence of) other objects. 
This can be individuals, attributes, instantiation and 
specialization relations because they are all objects. 
When used for the design objects we are able to 
express how the “object semantic” of the “from” 
design objects was mapped the object semantic of the 
“to” design objects. 

The class DecisionDescription aggregates such 
dependencies: 

INDIVIDUALCLASS DecisionDescription 
IN MetaClass WITH 

attribute 
dependencies: CLASS!dependson 

END 

The semantic network syntax for the extended 
metaclass model is shown in Fig. 13. Returning to our 
running example, instances of DesignDecision define 
how to map TaxisDL entity hierarchies to normal- 
ized DBPL relations. Recall from Section 2.2. 
that this requires two steps (or part decisions). The 
decision class EntHierMapMoveDown shows the 
general knowledge of the GKBMS about how to map 
a TaxisDL entity hierarchy (like Papers and InzY- 
tutions in the previous section) to a DBPL relation 
which is in general not in first-normal-form. The 
mapping of the attributes is described by three state- 
ments on how the resulting DBPL relation looks: 

l the key attributes derive from certain “unchang- 
ing” attributes of the TDL entity. 

l the non-key attributes are mapped from the other 
attributes, and 

l the set-valued attributes come from the corre- 
sponding “setof” attributes. 

These constraints are simplified; their full form 
should include a lot of knowledge about mapping of 
semantic data models [27] or even complex theories 
of transaction refinement [24]: 
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Below, the CML formalization of this class is side shows how detailed knowledge about software 
given. It instantiates the metaclass scheme of design evolution is represented. The design decision map- 
decisions. Formal attributes and dependencies be- Invitations is an instance of the class EntHierMap- 
tween them are denoted by the “!” operator: 

INDIVIDUAL~LASS EntHierMapMoveDown IN DesignDecision WITH 
from 

tdlentities: TDL_EC-DO 
to 

nonfirstrelations: DBPL_Rel_DO 
decisionsemantic 

mappingdescription: EntHierMapMoveDownDescription 

by 
tool: MappingAssistant 

END 

INDIVIDUALCLASS EntHiermapMoveDownDescr IN DecisionDescription 
WITH 

dependencies 
keydep: DBPL_Relation!keyattr!dependson 
nonkeydep: DBPL_Relation!nonkeyattr!dependson 
nonfirstdep: DBPL_Relation!setvaluedattr!de~ndson 

END 

ATTRIBUTECLASS DBPL_Relation!keyattr WITH 
dependson 

dependson: TDL_EntityClass!unchanging 
END 

ATTRIBUTECLASS DBPL_Relation!nonkeyattr WITH.. END 

ATTRIBUTECLASS DBPL_Relation!setvaluedattr WITH . . . END 

For a visualization of this formalization and its 
internal compactness, Fig. 14 shows the correspond- MoveDown. It records the actual mapping of the two 
ing semantic network representation. On the left side, TaxisDL entities Papers and Invitations to the unnor- 
the scheme of the software database is defined by the malized DBPL relation ZnvitationReLU. The corre- 
design object and design decision classes. The right sponding instance of EntHierMapMoveDownDescr 

Software knowledge 
representation 

Fig. 14. Design decision class and related object classes with their descriptions. 
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aggregates the dependencies: 

INDIVIDUAL mapInvitations IN EntHierMapMoveDown WITH 
tdlentities 

entity 1: Papers 
entity2: Invitations 

nonfirstrelations 
rell: InvitationRel-0 

mappingdescription 
describedby: mapInvitationsDescr 

tool 

doneby: MA-execl 
END 

INDIVIDUAL mapInvitationDescr IN EntHierMapMoveDownDescription WITH 
nonfirstdep 

depl: InvitationRel_O_dbpl!receiver!depon 
nonkeydep 

dep2: InvitationRel_O_dbpl!meetLoc!depon 

dep5: InvitationRel_O_dbpl!date!depon 
END 

ATTRIBUTE InvitationRel_O_dbpl!receiver IN DBPL_Relation!nonkeyattr 
WITH 

dependson 
depon: Invitations_tdl!receiver 

END 

‘same , for other attributes} 

ATTRIBUTE InvitationRel_O_dbpl!date IN DBPL_Relation!nonkeyattr WITH 
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dependson 
depon: Papers_tdl!date 

END 

Figure IS shows the design object tokens Papers, 
InvitationRelLO. The description of maplnvitations 
contains the dependencies between attributes of the 

InvitationRelL0. The description of maplnvitations 
contains the dependencies between attributes of the 
participating design objects which must be instances 
of the model shown in Fig. 13; following chains of 
such dependencies determine repercussions of design 
modifications, as discussed in Section 2.2. 

4.4. Decision modules and methodologies 

To summarize the discussion so far, each design 

decision is characterized by its inputs, outputs and 
a semantic description, as well as by a pragmatic 
(tool) characterization of the detailed input-output 

tAccording to the DAIDA methodology, constraints at the 
CML level relate the implementation to the interface, 
and the parts to each other. Typically, the decompo- 
sition of a design decision is itself a design decision. This 
could be supported by AI-based planning and schedul- 
ing tools, also considering the goals of the design in a 
decision support setting [13]. The implementation of a 
module from the imported pieces is only characterized 
by constraints since the CML model just modularizes the 
requirements; typically, a TaxisDL script would be used 
to design the actual implementation. 

relationships. While this may be sufficient for small 
examples and uniform-language situations, it is not 
enough for large-scale, multi-layered information sys- 
tems development and maintenance. For this kind of 
problem, we need a mechanism to aggregate minor 
decisions to larger ones, or, conversely, to decompose 
complex decision problems into smaller ones. 

The traditional approach to achieve such a de- 
composition is the introduction of a modularization 
abstraction. In our model, the above-mentioned at- 
tribute categories (from, to, by, decisionsemantic) 
characterize the interface of a conceptual decision 
module, whereas the “part” attribute not discussed so 
far characterizes the import interface of the decision 
modu1e.t 

In the planning phase of software development, 
modular decomposition is used for assigning system 
development work. In the usage phase of the infor- 
mation system, modular composition may be used for 
configuration management. A category of complex 
design decisions of particular interest to the DAIDA 
methodology are implementation hierarchies that re- 
late a reasonably isolated world submodel, subsystem 
specification or conceptual design to its completed 
implementation. When generalized to a class defi- 
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nition by introducing parameters [48], such a compo- 
nent can be reused by re-instantiation; even 
incomplete hierarchies (e.g. requirements together 
with an associated design blueprint but no implemen- 
tation) can be useful reusable objects [49]. 

