
17th Edition of

ECOOP Doctoral Symposium

and PhD Workshop

Proceedings

July 30, 2007, TU Berlin, Germany

Danny Dig (Ed.)

Bericht-Nr. 2007 – 7

ISSN 1436-9915

Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DepositOnce

https://core.ac.uk/display/326320892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Table of Contents

ECOOP Doctoral Symposium and PhD Workshop Organization ..…… iii

Doctoral Symposium …………………………………………………………………

• Refactoring-Based Support for Binary Compatibility
in Evolving Frameworks …………………………………………………………...3

 Ilie Savga and Uwe Aßmann (Technische Universitat Dresden)

• An Integrated Quantitative Assessment Model for
Usability Engineering ……………………………………………………………….7
Haidar S Jabbar, Gopal T. V., and Sattar J Aboud (Anna University)

• The Design and Implementation of Formal Monitoring Techniques……….11
Eric Bodden (McGill University)

• Flexible Ownership Domain Annotations for
Expressing and Visualizing Design Intent ………………………………………..15
Marwan Abi-Antoun and Jonathan Aldrich (Carnegie Mellon University)

• Modelling Change-based Software Evolution………………………………...19
Romain Robbes and Michele Lanza (University of Lugano)

• A Rewriting Approach to the Design and Evolution
of Object-Oriented Languages ……………………………………………………23
Mark Hills and Grigore Rosu (University of Illinois at Urbana-Champaign)

PhD Workshop …………..……………………………………………………………

• Checking Semantic Usage of Frameworks …………………………………...29
Ciera Christopher Jaspan (Carnegie Mellon University)

• An Integrated Method based on Multi-Models and Levels of Modeling for

Design and Analysis of Complex Engineering Systems ……………………..39
Michel dos Santos Soares and Jos Vrancken (Delft University of Technology)

• Ordering Functionally Equivalent Software Components ………………….49
Giovanni Falcone and Colin Atkinson (University of Mannheim)

 iii

ECOOP Doctoral Symposium and PhD Workshop
Organization

Chair and Organizer: Danny Dig, University of Illinois at Urbana-Champaign

Program Committee: Danny Dig, University of Illinois at Urbana-Champaign

Jacqueline McQuillan, National University of Ireland

Naouel Moha, University of Montreal

Javier Perez, Universidad de Valladolid

Mikhail Roshchin, Volvograd State Tech University

Additional Reviewers: Paul Adamczyk, University of Illinois at Urbana-Champaign

 José Manuel Marqués Corral, University of Valladolid

 Foutse Khomh, University of Montreal

 Guillaume Langelier, University of Montreal

 Miguel Ángel Laguna Serrano, University of Valladolid

Manuel Barrio Solórzano, University of Valladolid

 Mircea Trofin, Microsoft

Stéphane Vaucher, University of Montreal

We would like to thank AITO for its generous funding and its mission to support the
Object technology.

Doctoral Symposium

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

1

17th edition of the ECOOP Doctoral Symposium and PhD Workshop)

2

Refactoring-Based Support for Binary

Compatibility in Evolving Frameworks

Ilie Şavga and Uwe Aßmann (supervisor)

Institut für Software- und Multimediatechologie, Technische Universität Dresden,
Germany, {ilie.savga|uwe.assmann}@tu-dresden.de⋆⋆

Abstract. The evolution of a software framework may invalidate exist-
ing plugins—modules that used one of its previous versions. To preserve
binary compatibility (i.e., plugins will link and run with a new framework
release without recompilation), we automatically create an adaptation
layer that translates between plugins and the framework. The creation
of these adapters is guided by information about syntactic framework
changes (refactorings). For each refactoring that we support, we for-
mally define a comeback—a refactoring used to construct adapters. For
an ordered set of refactorings that occurred between two framework ver-
sions, the backward execution of the corresponding comebacks yields the
adaptation layer.

1 Problem Description

Frameworks are software artifacts, which evolve considerably. A framework may
change due to new requirements, bug fixing, or quality improvement. As a con-
sequence, existing plugins may become invalid; that is, their sources cannot be
recompiled or their binaries cannot be linked and run with a new framework
release. Either plugin developers are forced to manually adapt their plugins or
framework maintainers need to write update patches. Both tasks are usually ex-
pensive and error-prone. When the application has been delivered to a customer,
it even may be undesirable to require plugin recompilation.

To analyze the nature of the client-breaking changes, Dig and Johnson [8]
investigated the evolution of four big frameworks. They discovered that most
(from 81% up to 97%) of such changes were refactorings—behavior-preserving
source transformations [14]. The reason why pure structural transformations
break clients is the difference between how a framework is refactored and how
it is used. For refactoring it is generally assumed, that the whole source code
is accessible and modifiable (the closed world assumption [8]). However, the
frameworks are used by plugins not available at the time of refactoring. As a
consequence, plugins are not updated correspondingly.

The existing approaches overcoming the closed world assumption of compo-
nent evolution can be divided into two groups. Approaches of the first group

⋆⋆ The presented work is funded by the Sächsische Aufbaubank, project number
11072/1725.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

3

rely on the use of a kind of legacy middleware (e.g., [3], [2], [13], [5]) or, at least,
a specific communication protocol ([12], [9]) that connect a framework with its
plugins. This, in turn, implies a middleware-dependent framework development,
that is, the framework and its plugins must use an interface definition language
and data types of the middleware and obey its communication protocols.

The second group consists of approaches to distribute the change specifica-
tions and to make them available for the clients remotely. The component devel-
oper has to manually describe component changes either as different annotations
within the component’s source code ([4], [6], [15]) or in a separate specification
([11]). Moreover, the developer must also provide adaptation rules, which are
then used by a transformation engine to adapt the old application code. Writing
annotations is cumbersome and error-prone. To alleviate this task, the ”catch-
and-replay” approach [10] records the refactorings applied in an IDE as a log
file and delivers it to the application developer, who “replays” refactorings on
the application code. Still, current tools do not handle cases when a refactoring
cannot be played back in the application context. For example, they will report
a failure, if the renaming of a component’s method introduces a name conflict
with some application-defined method.

2 Goal Statement

Our goal is to decrease the costs of plugin update in case of framework evo-
lution. As a framework evolves, it should not break existing applications that
conform to the Application Programming Interface of its previous releases. More
specifically, we want to achieve automatic binary compatibility of framework
plugins—existing plugins must link and run with new framework releases with-
out recompiling [9].

Our solution is to automatically create, upon the release of a new framework
version, an adaptation (wrapper) layer between the framework and plugins. The
generation of adapters is guided by information about the refactorings that oc-
curred between framework releases. The adapters then shield the plugins by
representing the public types of the framework old version, while delegating to
the new version.

We focus on the following research issues and questions:

– Demarcate the adaptation context. What are the limitations of the proposed
technology? Can any possible refactoring (e.g., pure deletion of functionality)
be supported? If no, what is a basic set of supported refactorings?

– Relate to existing work. How can we build our work using existing formal
approaches for refactoring specifications? How easy can we integrate our
approach with existing refactoring tools?

– Estimate performance and scalability. What is the performance overhead
introduced by adaptation? Which programming languages and development
platforms and to which extent can be supported?

We will answer these questions and provide tool support as a result of a
project performed in collaboration with our industrial partner Comarch [1].

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

4

3 Approach

Basic Assumptions. Our main assumption is that the information about refac-
torings occured between framework releases is available. This information can
be obtained, for instance, by recording the applied refactorings in IDE ([10]) or
detecting them in the source code (e.g. [17], [7]). Moreover, we assume that the
order of refactoring execution is known.

Automated Adaptation. For each supported refactoring we formally de-
fine a comeback—a behavior-preserving transformation that defines how a com-
pensating adapter is constructed. Because comebacks are formally defined, they
serve as input specifications for an adapter generator. For an ordered set of
refactorings that occured between two framework versions, the execution of the
corresponding comebacks in the reverse order yields the adaptation layer.

A comeback is defined in terms of refactoring operators to be executed on
adapters. For some refactorings, the corresponding comebacks are simple and de-
fined by a single refactoring. For example, to the refactoring RenameClass (name,
newName) corresponds a comeback consisting of a refactoring RenameClass
(newName,name) that renames the adapter to the old name. For other refac-
torings, their comebacks consist of sequences of refactorings. For instance, the
comeback of MoveMethod is defined by DeleteMethod and AddMethod refactor-
ing operators, which sequential execution effectively move the method between
the adapters. A detailed description of our approach including formal comeback
definition and current results is presented in [16].

Tool Support. Due to the requirements of our industrial partner, the tool
is being implemented as a stand-alone application supporting .NET-based ap-
plications. Nevertheless, we plan to integrate it into an IDE and to evaluate
our adaptation approach for Java applications, too. The most important tool re-
quirements are the number of supported refactorings and the tool’s extensibility
with new comebacks.

Evaluation. We will apply the tool to maintain both a big framework of our
partner and a medium-size framework used for teaching at our university. We
will evaluate how the use of our tool fosters framework maintenance by changing
the type and number of applied API refactorings comparing to existing restric-
tive approaches. We will also perform banchmarking to estimate the performance
penalties introduced by adaptation and the percentage of the supported modifi-
cation operators (recall). Finally, we will test adapters and compare the results
with the bug reports in case of manually implemented patches.

Discussion. Besides information about the public types and the refactoring
history, our approach needs no additional component specifications. However,
the latter are required to support modifications that go beyond refactoring (e.g.,
protocol changes). To adapt a broader range of changes, we will investigate and
propose how to combine other adaptation techniques with our refactoring-based
approach.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

5

References

1. Comarch homepage. http://www.comarch.com.
2. CORBA homepage. http://www.corba.org.
3. Microsoft COM homepage. http://www.microsoft.com/Com/default.mspx.
4. I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library migration.

In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on
Object oriented programming, systems, languages, and applications, pages 265–279,
New York, NY, USA, 2005. ACM Press.

5. J. Camara, C. Canal, J. Cubo, and J. Murillo. An aspect-oriented adaptation
framework for dynamic component evolution. In 3rd ECOOP Workshop on Re-
flection, AOP and Meta-Data for Software Evolution, pages 59–71, 2006.

6. K. Chow and D. Notkin. Semi-automatic update of applications in response to
library changes. In ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, page 359, Washington, DC, USA, 1996. IEEE Computer
Society.

7. D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automated detection of
refactorings in evolving components. In D. Thomas, editor, ECOOP, volume 4067
of Lecture Notes in Computer Science, pages 404–428. Springer, 2006.

8. D. Dig and R. Johnson. The role of refactorings in API evolution. In ICSM ’05:
Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 389–398, Washington, DC, USA, 2005. IEEE Computer Society.

9. I. R. Forman, M. H. Conner, S. H. Danforth, and L. K. Raper. Release-to-release
binary compatibility in SOM. In OOPSLA ’95: Proceedings of the tenth annual
conference on Object-oriented programming systems, languages, and applications,
pages 426–438, New York, NY, USA, 1995. ACM Press.

10. J. Henkel and A. Diwan. Catchup!: capturing and replaying refactorings to support
API evolution. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 274–283, New York, NY, USA, 2005. ACM Press.

11. R. Keller and U. Hölzle. Binary component adaptation. Lecture Notes in Computer
Science, 1445:307–329, 1998.

12. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support for
type-safe dynamic java classes. In ECOOP ’00: Proceedings of the 14th European
Conference on Object-Oriented Programming, pages 337–361, London, UK, 2000.
Springer-Verlag.