In the following, we demonstrate the decompo- 
sition of design objects by introducing the complex 
decision class mapandnormalizelnvitations which ag- 
gregates the two decision instances introduced earlier. 
It takes as input the two TaxisDL entity classes 
Papers and Invitations and produces two normalized 
DBPL relations InvitationRel-1 and InvReceivRel 
(see Section 4.1). The first part has already been 
done by mapping the TaxisDL design objects to a 
non-first-normal-form relation ZnvitationRelL0. The 
missing part is the mapping of ZnvitationRelL0 to 
normalized relations. For this purpose we define 
a decision class DBPL-RefNormalization which 
models such mappings, and use this class for record- 
ing the normalization of InvitationRel-0: 

INDIVIDUAL mapandnormalizeInvitations 
IN StrucMapMoveDown WITH 

tdlentities 
entityl: Papers 
entity2: Invitations 

normalizedrelations 
rell: InvitationRel-1 
re12: InvReceivRel 

hiermap 
stepl: maplnvitations 

normalize 
step2: normalizeInvitations 

END 

The decomposition of design decision objects 
allows for the definition of complex methodologies, 
and reduces the size of dependency networks, 
combining ideas from programming-in-the-large (e.g. 
configuration management) with those for program- 

INDIVIDUALCLASS DBPL-RefNormalization IN DesignDecision WITH 
from 

nonfirstrelations: DBPL-Rel-DO 
to 

normalizedrelations: DBPL-Rel-DO 
description 

normalizationdescr: NormDescription 
END 

INDIVIDUAL normalizeInvitations IN DBPL-RefNormalization WITH 
nonfirstrelations 

nfrel: InvitationRel-0 
normalizedrelations 

normrell: InvitationRel-I 
normre12: InvReceivRel 

END 

Finally, we aggregate the two parts to a complex ming-in-the-small, such as constraint propagation for 
decision class StrucMapMoveDown. The constraint requirements or design modifications. 
expresses that for each instance, the part decisions Note, that complex decision objects can also have 
must talk about the same objects as the complex one. descriptions, and thus dependencies relating their 
One can easily see that it is fulfilled for the instance parts directly to each other, rather than having to go 
mapandnormalizelnvitations: 

INDIVIDUALCLASS StrucMapMoveDown IN DesignDecision WITH 
from 

tdlentities: TDL-EC-DO 
to 

normalizedrelations: DBPL-Rel-DO 
part 

hiermap: EntHierMapMoveDown 
normalize: DPBL-RefNormalization 

constraint 

END 

properdecomposition: 
$ hiermap. tdlentities = tdlentities & 

hiermap. nonfirstrelations = normalize. nonjirstrelations & 
normalize. normalizedrelations = normalizedrelations $ 
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date 
descrlbedby 

deacribedby 
p_ Invitations tdl - 
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describedby Invitationkl 0 _T InvitationRel 0 dbpl 
/ 

_ -- 

Fig. 15. Design object and decision modelling at the instance level. 

via all subdecisions. In this way, design-in-the-large 
can use a derived, more compact dependency net- 
work for configuration, constraint propagation and 
search than the detailed recording of small-scale 
design decisions would allow. Another important 
advantage of the modularization is that decision 
classes can be used to define design-in-the-large 
methodologies such as the overall DAIDA meth- 
odology of decomposing the software development 
process in CML-based requirements analysis, 
CML-TaxisDL mapping, TaxisDL conceptual de- 
sign, TaxisDL-DBPL program design and DBPL 

a horizontal configuration, composing design objects 
and decisions from smaller ones, respectively decom- 
posing complex tasks into more manageable ones. 
McMenamis and Palmer [52] provide some guidelines 
of how to do this (e.g. event based or data centered 
partitioning). 

For example, when talking about the mapping of 
the generalization hierarchy of Papers and Inui- 
tations, we may wish to view this hierarchy as a single 
complex object, used as an input to a common 
decision. If more than one relation should result from 
the first subdecision (e.g. with the distribute strategy 

coding: t 

INDIVIDUALCLASS DAIDAMethodology IN DesignDecision WITH 
from 

requirements: CML-DO 
t0 

databaseprogram: DBPL_DO 
description 

implementationconstraint: DatabaseprogramSatisfiesRequirements 

by 
globaldaidenvironment: GKBMS 

part 
system-embedding: RequirementsAnalysis 
requirements-to-design: CML-TDL-Mapping 
design-consolidation: TDL-Integration 
design-to-program: TDL-DBPL-Refinement 

END 

Besides the vertical aggregation of decisions to 
development histories (at the instance level) respect- to use one relation per class), normalization could be 

ively methodologies (at the class level), we also need performed in two separate subdecisions for the next 
step. An extension currently under development 

tin contrast to standard modularization approaches, how- handles not onlv this case but also addresses the __ I 
ever, it may be necessary to have multiple modulariz- 
ations (or views) of the same structure; a deep discussion 

question of source configuration management, i.e. 

of the problems associated with such a multiple- 
what happens if the desired conceptual configuration 

viewpoint mechanism, often intended to support group of objects does not coincide with physical file 

work, is beyond the scope of this paper [50,5]. boundaries. 
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4.5. Design tool modelling 

If all software were developed by the DAIDA 
methodology, a design tool would be simply a 
reusable implementation hierarchy to be described at 
the levels of its CML systems requirements, TaxisDL 
conceptual design, implementation in some program- 
ming language, and possibly executable object code 
(derived automatically by compilation and thus not 
shown in Fig. 1). 

At the CML level, the requirements of a tool are 
those of the design decision the tool is supposed to 
automate, typically a subdecision expected to occur 
in many design tasks. Thus, the class structure of 
design decisions can be used for describing the re- 
quirements of design tools. At the TaxisDL level, 
simple tools would be designed as transactions, 
whereas more complex ones would be specified as 
scripts for interactive problem-solving. In DAIDA, 
the CML-TaxisDL mapping assistant would help in 
generating these kinds of designs [9,22]; the TaxisDL 
specification could also serve as a user guide through 
a complex tool. 

In a real environment, of course, we wish to 
integrate pre-existing tools written in any program- 
ming language, as well as to develop new ones. 
We therefore have to construct CML and TaxisDL 
“envelopes” to make such tools known to the 
GKBMS (cf. [30] for the concept of envelopes in tool 
integration for software environments). The inter- 
action with such tools can then be accomplished in 
several ways: a purely documentative one in which 
the user is just given information about the tool and 
then invokes it manually; an embedded procedure- 
call mechanism as in active databases (e.g. Postgres 
[62]); or a distributed message-passing protocol where 
GKBMS and tools are communicating active objects 
[53]. The current implementation only supports the 

normalize ([I, _). 

first one while the second one is being implemented 
for the second prototype. 