13. F. McGurren and D. Conroy. X-adapt: An architecture for dynamic systems. In
Workshop on Component-Oriented Programming, ECOOP, Malaga, Spain, pages
56–70, 2002.

14. W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.

15. S. Roock and A. Havenstein. Refactoring tags for automatic refactoring of frame-
work dependent applications. pages 182–185, 2002.

16. I. Savga and M. Rudolf. Refactoring-based adaptation for binary compatiblity
in evolving frameworks. In Proceedings of the Sixth International Conference on
Generative Programming and Component Engineering, Salzburg, Austria, October
2007. To appear.

17. P. Weissgerber and S. Diehl. Identifying refactorings from source-code changes.
In ASE ’06: Proceedings of the 21st IEEE International Conference on Auto-
mated Software Engineering (ASE’06), pages 231–240, Washington, DC, USA,
2006. IEEE Computer Society.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

6

An Integrated Quantitative Assessment Model for

Usability Engineering

Haidar S Jabbar, Gopal T V (advisor) and Sattar J Aboud

1Department of Computer Science and Eng., Anna University, Chennai 600025, INDIA

haidar_sattar@yahoo.com, gopal@annauniv.edu
2Middle East University for Gradute Studies, Faculty of IT, Amman, Jordan

sattar_aboud@yahoo.com

Abstract. Many different quantitative usability assessment models have been

proposed to measure and report the usability of a general software product.

However, there are a number of problems associated in existing models that

often result in subjective or biased usability assessments. Therefore, an

integrated, consolidated and quantitative usability assessment model is required,

to provide an entire construct of usability and to provide an improved estimation

of the usability sample size. In this research, we propose an Integrated
Quantitative Assessment Model for Usability Engineering (IQAMUE) for

measuring and reporting usability, which improves the usability assessment

measurement process at least in 3 points: (1) a broader integration of general

potential usability factors and metrics, (2) employing statistical methods for

normalizing the calculated metrics and (3) an improved estimation of the

usability assessment sample size. Together the theoretical work, the conducted
empirical case studies and the simulator tool developed, indicate that the

proposed model effectively resolves and integrates major research problems

found in the literature.

Keywords: Usability Assessment, Motivation of the Model, IQAMUE, Case

Study, Sample Size Simulator

1 Problem Description

With the increase demand for software products and websites, the focus on the

usability for these needs becomes essential [1]. Moreover, usability is increasingly

recognized as a vital quality factor for interactive software systems, since most

researchers agree that unusable systems are probably the single largest reasons why

encompassing interactive systems, computers plus people, fail in their actual use [2].

Generally, the quality of any interactive system can be measured in terms of its

usability [3]. However, it is often noticed that people spend huge amounts of money

on eye-catching design for a software product rather than spending comparatively less

to check this quality. This clarifies the growing numbers of research work in the

literature that have devoted to the problem of how to measure and report usability.

Several models have been proposed for measuring and reporting usability, however,

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

7

existing models have problems, which bias the measurement process and their results

of usability. Below is a summary list of major research problems, which also are the

motivation of our research work:

• Imprecise (small or high) number of users selected for usability assessment [6].

• Current models are not homogenous.

• Current models only include single factors of usability [3].

• Current models are measured on different scales [5].

• They are difficult to use and to communicate.

• Results are reported individually.

• The interpretation of usability is often not precise and clear.

2 Goal Statement

In this research work, the focus of the contribution to usability, has been given into

three main issues, as described below.

Usability Definitions and Factors: As mentioned earlier, usability has not been

defined in a homogenous way across the standards bodies or usability researchers.

Most of these various models do not include all major factors of usability. They are

also not well integrated into a single model. Therefore, the first step in IQAMUE was

the investigation into existing models that represents usability factors, either by

standard bodies such as ISO and ANSI or by well-known researches in the field of

usability. Those various definitions from different resources, shows the confusion in

the literature describing usability, which emphasize the need for a comprehensive

usability assessment model. In the same time, the majority of models emphases the

needs for the general factors of Efficiency, Effectiveness, Satisfaction, Memorability,

Learnability, however they are not a well incorporated into existing models.

A Standardized Process: As discussed early, the methods and models of

measuring and assessing usability can be divided into two broad categories: those that

gather data from actual users and those that can be applied without actual users [4].

However, all these approaches assess usability independently. Individual measures do

not provide a complete view of the usability of software product.

These metrics are typically reported individually on a task-by-task basis, with little

context for interpreting the correlation among the metrics of a particular task or across

a series of tasks. Therefore, we need to standardize the measurement process by using

statistical methods to scale deviated measure and bring them into the same scale. We

have used statistical methods to standardize the metrics, which have been already

described and used in the literature many by researchers in [5].

Usability Assessment Sample Size: Another crucial problem in existing models

and also a very important aspect for any usability assessment model is the estimation

of the sample size desired for a software product. Once we start estimating the sample

size needed for a usability assessment, a baffling question comes in mind: “how many

users are enough for a given software product?”. Throughout the literature, sample

size estimation for usability assessment has been done either as simply guessing, or

using a mathematical formula proposed by the researchers. A variety of international

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

8

research work has been done on this topic, especially by the researchers: Virzi,

Nielsen and Launder and Lewis [6].

 To the best of our knowledge, the majority of existing models estimates the

sample size needed for a usability assessment, based on historical data (previous

software products). A better estimation should be based on both historical data, which

provide an initial idea from previous software products and based on present data,

which provide a practical idea for a given software product, which aid us in predicting

the complexity of the software product by conducting a simple pre-assessment.

2 Approach

An Integrated Quantitative Assessment Model for Usability Engineering:
(Usability Definitions and Factors): As discussed above that there are many

definitions, which confuse the definition of usability and the use of these factors in the

models. However, for our proposed model we have selected the factors: Efficiency,

Effectiveness, Satisfaction, Memorability and Learnability.

 We have selected these factors for the reasons (1) there are often cited by most

publication in the literature (2) there is a common agreement of these factors in the

literature based on standard bodies and on usability researchers (3) since we are

measuring general software products, we find that those proposed factors used in our

IQAMUE, falls in the general nature of the software products. However, other

usability factors may be plugged in future versions of the proposed model.

A Standardized Process: Now the second part of the IQAMUE is to standardize

the calculated metrics into scalable values. We have employed these methods to

complement the measurement process by standardizing the values into a standardized

scale. To standardize each of the usability metrics we need to create a normal score

type value or z-equivalent. For the continuous and ordinal data (time, Learnability and

satisfaction), we will subtract the mean value from a specification limit and divided by

the standard deviation. For discrete data (task accomplishment, Memorability and

errors) we will divide the unacceptable conditions (defects) by all opportunities for

defects.

Now after calculating the z-scores for all the proposed metrics, we can effectively

compare the measurements of the values, since all the values are now set on a standard

percentage of (100%) scale. As discussed above, this type of model is not intended for

collaborative assessment, it is intended to assess the usability of the software product

at the final stages (pre release) with representative users; it is an independent

assessment model, which could be applied only after completing the software product.

Usability Assessment Sample Size: Within the sample size of the usability

assessment, we have proposed an improved and normalized estimation model for

better estimation of the sample size. The proposed model enhances the estimation

process, by using historical data to gain an initial idea of the software product, and on

present data to predict the complexity of the software product, which is described

below:

• Estimating the historical problem discovery rate (λα), which is already

recommended by the researchers.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

9

• Estimating the adjustment (vertical / domain wise) problem discovery rate (λβ), by

conducting a pre-assessment usability study, to gain a practical idea about the

complexity for a given software product.

 Integrating both points, gave us an improved and normalized estimation model

toward the sample size for the usability assessment studies, where Alpha factor (α) is

the initial historical estimation value based on λα and Beta factor (β) is the adjustment

(vertical / domain wise) value based on λβ. α is estimated from the historical problem

discovery rate either taken as a constant (0.31) or from a set of individual unique

problem discovery rates of similar software products (indicated in point 1 above) and

β is estimated from the specific discovery rate for a given software product (indicated

in point 2 above).

α is already explained in numerous research works mainly by Nielsen, Virizi and

Turner and has been discussed early. However, this value is estimated from historical

data λα (problem discovery rates). λα is either taken (0.31) as suggested by Nielsen [7]

or could be estimated from previous historical data to replace the above value of λα . If

we go for the historical data, then λα is estimated by creating a matrix of users’

numbers and their related individual problem discovery rates.

β value is an adjustment factor, used to provide us crucial information related the

sample size for a specific software product. λβ is estimated by conducting a pre-

assessment study of the highest task time of the software product. We have selected

the (task time) to represent the software product complexity, because time always

measures the whole complexity among other usability metrics. For computing β

factor, we first start to conduct a pre-assessment usability study for the highest task

time for (2-3) users. We need to keep in mind that those 2-3 users should differ in their

experience, at least 1 novice and 1 experienced user, to estimate the maximum

variance of time among users. For the applicability purpose of the model, we have

conducted a case study to exercise the model. In addition we have developed a sample

size estimation program to simulate the calculations of usability the sample size.

References

1. Rubin J., Handbook of Usability Testing: How to Plan, Design and Conduct Effective Tests.

John Wiley and Sons (1994).

2. Haidar S. Jabbar and T. V. Gopal, User Centered Design for Adaptive E-Learning Systems.

Asian Journal of Information Technology, 5 (2006) 429-436.

3. A. Seffah, Mohammad D., Rex B. Kline and Harkirat K. Padda, Usability Measurement and

Metrics: A Consolidated Model. Software Quality Journal. 14 (2006)159-178.

4. Patrick W. Jordan. An introduction to usability. Taylor and Francis (1998).

5. Sauro J. and Kindlund E. A Method to standardize Usability Metrics into a Single Score. In

Proc. of the Conference in Human Factors in Computing Systems, Portland, (2006) 401-409.

6. Turner C. W., Lewis J. R. and Nielsen J., Determining Usability Test Sample Size.

International Encyclopedia of Ergonomics and Human Factors, 3 (2006) 3084-3088.

7. Nielsen J., Why You Only Need to Test with 5 Users, retrieved from:

http://www.useit.com/alertbox/20000319.html.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

10

The design and implementation of formal
monitoring techniques

Eric Bodden

Sable Research Group, School of Computer Science, McGill University
eric.bodden@mail.mcgill.ca

Abstract. In runtime monitoring, a programmer specifies a piece of
code to execute when a trace of events occurs during program execution.
Previous and related work has shown that runtime monitoring techniques
can be useful in order to validate or guarantee the safety and security of
running programs. Yet, those techniques have not yet been able to make
the transition to everyday use in regular software development processes.
This is due to two reasons. Firstly, many of the existing runtime moni-
toring tools cause a significant runtime overhead, lengthening test runs
unduly. This is particularly true for tools that allow reasoning about sin-
gle objects, opposed to classes. Secondly, the kind of specifications that
can be verified by such tools often follow a quite cumbersome notation.
This leads to the fact that only verification experts, not programmers,
can at all understand what a given specification means and in particular,
whether it is correct. We propose a methodology to overcome both prob-
lems by providing a design and efficient implementation of expressive
formal monitoring techniques with programmer-friendly notations.

1 Problem Description

Static program verification in the form of model checking and theorem prov-
ing has in the past been very successful, however mostly when being applied to
small embedded systems. The intrinsic exponential complexity of the involved
algorithms makes it hard to apply them to large-scale applications. Runtime
monitoring or runtime verification [1] tries to find new ways to support auto-
mated verification for such applications. This is done by combining the power of
declarative safety specifications with automated tools that allow to verify these
properties not statically but dynamically when the program under test is ex-
ecuted. Researchers have produced a variety of such tools over the last years,
many of which have helped to find real errors in large-scale applications.