Of course, we assume that it has been established 
during the tool development process that the “to” 
object is a correct and complete implementation of 
the “from” object, i.e. that the tool does what it 
promises. Moreover, the description of any design 
tool relates the “from/to” parameters of the “from” 
DesignDecisionObject to the interface parameters of 
the called procedure, thus clarifying the meaning of 
these parameters in terms of the tool requirements. 
Note that, while ExecutabIeProcedureCalls basically 
introduce the active database functionality provided 
by object-oriented languages such as SmallTalk [31], 
the GKBMS approach embeds the use of these 
methods in the pre-/postcondition controls defined by 
the calling decision classes to provide some knowl- 
edge about the semantics of the methods. This also 
defines something like (nested) design transactions. 

Instances of DesignTool are specifications of tools 
available in a concrete software engineering environ- 
ment. The corresponding tool objects normally have 
system-generated identifiers; therefore, we allow to 
substitute some surface representation of the pro- 
cedure call in the same way we introduced the “ !” 
notation for naming attribute objects implicitly. In 
fact, the user would normally only see these surface 
representations while the input-output information 
would be internal information generated and used by 
the system. This information hiding can be used 
to identify applicable tools in an efficient way by 
linking them physically directly to object classes (i.e. 
storing redundant derived information), or for other 
optimizations. 

As an example, assume that the “mapping assist- 
ant” supporting the normalization sub-decision in 
Section 4.2 is a Prolog procedure whose highest level 
might be defined roughly as follows: 

normalize ([-firstelI _restinput], [firstrel (_restoutput]):- 
hasnosetvaluedattr (firstrel), 
normalize (_restinput, _restoutput). 

normalize ([_firstrelI _restinput], _restoutput):- 
hassetvaluedattr (_attrlistl, firstrel), 
haskey (_atrlist2, -!irstrel), 
formrel (_attrlist2, _attrlistl, _newrel), 
append (_newrel, _restinput, _newrestinput), 
subtractattributes (firstrel, _attrlistl, _firstrelreduced), 
normalize ([_firstrelreduced]_newrestinput], _restoutput). 

The corresponding tool object might look like this: 

INDIVIDUALCLASS $normalize (nonfirstrelations, normalizedrelations)$ 
IN DesignTool WITH 

from 
toolspec: DBPL_RetNormalization 

to 
toolexec: PrologCall 

END 



A software process data model 107 

DesiqnDecisionObject 

DBPL_RefNormali.zation 

NormToolDecisionObject 

$normalize(nonfirstrelation,normalizedrelation)$ 

Fig. 16. Tool embedding in the GKBMS software process model. 

Figure 16 gives the semantic network structure for 
this example. This tool mode1 is also used to describe 
the tools for the ConceptBase environment itself, in 
particular, the user interface tools, the inference 
engines and consistency checkers for rule and con- 
straint processing, and the secondary storage man- 
agement (see Section 6.3). 

5. CONCEPTBASE: A PROTOTYPE 
IMPLEMENTATION 

Like other data-intensive information systems con- 
structed with the DAIDA approach, the software 
process data model should be realized with the 
DAIDA tools sketched in Section 2.1. However, since 
these are far from completed and would themselves 

need support from the GKBMS, the initial GKBMS 
implementation is based on a simpler support system 
named ConceptBase (Conceptual Mode1 Base Man- 
agement System) from which more efficient imple- 
mentations for very large knowledge bases will be 
bootstrapped. 

ConceptBase implements a CML kernel and usage 
environment based on the definitions in Section 3, 
augmented with features to describe multiple views 
of knowledge, system behaviours, complex object 
configurations and display facilities. This kernel can 
also serve as an implemented semantic specification 
for other implementations. A first prototype has been 
operational since spring 1988 [45]; a second one is 
scheduled for completion in April, 1989 [64]. The 
system runs on SUN-Workstations under Unix and 
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currently (February 1989) comprises about 40,000 sented as a knowledge base graph with efficient main 
lines of BIM-Prolog, C and interface code; the second memory-oriented database access. To work on these 
prototype also runs on VAX under VMS. objects, three operations are provided: 

The ConceptBase architecture, shown in Fig. 17, 
follows the three language levels of network, frame 
and conceptual model, offering extensibility and opti- 
mization strategies at each level to achieve efficiency. 
In the figure, strong boxes indicate modules which 
have been implemented and integrated into the sys- 
tem, whereas dotted boxes indicate modules either 
not yet integrated or not even fully implemented. Our 
software process data model can be considered one 
particular conceptual model; others, e.g. for team 
support (design conversation base) are being studied. 

create_proposition(_p)*reate the proposition -p 
in the knowledge base, 
retrieve_proposition(_p)-search for a proposition 
matching -p, 
store_proposition(_p)<reate -p if not already 
existent and 
delete_proposition(_p)+lelete the proposition 

-P. 

5.1. The ConceptBase kernel system 

The interface of the Proposition Processor repre- 
sents CML propositions at the network level by 
Prolog 5-tuples: 

propval ( id, source, label, destination, interval ). 

which are internally further subdivided and repre- 

The client of the proposition processor, the Object 
Processor, configures sets of propositions according 
to certain criteria, usually around a common source 
to build a frame. A frame object is internally repre- 
sented as a CML-fragment which resembles the parse 
tree of the frame-level syntax; the exact translations 
between frames and fragments, and between frag- 
ments and propositions is described in [45]. The tell 
and ask operations of the frame-level interface are 
translated to corresponding updates and queries at 

- tdl_objpmc - ask_objpmc 

Fig. 17. ConceptBase architecture and implementation status. 
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the fragment level. The feasibility of an object-level 

update transaction is verified by the Consistency 
Checker which utilizes information of the proposition 

processor. A special feature of ConceptBase, pio- 
neered by the KRYPTON system [46], is that the 
consistency checker has to integrate several kinds of 
integrity checking: enforcing the above-mentioned 
CML axioms, taking into account temporal con- 
sistency, and supporting one or more predicative 
assertion languages (subclasses of attribute class 
“constraint”). Recently proposed simplification 
algorithms for deductive databases (e.g. [54, 391) only 
support the assertional part of this problem; since a 
whole set of operations may be passed to the prop- 
osition processor together, set-oriented optimization 
of the consistency check is being studied. 

The Inference Engines may support various proof 
strategies for querying object properties via first- 
order logic expressions over CML objects. Since the 
same assertion language is used in rules (see rule 
propositions above), the inference engines are also 
capable of evaluating deduction rules. Several time 
calculi, e.g. Allen’s interval calculus [40] may be 
supported as well. 