Yet, those tools have not yet had any widespread adoption by programmers in
real software development processes. In our opinion, this is mainly due to two rea-
sons. Firstly, there is an obvious trade-off between expressiveness and complexity
of any given runtime monitoring tool. The early tools were very lightweight, al-
lowing users to specify properties such that the method File.read(..) must be
called only before File.close(). Such properties can be checked very efficiently.
However, in an object-oriented setting, usually only per-object specifications

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

11

make sense: for all Files f, f.read(..) must be called only before f.close(). Imple-
menting runtime monitoring for such properties efficiently is a real challenge and
until now the few tools which allow for such kind of specifications still induce an
unduly large runtime overhead in many cases [4].

Secondly, many runtime verification tools build up on the mental legacy
of static verification. In static verification, formalisms such as Linear Tempo-
ral Logic (LTL) and Computational Tree Logic (CTL) are very common. Even
experts in formal verification admit that those formalisms are often hard to
handle.Hence, it is only natural that many programmers perceive runtime mon-
itoring as complicated and consequently not very practical. In addition, even if
one programmer decides to go through the process of learning such a specifica-
tion language, he might not be able to communicate specifications he wrote to
any of his colleagues, making potential mistakes harder to spot.

This lack of adoption of runtime monitoring techniques therefore leads to
the fact that in most software development projects formal verification simply
does not take place. Instead, hand-written tests are produced; a process which
in itself is tedious and error-prone. As a consequence, the potential of those
powerful techniques just remains unused, leaving many faults, which otherwise
could have been detected, quietly buried in program code.

2 Goal Statement

Our goal is to evolve the techniques of runtime monitoring to such a state that
they can easily be used by reasonably skilled programmers on large-scale ap-
plications written in modern programming languages. Specifically, we want to
tackle the problems of (1) efficient runtime monitoring for parametrized specifi-
cations and (2) providing specification formalisms that can easily be understood
by programmers and can be used to not only verify runtime behaviour but also
communicate design decisions between developers.

To ease the software development process, our approach should be automated
as much as possible. Therefore, such a tool chain would have to consist of the
following components:

– A front-end that provides support for denoting safety properties in a variety
of (potentially graphical) specification formalisms.

– A generic back-end that allows for the automatic generation of runtime mon-
itors for any such formalism. The generated monitors should be as efficient
as possible, even if specifications are to be evaluated on a per-object basis.

– A static analysis framework to specialize instrumentation code with respect
to the program under test. Goal of this framework is to remove any in-
strumentation overhead induced by the monitor, in case this overhead can
statically be proven unnecessary.

This tool chain would address the stated problems in the following ways.
The potentially graphical front-end would allow programmers to denote safety
properties in a way that is close to their mental picture of it. Bridging this gap

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

12

between what the programmer wants to express and needs to express is essential
in order to guarantee a minimal chance for error at specification time. The front-
end should potentially be integrated into an existing integrated development
environment in order to provide programmers easy access.

The back-end then generates efficient code from those safety properties. At
this stage, high-level events are mapped onto events in the actual code base.
From our experience we can tell that one potentially good way of doing this
would be to use pointcuts of an aspect-oriented programming language [6]. Such
pointcuts have proven themselves to be easy enough to understand for many
average software developers, as their wide-spread use in software development
proves.

Although the back-end generates efficient code, this code might still not be
efficient enough, in particular in scenarios where the program under test would
trigger the generated runtime monitor very frequently. Static program analysis
can decrease the runtime overhead by statically determining that certain static
instrumentation points can never be part of a dynamic trace that would trigger a
violation of the given specification. The static analysis back-end should be able to
offer generic analyses that can be applied to specifications in arbitrary formalisms
and flexible enough to allow additional formalism-specific analysis stages to be
plugged-in. Furthermore it must be capable of automatically specializing the
generated monitor based on the gathered analysis results. In order to make sure
the overall goal is reached, we propose the following methodology.

3 Approach

Efficient monitor code generation: We base our approach on an already
developed back-end for tracematches [2]. Tracematches are an extension to the
aspect-oriented programming language AspectJ [3] which allows programmers
to specify traces via regular expressions with free variables. Avgustinov et al.
already identified and solved many of the problems of generating efficient monitor
code [4], yet for some benchmarks large overheads remain.

Removal of unnecessary instrumentation through static analysis: In
a second step (ongoing), we then design and implement a set of static analyses
which allows us to remove unnecessary instrumentation induced by the presence
of tracematches. Initial results seem promising, lowering the runtime overhead
to under 10% in most cases [5].

Making code generation and analysis generic: In a third step we then
plan to conduct a study that investigates how much both, those static analyses
and the mechanics for efficient monitor code generation can be generalized. In
particular, one has to answer the question of exactly what information needs to
be known about a given specification formalism or the given specification itself in
order to make code generation and analysis feasible. Once this study has been
conducted, the implementation of both, code generation and static analysis, will
be generalized accordingly.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

13

Easier specification formalisms: In a fourth and final step we will then
concentrate on specification languages. We plan to study existing, potentially
graphical, notations in detail. For each such notation we wish to answer the
question of why it is easier or harder to understand than others. Some particular
formalisms could also only be suited for special kinds of specifications. In that
case we wish to determine the essence of such specifications and why they are
harder to express in other formalisms. Finally, we plan to provide a prototypical
front-end that allows users to denote specifications in different formalisms which
seem particularly suited for large-scale mainstream software development. The
addition of another domain-specific language could help answer the question of
whether or not domain-specificity in this setting can make sense.