In the first prototype, the Query Processor is mostly 
geared towards a focusing/browsing style of search; 
the second prototype also contains full rule-based 
querying facilities. The interface is implemented by 
the operation, ask_objproc(_q,_a), where -q stands 
for the query and _a for the answer. Possible values 
for _q are: 

exists(n) 

The answer is “yes” if there is an object 
with identifier _x in the proposition processor. 

get_object(_x) 
Information connected to _x is collected 
and returned as a frame data structure (called 
CML-fragment). 

get_links( ), get_ids( . ) 
A list of connected links (nodes) with 
common properties is computed and returned. 

[each, -pattern, where, -11. . , _ln] 

The answer contains all terms matching 
-pattern which satisfy the conjunction of the 
literals -11, . _ln. 

The second operation of the object processor, 
tell_objproc(_i,_r), passes new information to it. The 
parameter _i contains the information as a list of 
CML-fragments. If there are no syntactic or semantic 
errors, the object transformer translates the infor- 
mation into a set of equivalent propositions which is 
stored in the proposition processor and returned in 
parameter _r. Otherwise, _r holds the value “error”. 

5.2. The ConceptBase usage environment 

The ConceptBase usage environment is intended to 
make the hypertext-like style of CML practically 

available to the user. As a consequence, browsing, 
viewing and editing of knowledge bases should be 
possible symmetrically on the network as well as on 
the textual frame representation. In a typical knowl- 
edge engineering process for information systems 
development, an initial sketch of the knowledge base 
is obtained with graphical tools, then the details are 
worked out using textual tools. 

Formally, the interface tools are tools as described 
in Section 4.4, relating the content of the knowledge 
base to a (screen) view of it, according to a view 
definition that characterizes both the content and the 
layout of the view. By restricting the possible view 
definitions, most views can be made updatable; more- 
over, to gain different perspectives on the software 
process knowledge base, different symbols can be 
associated with objects of particular classes, thus 
mimicking well-known representational views such as 

data flow diagrams, entity-relationship diagrams, etc. 
In the following, we give a brief overview of the tools 
that are available for the current prototype [45]. 

The Conceptual Model Processor uses the object 
processor to combine tools for the manipulation of 
models which consist of all objects relevant to 
an application of ConceptBase, e.g. the CKBMS. 
Models constitute highly complex multi-level object 
structures which are maintained in hierarchies. 
Different models may share some objects or (sub-)- 
models. Configuring a model for a specific appli- 
cation means the activation of the corresponding 
nodes in the lattice, i.e. making their objects access- 
ible for the proposition processor. This work is done 
by the Model Configuration module which corre- 
sponds to a complex object database; to date, only a 
simple main memory version of this component has 
been implemented. 

The Display and Interaction module integrates 
man-machine communication into ConceptBase ob- 
jects and models; individual frame objects can be 
displayed and modified interactively, and models can 
be displayed, browsed and possibly reorganized in 
textual and graphical style. 

For the sake of modularity, the display and inter- 
action module is implemented in two layers. The 
bottom layer provides a set of interface tools which 
process uninterpreted strings (e.g. object identifiers) 
and structures; these interface tools do not know 
anything about the semantics of displayed objects 
and structures. The usuge environment relates these 
interface tools to the object processor by requesting 
object identifiers to be used in the interface tools. The 
current ConceptBase prototype offers the following 
interface development tools: 

declaration of menus and associated tools; 
textual and graphical editing of CML objects with 
syntactic and semantic checking; 
relational display with selection facilities; 
textual and graphical browsing of tree-like struc- 
tures (also with selection); 
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o interaction to obtain text commands from a user; 
l error window to record and display error messages 

of ConceptBase. 

These tools are embedded in a usage environment 
accessible through the ~~ne~~~~~T~~3~, which 
itself is realized by the menu declaration tool. Three 
main kinds of interaction with the knowledge base 
are currently offered: 

textual browsing of user-defined sub-networks 
(TextBrowser), 
graphical browsing of user-defined sub-networks 
(GraphBrow~r~, 
syntactically and semanti~lly controlled object 
display and update (Editor). 

Additionally, a system menu offers internal system 
operations (bulk-loading CML objects stored on 
externaf files, executing Prolog calls and stopping 
the system) and a configuration menu supports 
composition of conceptual models from submodels 
(invoking the Model C~n~g~~a#io~ module). 

The TextBrowser queries the user for a specifi- 

cation of the structure to be browsed by calling the 
interaction tool. Basically, such a specification con- 
sists of two parts. The first one specifies thefocus, i.e. 
the root of the hierarchical structure. The other one 
specifies how to compute the lower levels. The latter 
specifications are founded on the net-like represen- 
tation of CML in the PropositionProcessor, but 
accessed through the get-ids operation of the object 
processor. After completing the system, we noted its 
similarity to recent, independently developed so- 
called “idea processors” which allow a user to play 
with different alternative organizations for texts [55]. 

Similarly, but using the get-links rather than the 
get-ids operation, the Grap~~rowser obtains a net- 
like specification by calling the interaction tool, com- 
putes the corresponding structure of object identifiers 
using the object processor, and passes this structure 
to the graphical browsing tool. 

Both browsers permit the selection of objects, and 
invocation of tools such as the editor. The E&or 
allows displaying, analyzing, modifying and creating 
CML objects. Scanning, parsing and transfo~ation 
to CML-fragments is performed by Prolog programs 
automatically generated from definite clause gram- 

Fig. 18. Interaction of ConceptBase kernel and usage environment (mapping example). 
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Fig. 19. interaction of ConceptBase kernei and usage environment (hierarchical browsing). 

mars [56]. Thus, the editor can be easily adapted 
to a modified syntax or ObjectProcessor interface. 
Semantic integrity is checked by the ObjectProcessor 
during the tell operation. Each detected error is 
reported to an error window. 

The screendump in Fig. 18 illustrates the inter- 
action between (graphical) browser, editor and 
ObjectProcessor, using a small subproblem from the 
mapping example in Section 2.2. First, the user 
invoked the GraphBrowser to display all instances 
of DesignDecision and all instances of these 
instances (the object muphuitations is an instance 
of EntHierMapMoveDown which is an instance of 
DesignDecision, cf. Fig. 10). The user query was 
transformed into an appropriate call of ask-objproc 
returning a list of edges ready for layout by the graph 
browser. 