3.1 Evaluation

Well-known benchmarks exist for the evaluation of runtime overheads and the
precision of static analysis. In our work to date we made use of the DaCapo
benchmark suite which consists of ten medium-sized to large-scale Java applica-
tions. We plan to conduct consistent experiments with this and other benchmark
suites throughout the entire project. One major contribution of our work will be
to provide a set of specifications that apply to those benchmarks along with a
detailed account of how the various optimizations behave on those specifications
and which of the specifications are actually violated by the programs.

With respect to specification formalisms, the question of how those could
be evaluated best, remains still unclear at the current time. Even if one had
access to subjects willing to try various formalisms and compare them on a
subjective basis, it would be hard to guarantee internal and external validity
due to potentially different background knowledge of the subjects and due to
the large variety of formalisms to choose from. In general, we tend to believe
that graphical notations could improve comprehensibility a lot. Yet, this might
be hard to prove. Hence, we would be very grateful for comments on that matter.

References

1. 1st to 7th Workshop on Runtime Verification (RV’01 - RV’07), 2007.
http://www.runtime-verification.org/.

2. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding Trace Matching with
Free Variables to AspectJ. In Object-Oriented Programming, Systems, Languages
and Applications, pages 345–364. ACM Press, 2005.

3. AspectJ Eclipse Home. The AspectJ home page. http://eclipse.org/aspectj/, 2003.
4. P. Avgustinov, J. Tibble, E. Bodden, O. Lhoták, L. Hendren, O. de Moor, N. Ongk-

ingco, and G. Sittampalam. Efficient trace monitoring. Technical Report abc-2006-1,
http://www.aspectbench.org/, 03 2006.

5. E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to improve
the performance of runtime monitoring. In European Conference on Object-Oriented
Programming. Springer, July 2007. To appear in Lecture Notes of Computer Science.

6. G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28A(4), 1996.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

14

Flexible Ownership Domain Annotations for
Expressing and Visualizing Design Intent

Marwan Abi-Antoun and Jonathan Aldrich (Advisor)

School of Computer Science
Carnegie Mellon University

{marwan.abi-antoun,jonathan.aldrich}@cs.cmu.edu

Abstract. Flexible ownership domain annotations can express and enforce
design intent related to encapsulation and communication in real-world
object-oriented programs.

Ownership domain annotations also provide an intuitive and appealing
mechanism to obtain a sound visualization of a system’s execution structure
at compile time. The visualization provides design intent, is hierarchical,
and thus more scalable than existing approaches that produce mostly non-
hierarchical raw object graphs.

The research proposal is to make the ownership domains type system more
flexible and develop the theory and the tools to produce a sound visualization
of the execution structure from an annotated program and infer many of
these annotations semi-automatically at compile time.

1 Problem Description

To correctly modify an object-oriented program, a developer often needs to un-
derstand both the code structure (static hierarchies of classes) and the execution
structure (dynamic networks of communicating objects). Several tools can extract
class diagrams of the static structure from code. To address the problem of ex-
tracting the execution structure of an object-oriented program, several static and
dynamic analyses have been proposed.

Existing dynamic analyses, e.g., [1, 2] suffer from several problems. First, runtime
heap information does not convey design intent. Second, a dynamic analysis may
not be repeatable, i.e., changing the inputs or exercising different use cases might
produce different results. Third, a dynamic analysis cannot be used on an incomplete
program, e.g., to analyze a framework separately from its instantiation. Finally,
some dynamic analyses carry a significant runtime overhead — a 10x-50x slowdown
in one case [2], which must be incurred each time the analysis is run. Existing
compile-time approaches visualize the execution structure using heavyweight and
thus unscalable analyses [3] or produce non-hierarchical views that do not scale or
provide design intent [3, 4].

Example: JHotDraw. JHotDraw [5] has 15,000 lines of Java code rich with
design patterns. However, existing compile-time tools that extract class diagrams
or raw object graphs of the execution structure from the implementation do not
convey its Model-View-Controller (MVC) design [4] (See Figure 1(a)).

2 Thesis Statement

Hypothesis #1: Flexible ownership domain annotations can express and
enforce design intent related to encapsulation and communication in real
object-oriented programs. Ownership domains [6] divide objects into domains
— i.e., conceptual groups, with explicit policies that govern references between

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

15

ToolButton

ToolButton

SelectionToolfTool

JavaDrawApp

fListener

PaletteIcon

fIcon

String

fName

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

fIcon

fName

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

fIcon

fName

ToolButton

ToolButton

Main
app

Undoable

SelectionTool

SelectionTool
myUndoActivity

JavaDrawApp

myDrawingEditor

Tool

fChild

AbstractTool$EventDispatcher

myEventDispatcher

Object

SelectionTool
myUndoActivity

myDrawingEditor

fChild

AbstractTool$EventDispatcher

myEventDispatcher

SelectionTool

SelectionTool myUndoActivity

JavaDrawApp

myDrawingEditor

Tool

fChild

AbstractTool$EventDispatcher

myEventDispatcher

SelectionTool

myUndoActivity

myDrawingEditor Tool

fChild

AbstractTool$EventDispatchermyEventDispatcher

myUndoActivity

myDrawingEditor

fChild

AbstractTool$EventDispatchermyEventDispatcher

myUndoActivity

JavaDrawAppmyDrawingEditor

fChild

myEventDispatcher

JavaDrawApp

JavaDrawApp

fSelectedToolButton

fDefaultToolButton

fTool

AnimatorfAnimator

DrawingView

fView

VectormdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

JComponent

desktop

JTextFieldfStatusLine

EventListenerList

listenerList

fView

Animatable
fAnimatable

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

Vector

mdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

Vector

mdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

mdiListeners::elts

fAnimator

fView

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

mdiListeners::elts

fAnimator

fView

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

mdiListeners

fgSampleImagesPath

fApplicationName

fgSampleImagesResourcePath

desktop

fStatusLine

listenerList

Rectangle

UndoableHandle

Image

DrawingEditor

Tool
fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatchermyEventDispatcher

DragTracker

myWrappedTool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatcher

myEventDispatcher

myWrappedTool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatchermyEventDispatcher

DragTracker

myWrappedTool

fSelected

fNormal

fPressed
Dimension

fSize

Vector

Object[]
elementData

AbstractTool$EventDispatcher myRegisteredListeners

myObservedTool

myObservedTool

myRegisteredListeners

myObservedTool

myRegisteredListeners

myObservedTool

myRegisteredListeners

myObservedTool

ToolListener

myRegisteredListeners::elts

myObservedTool

myRegisteredListeners

myUndoActivity

myDrawingEditor

myEventDispatcher

Figure

fAnchorFigure POPUP_MENU

listenerList[]
NULL_ARRAY[]

(a) Visualization of JHotDraw using
Womble [4]

 Model

 View

 owned

 Controller

Undoable

UndoableAdapter (+) Connector

Figure

Point2D

Alignment

DrawingView (+)

Command (+)

AbstractLineDecoration

Shape

Locator

FigureChangeEvent

PointConstrainer

Comparable

Insets

AutoscrollHelper (+)

FigureEnumeration (+)

UndoManager (+)

StorageFormatManager (+) StorageFormat

AnimatableThread

StorableInput (+)

Iconkit(+)

EventListenerList

Vector<InternalFrameListener>

DrawingEditor

PaletteButton (+)

Tool (+)

Painter

Handle (+)

Main

(b) The Ownership Object
Graph for JHotDraw [16]

Fig. 1. Side-by-side comparison of compile-time visualizations.

ownership domains. Each object is in a single ownership domain and each object
can in turn declare one or more public or private domains to hold its internal
objects, thus supporting hierarchy. An ownership domain can convey design intent
and represent an architectural tier — e.g., the Model tier in the MVC pattern [7]
— and a domain link can abstract permissions of when objects in two domains are
allowed to communicate [6] — e.g., objects in the View domain can communicate
with objects in the Model domain, but not vice versa.

Preliminary Work. We added ownership domain annotations to two real
15,000-line Java programs, one developed by experts and one by novices [7]. In the
process, we encountered expressiveness challenges in the type system that we plan
on addressing. For instance, due to single ownership, an object can be in only one
ownership domain which makes it difficult to annotate listeners [7] and existential
ownership [8, 9] may increase the expressiveness [7].

Expected Contribution #1: We plan to make the ownership domains type
system by Aldrich et al. more expressive and more flexible. We will evaluate the
modified set of annotations using case studies on non-trivial programs.

Hypothesis #2: Imposing an ownership hierarchy on a program’s runtime
structure through ownership domain annotations provides an intuitive
and appealing mechanism to obtain a sound visualization of a system’s
execution structure at compile time. Furthermore, the visualization is
hierarchical and provides design intent.

By grouping objects into clusters called domains, ownership domain annota-
tions provide a coarse-grained abstraction of the structure of an application — an
important goal for a visualization [10, 11] and for scaling to larger programs.

Since the ownership domains type system guarantees that two objects in two
different domains cannot be aliased, the analysis can distinguish between instances
of the same class in different domains, which would be merged in a class diagram.
This produces more precision than aliasing-unaware analyses [4] and more scalability
than more precise but more heavyweight alias analyses [3].

Moreover, ownership domain names are specified by a developer, so they can con-
vey abstract design intent more than arbitrary aliasing information obtained using

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

16

a static analysis that does not rely on annotations [12]. Finally, unlike approaches
that require annotations just to obtain a visualization [13], ownership annotations
are useful in their own right to enforce object encapsulation as illustrated by the
existing research into ownership types [14, 8, 6, 15].

The novel contribution is the idea of visualizing the execution structure based on
ownership domains. Compared with compile-time visualizations of code structure,
ownership domains allow a visualization to include important information about the
program’s runtime object structures. Compared with dynamic ownership visualiza-
tions – which are descriptive and show the ownership structure in a single run of a
program, a compile-time visualization is prescriptive and shows ownership relations
that will be invariant over all program runs. Thus, this class of visualization is new
and valuable.

Preliminary Work. We defined a visualization of the execution structure based
on ownership domain annotations, the Ownership Object Graph [16]. We evaluated
the visualization on two real 15,000-line Java programs that we previously anno-
tated. In both cases, the automatically generated visualizations fit on one page,
illustrated the design intent — e.g., JHotDraw’s MVC design [16] — and gave us
insights into possible design problems. The visualization is complementary to ex-
isting visualizations of the code structure and compares favorably with flat object
graphs that do not fit on one readable page [16] (See Figure 1(b)).

Expected Contribution #2: The Ownership Object Graph would be most
useful if it were sound, i.e., it should not fail to reveal relationships that may ac-
tually exist at runtime, up to a minimal set of assumptions regarding reflective
code, unannotated external libraries, etc. Otherwise, the technique would not be
an improvement over existing unsound heuristic approaches that do not require an-
notations and assume that the graph can be post-processed manually to become
readable [4]. We plan to augment our formal definition of the Ownership Object
Graph with a formal proof of soundness by defining the invariants imposed on the
generated data structures, their well-formedness rules and relate the visualization
objects abstractly to the program’s runtime object graph.

Hypothesis #3: Once a developer initially adds a small number of anno-
tations manually, it is possible to infer a large number of the remaining
annotations semi-automatically. The visualization requires ownership domain
annotations, but adding these annotations manually to a large code base is a sig-
nificant burden. It is precisely such large systems where meaningful views of the
execution structure would be most beneficial. In our experience, simple defaults
can only produce between 30% and 40% of the annotations [7]. We plan to ex-
tend the earlier work on compile-time annotation inference by Aldrich et al. [17]
and improve its precision and usability. We plan to develop an approach whereby
a developer indicates the design intent by providing a small number of annotations
manually; scalable algorithms and tools then infer the remaining annotations auto-
matically. Finally, the Ownership Object Graph helps the developer visualize and
confirm the source code annotations.