In the next step, the user mouse-selected the map- 
Inuitations node, and chose the editor tool from the 
displayed menu to zoom into and document the 
execution of this design decision (cf. also Fig. 3 and 
Section 2.3). The editor obtained the object frame 
(as known before the execution of the decision) 

by asking the ObjectProcessor for the existence of 
mupZnvitations and, since it existed, for the corre- 
sponding CML fragment (shown at the top of the 
session protocol in the “shelltool” window). Then, 
the user added the output attribute for mapinvitations 
and pressed the “tell” button, After successful 
parsing (shown in the upper part of the editor 
window), the corresponding CAL-fragment was 
passed to the Object Processor which stored it tem- 
porarily and checked the structural integrity of the 
new information, In this example, an error was 
detected and reported in the error window: attribute 
“rell” does not match its category “nonfirstrela- 
tions” since the design object InviteSelector is not an 
instance of DBPL_Rel_DO (it represents a DBPL 
selector rather than a DBPL relation). 

Subsequently, the screen dump in Fig. 19 demon- 
strates the use of the hierarchical TextBrowser for 
obtaining an overview of the work done so far. It 
shows the situation after the first sub-decision of 
our example; the pop-up menu option “applicable 
decisions” is just being activated, ostensibly leading 
to the second sub-decision (normalization). 
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6. APPLICATIONS 

The software process data model exploits the 
combination of the design decision idea and object- 
oriented construction principles to offer sufficient 
extensibility so that not only new tools but also new 
theories can be continuously added to the environ- 
ment and can be made reusable with little effort. Most 
importantly, of course, this should apply to the 
knowledge-based development support theories and 
tools developed in other subprojects of DAIDA. At 
least for the two mapping tasks from SML to 
TaxisDL, and from TaxisDL to DBPL, as well as for 
the requirements analysis task within SML, exper- 
iments have already started to classify and formalize 
these sub-environments so that they can utilize the 
GKBMS fully. Additionally, we are using the model 
extensively in the design and implementation of the 
ConceptBase system itself. 

6.1. Requirements modelling and design mapping 

CML and TaxisDL are formally rather similar 
languages, however, with different tasks in the 
DAIDA methodology. The CML level is concerned 
with collecting and organizing the requirements for 
the system to be developed. In doing so, it also has 
an important function in steering the subsequent 
design process, especially by considering design goals 
which can later be used for helping users choose 
among applicable decision classes [13]. So far, 
DAIDA has mostly consideredfunctional goals as the 
driving force for the decision classes (this is also what 
the first ConceptBase prototype supports) while other 
goals (performance, modularity, . . .) were at best 
treated as constraints or only as comments. Recently, 
experiments with integrating goal-oriented multiple 
criteria decision support into the model have begun 

[571. 
Within the requirements level, decisions have to be 

made what views of the world model to represent in 
the system model. Assuming this has been done, the 
CML-TaxisDL mapping [22] then decides how to 
represent the system model specification in TaxisDL 
terms, especially considering how much to represent 
the system model specification in TaxisDL terms, 
especially considering how much of the historical 
information present in the CML model should be 
retained for the TaxisDL model. Furthermore, class 
hierarchies can be reorganized with a view on efficient 
implementation, e.g. defining a new subclass for 
current information and storing the rest in another 
subclass that the TaxisDL-DBPL mapping could 
then relegate to a slow storage medium. 

A first attempt at classifying the kinds of decision 
classes to be made at these levels has given rise to the 
hope that an orthogonal combination of the follow- 
ing two kinds of decision classes could represent a 
structured and fairly complete coverage: 

l Ontology-Design objects at both levels come 
as informations about either entities, activities, 

l 

constraints or goals. Thus, we need classes for: 
(a) developing requirements for these; (b) deciding 
which of them to represent in the system; and 
(c) to what degree and with what methods (es- 
pecially concerning time) to map them between 
CML and TaxisDL. The choice between the poss- 
ible decisions should be governed by the design 
goals specified in the requirements analysis. 
Epistemology-CML and TaxisDL provide 
(slightly different versions of) abstraction prin- 
ciples like aggregation, generalization and class@- 
cations, together with their reverse operations of 
decomposition, specialization and instantiation. 
Each of these six abstraction (resp. specification) 
operators corresponds to a decision class that 
specifies a relationship between smaller and larger 
objects or subtasks. For example, aggregation can 
be used to relate the mapping of a whole class to 
the mapping of its attributes; similarly, mapping 
of ISA relates the mapping of a complete hierarchy 
of objects (as in our TaxisDL-DBPL example) to 
that of its individual members. Goal decompo- 
sition as a strategy for elaborating requirements 
within the CML level is another example of an 
aggregation class, whereas (as in our software 
process model definition) classification can be 
provided to define suitable application-specific 
sublanguages for a mapping task. Note that 
classification differs between CML and TaxisDL: 
a CML metaclass heirarchy has to be flattened in 
the mapping to TaxisDL, using metalevel amalga- 
mation similar to the one proposed in [%I. 

Ideally, there should only be a smail set of basic 
mapping decisions for each of the above types, rather 
than separate rules for all conceivable combinations 
or even sequences of combinations. Using orthogonal 
aggregation of such decision classes, more complex 
methodologies for the mapping can be formed. This 
would clarify the structure of dependencies at the 
description level as well as facilitating communication 
between the individual tools and the GKBMS. 

6.2. TaxisDL-DBPL mapping 

In the examples of this paper, the mapping task 
from the object-oriented knowledge representation 
language TaxisDL to the set-based, module-oriented 
database programming language DBPL has been 
highly oversimplified. Indeed, we only considered 
some of the data structure aspects; the mapping of 
transactions turns out to be much more difficult and 
requires full support by formal software development 
methods. The method used in DAIDA exploits ex- 
perience with mathematical specification techniques, 
using the language Z and its derivatives [21]. In this 
approach, design objects correspond to so-called 
abstract machines that represent data structures, 
operations and constraints of a particular application 
module; decisions correspond to formal transfor- 
mations supported by theorem-proving assistance 
tools. 
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Based on these experiences, the TaxisDL-DBPL 
mapping is intended to proceed in three steps with 
corresponding decision classes [24]: 

l translation of TaxisDL model to abstract machine 
i la Abrial, 

l refinement of abstract machine towards efficient, 
modular implementation, 

l translation of final machines to DBPL program. 

Disregarding the initial and final steps (which are 
automated translations), the intermediate design ob- 
jects are abstract machines whose descriptions have 
roughly the following structure: 

INDIVIDUALCLASS AbstractMachine 
IN DesignObject WITH 
attribute 

context: DataObjects 
variable: Name 
invariant: FunctionalConstraintClass 
operations: FunctionText 

END 

The decision classes of this mapping correspond 
to generalized substitutions in abstract machines; 
in contrast to the CML-TaxisDL mapping, such 
substitutions consider entity, activity and constraint 
mapping simultaneously. Among the abstraction 
operations mentioned above, aggregation of such 
objects plays the central role. There is no generaliz- 
ation (although the notion of substitutions is closely 
related to that of inheritance) while metaclass-like 
notation extensions are simulated by import from 
other abstract machines. An important aspect of 
decision semantics in the sense of our model is the 
documentation and management of proof obligations 
and already proven lemmata. 

6.3. ConceptBase development 

The software process data model has also played 
a major role in designing and implementing the 
ConceptBase system itself. The main emphasis has 
been on dealing with very large software knowledge 
bases, and on providing multiple views with user- 
friendly interaction facilities in a uniform framework. 
In [44], three specific application areas are described 
in detail. 

Eficient deductive query processing and integrity 
checking-CML rules and constraints are modelled 
internally as particular (deterministic?) decision 
classes for which tools-triggered query processors 
and constraint checkers-are automatically gener- 
ated by tools associated with the predefined meta- 
classes RuleClass and ConstraintClass. Luckily, the 

tThere is an interesting relationship between the design 
decision concept in general with non-deterministic data- 
base update operations as discussed in [59]. This rela- 
tionship could serve as the foundation of a theory of the 
power of particular design decision class languages but 
we have hardly begun to study this idea. 

decision class structure turns out to provide exactly 
the kind of graphs needed for the plethora of algor- 
ithms proposed for deductive query optimization [60] 
and integrity control [54, 391. Specialized graph 
structures can be defined by specialized attribute 
categories for the input-output attributes. Thus, the 
structure is independent of a particular style of rule 
or optimization algorithm; specific optimization ideas 
can be defined at the metalevel as in rule-based 
optimizer generators, thus serving as a testbed for 
various optimization procedures. An extension of the 
algorithm in [54] is currently being integrated into the 
second ConceptBase prototype [61]. Note that, using 
redundant design object and design decision classes 
together with the dependency structures defined in 
their descriptions, we can also integrate the redun- 
dant storage and maintenance of derived data to 
increase efficiency. 

Version and configuration management-Configur- 
ations are viewed as composite objects put together 
according to configuration decisions. The use of the 
decision-based version and configuration model has 
substantially simplified the portation of the initial 
SUN-UNIX prototype to the VAX-VMS version. 
Commercial configuration tools such as MAKE in 
UNIX or MMS in VMS support such decisions at the 
source level and administer the ConceptBase system 
components (currently about 80 system modules, plus 
many example applications). In combination with a 
conceptual configuration decision model under devel- 
opment in our group, version and configuration 
management will become possible even across 
heterogeneous hardware and system software 
environments [63]. 

Knowledge base perspectives and user interfaces- 
The above models can be applied to the handling of 
multi-window interactions with the system in a hyper- 
text-like style. A window is viewed as a particular 
configuration of derived objects which corresponds to 
a configuration of internal knowledge base objects, 
thus giving a clean semantics to window-based up- 
dates. For this purpose, the configuration model had 
to be extended by equivalent representation mapping 
decisions. 

Summarizing, the software process data model 
provides us with a way to describe a large number of 
important implementation issues not just with ob- 
scure internal languages but with the surface knowl- 
edge representation language of the system itself, thus 
facilitating experimentation with, and extensibility of, 
the system. 

7. CONCLUSIONS 

In this paper, we proposed a data model which 
represents software development as a process of 
tool-supported design decisions operating on abstract 
design objects. This model is different from other 
attempts in that it explicitly considers the functional- 
ity of tools, but at the same time emphasizes the 
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non-deterministic nature of human design decisions. the other DAIDA partners for valuable discussions. and to 
many students, notably Michael Gocek, Eva Kruger, Hans 
Nissen and Martin Staudt for implementation work. Com- 
ments by John Mylopoulos helped to put our work better 
in perspective. 

Moreover, the way how tools are attached to design 
decisions seems to point a way out of the integrity 
control problems associated with freely usable 
methods in some object-oriented languages and 
databases. 

Although the experience with various experimental 
applications is quite encouraging, several extensions 
appear useful or even necessary. 

Firstly, we would like to broaden the scope of 

development paradigms beyond the initial DAIDA 
approach. One alternative method, followed in the 
new ESPRIT project ITHACA, is to strengthen the 
emphasis on reusability beyond the context of tool 
modelling; based on a requirements model, existing 
building blocks are selected from a software library 
and configured to application systems, rather than 
developing new programs each time. Another alter- 
native, currently being studied for envjronmental 
protection applications in collaboration with the 
FAW Institute in Ulm, West Germany, is the loose 
coupling of independently developed software sys- 
tems under the common conceptual umbrella of a 
“competence model”. Here, the idea is to make 
organi~tional knowledge available to users even 
if no coherent requirements analysis has been 
conducted. 

The second group of extensions concerns more 
explicit support for the decision-making process. In 
particular, we wish to take seriously the ISA link 
between the metaclasses ~e~~g~~ecj~~o~ and Design - 
object in our model, i.e. design decisions are objects 
that can evolve, be talked about, justified by other 
decisions, etc. On the one hand, this requires a better 
understanding of decision support methodologies for 
goal-driven design. On the other, we have to set up 
a design conversation network among the stake- 
holders and workers in a software project. This 
involves the conceptual representation of agents, 
structural messages, negotiation positions, commit- 
ments and the like, but also the introduction of group 
support tools such as multi-media real-time confer- 
encing support. Corresponding extensions of our 
model and of the ConceptBase prototype are 
implemented in the second prototype [64]. 

A final set of research questions is concerned with 
broadening the scope of application areas to design 
and maintenance tasks beyond the information 
systems domain. Co-authoring of technical natural 
language documents (e.g. user d~umentation for 
software) is a typical candidate we are currently 
beginning to investigate [65]. 

Acknowledgements-This work was supported in part by 
the European Commission under ESPRIT Contract 892 
(DAIDA) and by the Deutsche Forschungsgemein~haft in 
the “Objectbanks for Experts” program (Grant Ja445/1-1). 
DAIDA nartners include the software houses BIM/Belgium, 
GFI/France, SCS/Germany; and the research institutions 
FORTH/Greece, University of Frankfurt/Germany and 
University of Passau/Germany. The authors are grateful to 

REFERENTS 

[I] M. L. Brodie and J. Mylopoulos (Eds). On Knowledge 
Base Management Systems. Springer-Verlag, New 
York (1986). 

[2] V. Dhar and M. Jarke. Dependency-directed reasoning 
and iearning in systems maintenance support. IEEE 
Trans. Software Engng SE-14(2), 21 l-227 (1988). 

[3] J. Mylopoulos, P. A. Bernstein and H. K. T. Wong. 
A language for designing interactive data-intensive 
applications. ACM Trans. Database Systems 5(2), 
185-207 (1980). 

[4] S. Greenspan, A. Borgida and J. Mylopoulos. A 
requirements modelling language and its logic. In ]I] 
pp. 471-502 (1986). 

[5] J. Winkler (Ed.). Prof. Int Workshop on Software 
Versioning and Configuration Control, Grassau, F.R.G. 
Teubner, Stuttgart, F.R.G. (1988). 

[6] P. A. Bernstein. Database support for software engin- 
eering. Proc. 9th Int. Conf Software Engineering, San 
Francisco, pp. 166-178 (1987). 

[7l L. A. Rowe and S. Wensel (Eds). Proc. ACM- 
SICMOL, Workshop on Software CAD Datab~es, 
Napa, Calif. (I 989). 

[8] A. Borgida, M. Jarke, J. Mylopoulos, J. W. Schmidt 
and Y. Vassiliou. The software development en- 
vironment as a knowledge base management system. 
Foundations of Knowledge Base Management (Edited by 
J. W. Schmidt and C. Thanos). Springer-Verlag, 
Heidelberg (1989). 

[9] M. Jarke. DAIDA Team. The DAIDA environment 
for knowledge-based information systems develop- 
ment. Proc. ESPRIT Conf ‘88: Putting the Technology 
to Use, Brussels, Belgium, pp. 405422 (1988). 

[IO] P. P. S. Chen. The entity-relationship model: towards 
a unified view of data. ACM Trans. Database Systems 
l(l), 9-36 (1976). 

[ll] J. L. Peterson. Petri nets. ACM Comput. Sure. 9(3), 
223-252 (I 977). 

[12] J. Doyle. A truth maintenance system. ArtiJcint Inrelf. 
12, 231-272 (1979). 

[13] J. Mostow. Towards better models of the design pro- 
cess. AI Mug. 6(l), 44-57 (1985). 

[14] M. T. Stanley. CML: a knowledge representation 
language with application to requirements modeling. 
MS. Thesis, University of Toronto, Canada (1986). 

[is] M. Koubarakis, J. Mylopoulos, M. Stanley and M. 
Jarke. Telos: a knowledge representation language for 
requirements modellinn. Technical Reuort CSRI-222, 
University of Toronto-(1988). _ 

[16] A. Borgida, E. Meirlaen, J. Mylopoulos and J. W. 
Schmidt. The TAXIS design language (TDL). Report, 
ESPRIT Project 892 (DAIDA), Institute of Computer 
Science, Research Center of Crete, Greece (1987). 

[17] J. W. Schmidt, H. Eckhardt and F. Matthes. Exten- 
sions to DBPL: towards a type-complete database 
programming language. Report ESPRIT Project 892 
(DAIDA), Universitlt Frankfurt, F.R.G. (1988). 

[18] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. 
Geiselbrechtinger, R. Gnatz, E. Hangel, W. Hesse, B. 
Krieg-Bruckner, A. Laut, T. Matzner, B. Mbller, F. 
Nick], H. Partsch, P. Pepper, K. Samuelson, M. Wirsing 
and H. Wiissner. The Munich Project CIP, Volume I: 
The Wide Spectrum Language CIP-L, Lecture Notes in 
Computer Science 183. Springer-Verlag, Berlin (1985). 

[19] D. R. Smith, G. B. Kotik and S. J. Westfold. Research 



A software process data model 115 

on knowledge-based software engineering environ- [38] J. Gray. The transaction concept: virtues and limi- 

ments at Kestrel Institute. IEEE Trans. Software Engng tations Proc. 7th Int. Conf Very Large Data Bases, 
SE-ll(ll), 12781295 (1985). Cannes, pp. 144154 (1981). 

[20] R. C. Waters. The programmer’s apprentice: a session 
with KBEmacs. IEEE Trans. Software Engng SE- 
ll(ll), 12961320 (1985). 

[21] J. M. Spivey. An introduction to 2 and formal specifi- 
cations Tutorial Notes, Oxford University, U.K., Pre- 
sented at ESEC ‘87, Strasbourg, France (1987). 

1221 M. Mamalaki. M. Marakakis. M. Mertikas. T. 

[39] F. Sadri and R. A. Kowalski. A theorem-proving 
approach to database integrity checking. Foundations 
of Deductive Databases and Logic Programming (Edited 
by J. Minker), pp. 313-362. Morgan Kaufmann. Los 
Altos, Calif. (1988). 

[40] J. Allen. Maintaining knowledge about temporal inter- 
vals Commun. ACM 26(1 l), 832-843 (1983). 

[41] R. G. Smith, T. M. Mitchell, P. H. Winston and B. G. 
Buchanan. Representation and use of explicit justifi- 
cations for knowledge base refinement. Proc. Yth 
Int. Joint Conf Artificial Intelligence. Los Angeles. 
pp. 673680 (1985). 

. _ 
Topaloglou and Y. Vassiliou. On the development of 
information systems: from requirements modelling 
to system design. Proc. EURINFO ‘88, Athens, 
pp. 560-567 (1988). 

[23] E. Meirlaen and J.-M. Trinon. An object-based proto- 
typing workbench for Prolog. Proc. ESPRIT Conf ‘88: 
Putting the Technology to Use, Brussels, Belgium, 
pp. 423437 (1988). 

[24] M. Weigele and I. Wetzel. TDL-DBPL mapping: 
methodology and first experiences. Report, ESPRIT 
Project 892 (DAIDA), Universitlt Frankfurt, F.R.G. 
(1988). 

[25] D. Batory and W. Kim. Modeling concepts for VLSI 
CAD objects. ACM Trans. Database Systems 10(3), 
3222346 (1985). 

[26] M. Jarke, M. Jeusfeld and T. Rose. A global KBMS for 
database software evolution: design and development 
strategy. Report MIP-8722, Universitat Passau, F.R.G. 
(1987). 

[27] M. Bouzeghoub, G. Gardarin and E. Metais. Database 
design tools: an expert systems approach Proc. 11th Int. 
Conf Very Large Data Bases, Stockholm, Sweden, 
pp. 82295 (1985). 

[28] G. E. C. Weddell. Physical design and query compi- 
lation for a semantic data model. Ph.D. Thesis, Dept 
Computer Science, University of Toronto (1987). 

[29] M. Jarke, V. Linnemann and J. W. Schmidt, 
Data constructors: on the integration of rules and 
relations. Proc. 11th Int. Conf. Very Large Data Bases, 
Stockholm, pp. 227-240 (1985). 

[30] S. A. Dart, R. J. Ellison, P. Feiler and N. Habermann. 
Software development environments. IEEE Comput. 
20(11), 18-28 (1988). 

[31] A. Goldberg and D. Robson. SMALLTALK 80: The 
Language and its Implementation. Addison Wesley, 
Reading, Mass. (1983). 

[32] R. Katz, E. Chang and R. Bhateja. Version modeling 
concepts for computer-aided design databases. Proc. 
SIGMOD Int. Conf Management of Data, Washington, 
pp. 3799386 (1986). 

[33] K. Abramowicz, K. R. Dittrich, W. Gotthard, R. 
Langle. P. C. Lockemann, T. Raupp, S. Rehm and 
T. Wenner. Datenbankunterstiitzung fur Software- 
Produktionsumgebungen. Proc. Datenbanken in 
Biiro, Technik und Wissenschaft, Darmstadt, F.R.G., 
pp. 116-131 (1987). 

[34] J. M. Smith and D. C. P. Smith. Database abstraction: 
aggregation and generalization. ACM Trans. Database 
Systems 212). 1055133 (1977). 

]351 

1361 

[371 

P. Lyngbadk and W. Kent. A data modelling 
methodology for the design and implementation of 
information systems. Proc. Int. Workshop on Object- 
Oriented Database Systems, Pacific Grove, Calif. 
(1986). 
S. E. Hudson and R. King. Object-oriented database 
support for software engineering. Proc. ACM- 
SIGMOD Int. Conf Management of Data, San 
Francisco, pp. 491-503 (1987). 
J. Banerjee, W. Kim, H.-J. Kim and H. F. Korth. 
Semantics and implementation of schema evolution in 
object-oriented databases, Proc. ACM-SIGMOD Int., 
Conf Management of Dafa, San Francisco, pp. 31 l-322 

[42] A. Borgida, T. Mitchell and K. Williamson. Learning 
improved integrity constraints and schemas from 
exceptions in databases and knowledge bases. In [1] 
pp. 259-286 (1985). 

[43] M. Koubarakis, J. Mylopoulos, M. Stanley and A. 
Borgida. Telos: features and formalization. Technical 
Report FORTH/CSI/TR/ 1989/018, Computer Science 
Institute, Iraklion, Greece (1989). 

[44] M. Jarke, M. Jeusfeld and M. Rose. Software process 
modelling as a strategy for KBMS implementation. 
Proc. First Int. Conf. on Deductive and Object-Oriented 
Dntabases, Kyoto, Japan, pp. 4955515 (1989). 

[45] M. Jarke, M. Jeusfeld and T. Rose. A global KBMS for 
database software evolution: implementation of first 
ConceptBase prototype. Report MIP-8819. Universitit 
Passau, F.R.G. (1988). 

[471 

[481 

1491 

[46] R. J. Brachman and H. Levesque. Tales from the far 
side of KRYPTON. Proc. First Int. Con/. Exoert 
Database Systems, pp. 343. Benjamin Cummings; 
Menlo Park, Calif. (1987). 
J. de Kleer. An assumption-based TMS. Artificial 
Infell. 28(2). 127-163 (1986). 
F. Bancilhon. Object-oriented databases. Proc. 7th 
ACM Symp. Principles of Database S.ystems, Austin, 
pp. 152-163 (1988). 
S. Katz, C. A. Richter and K.-S. The. PARIS: a 
system for reusing partially interpreted schemata. Proc. 
9th Int. Confi Software Engng. Monterev. DD. 3777386 (1987). . .I ., . . I 

G. Attardi and M. Simi. Metalanguage and reasoning 
across viewpoints. Proc. ECAI ‘84, Pisa. Italy, 
pp. 315-324 (1984). 
D. S. Wile and D. G. Allard. Worlds: an organizing 
structure for obiect-bases. Proc. 2nd Svmn. on Practical 
Software Environments (1986). . ’ 
S. M. McMenamis and J. F. Palmer. Essential Systems 
Analysis. Yourdon Press, Englewood Cliffs, New Jersey 
(1984). 

1501 

]511 

[521 

1531 

1541 

D. Tsichritzis (Ed.). Active object environments. Re- 
port, Centre Universitaire d’Informatique, Universite 
de Geneve, Switzerland (1988). 
F. Bry, H. Dekker and M. Manthey. A uniform 
approach to constraint satisfaction and constraint satis- 
liability in deductive databases. Proc. EDBT, Venice, 
Italy, pp. 4888505 (1988). 

[55] L. F. Young. Decision Support and Idea Processing 
Systems. Dubuque. Brown, Iowa (1988). 

[56] F. C. N. Pereira and D. H. D. Warren. Definite clause 
grammars for language analysis-a survey of the for- 
malism and a comparison with augmented transition 
networks. Artificial Intell. 13, 23 l-278 (1980). 

[57] L. Pletz. Mehrkriterienunterstiitzung fur Entwurfsent- 
scheidungen in Softwareprozessen. Diploma Thesis, 
University of Passau, F.R.G. (1989). 

[58] K. A. Bowen and R. A. Kowalski. Amalgamating 
language and metalanguage in logic programming. 
Logic Programming (Edited by S. A. Tarnlund), 
pp. 1533172. Academic Press, New York (1982) (1987). 



116 MATTHIAS JARKE et al. 

I.591 S. Abiteboul and V. Vianu. Dataiog extensions for process model. Proc. 12th int. ConjY on Software Engng, 
database queries and updates. INRIA Research Report Nice, France (1990). 
900, Rocquencourt, France (1988). [63] S. Eherer, M. Jarke, M. Jeusfeld, A. Miethsam and T. 

[60] J. D. Ullman. Principles of Database and Knowledge- Rose. Concept&use V2.0 User Manual. Report MIP- 
base Systems, Vol. 2. Computer Science Press, 8936, University of Passau, F.R.G. (1989). 
Rockville (1989). [64] U. Mahn, M. Jarke, K. Kreplin, M. Farusi and F. 

[61] E. Kriiger. Integritgtspriifung in deduktiven Objekt- Pimpinelli. COAUTHOR: a hypermedia group author- 
banken am Beispiel von ConceptBase. Diploma Thesis, ing environment. Proc. European Conf: on Computer- 
University of Passau, F.R.G. (1989). Supported Cooperative Work, Gatwick, U.K. (1989). 

[62] T. Rose and M. Jarke. A decision-based configuration 