Expected Contribution #3: We will develop a semi-automated interactive
inference tool to help a developer add annotations to a code base without running
the program. We will evaluate the tool by taking the programs that we previously
annotated manually, removing the annotations and then using the tool to infer
the annotations for that code. We chose this methodology since adding ownership
domain annotations is often accompanied by refactoring to reduce coupling, to
program to an interface instead of a class or to encapsulate fields [7]. Finally, we
will compare the visualization obtained from the manually annotated program to
the one obtained from the program with the tool-generated annotations.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

17

3 Conclusion

The thesis of this research proposal revolves around adding ownership domain an-
notations to a program because: a) the annotations can be flexible yet express and
enforce the design intent directly in code; b) the annotations can help produce a
sound visualization of the execution structure which complements existing visual-
izations of the code structure; and c) many of these annotations can be inferred
semi-automatically.

The goal is to make the ownership domains type system flexible and expressive
enough to handle real-world complex object-oriented code. The research will then
produce the theory and the tools to obtain a sound visualization of the execution
structure from an annotated program and infer many of these annotations semi-
automatically at compile time. The type system, visualization and inference will be
evaluated in several case studies on real code.

Acknowledgements

This work was supported in part by NSF grant CCF-0546550, DARPA contract
HR00110710019, the Department of Defense, and the Software Industry Center at
CMU and its sponsors, especially the Alfred P. Sloan Foundation.

References

1. Rayside, D., Mendel, L., Jackson, D.: A Dynamic Analysis for Revealing Object
Ownership and Sharing. In: Workshop on Dynamic Analysis. (2006) 57–64

2. Flanagan, C., Freund, S.N.: Dynamic Architecture Extraction. In: Workshop on
Formal Approaches to Testing and Runtime Verification. (2006)

3. O’Callahan, R.W.: Generalized Aliasing as a Basis for Program Analysis Tools. PhD
thesis, Carnegie Mellon University (2001)

4. Jackson, D., Waingold, A.: Lightweight Extraction of Object Models from Bytecode.
IEEE Transactions on Software Engineering 27 (2001) 156–169

5. Gamma, E. et al.: JHotDraw. http://www.jhotdraw.org/ (1996)
6. Aldrich, J., Chambers, C.: Ownership Domains: Separating Aliasing Policy from Mech-

anism. In: ECOOP. (2004) 1–25
7. Abi-Antoun, M., Aldrich, J.: Ownership Domains in the Real World. In: Intl. Work-

shop on Aliasing, Confinement and Ownership. (2007)
8. Clarke, D.: Object Ownership & Containment. PhD thesis, University of New South

Wales (2001)
9. Lu, Y., Potter, J.: Protecting Representation With Effect Encapsulation. In: POPL.

(2006) 359–371
10. Sefika, M., Sane, A., Campbell, R.H.: Architecture-Oriented Visualization. In: OOP-

SLA. (1996) 389–405
11. Lange, D.B., Nakamura, Y.: Interactive Visualization of Design Patterns Can Help in

Framework Understanding. In: OOPSLA. (1995) 342–357
12. Rayside, D., Mendel, L., Seater, R., Jackson, D.: An Analysis and Visualization for

Revealing Object Sharing. In: Eclipse Technology eXchange (ETX). (2005) 11–15
13. Lam, P., Rinard, M.: A Type System and Analysis for the Automatic Extraction and

Enforcement of Design Information. In: ECOOP. (2003) 275–302
14. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: ECOOP. (1998)
15. Dietl, W., Müller, P.: Universes: Lightweight Ownership for JML. Journal of Object

Technology 4 (2005) 5–32
16. Abi-Antoun, M., Aldrich, J.: Compile-Time Views of Execution Structure Based on

Ownership. In: Intl. Workshop on Aliasing, Confinement and Ownership. (2007)
17. Aldrich, J., Kostadinov, V., Chambers, C.: Alias Annotations for Program Under-

standing. In: OOPSLA. (2002) 311 – 330

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

18

Modelling Change-based Software Evolution

Romain Robbes and Michele Lanza (Advisor)

Faculty of Informatics
University of Lugano, Switzerland

Abstract. More than 90% of the cost of software is due to maintenance
and evolution1. We claim that the commonly held vision of a software
as a set of files, and its history as a set of versions does not accurately
represent the phenomenon of software evolution: Software development
is an incremental process more complex than simply writing lines of text.
To better understand and address the problem of software evolution we
propose a model of software in which change is explicitly represented to
closely match how object-oriented software is implemented. To validate
our approach we implemented this model in an Integrated Development
Environment (IDE) and used it to perform software evolution analysis.
Further validation will continue with the implementation of tools exploit-
ing this change-based model of software to assist software development.

1 Introduction and Problem Statement

Once implemented, a software system has to adapt to new requirements to stay
useful [1]: Over time, systems grow and become more complex. Maintaining these
systems is hard since developers deal with a large code base they might not fully
understand when performing modifications. They have to identify where in the
system to apply the change, and keep track of numerous parameters to not
introduce bugs during these interventions. 40 % of bugs are indeed introduced
while correcting previous bugs [2].

Several approaches exist to assist software evolution. Agile methodologies
[3] acknowledge that change is inevitable, rather than attempting to prevent it,
and hence ensure that a system is as simple and easy to change as possible.
Refactorings [4] are program transformations improving the structure of code,
without modifying its behavior, making it easier to maintain. The research field
of Software Configuration Management (SCM) [5] built tools to ease versioning,
configuring and building large software systems. Finally, reverse engineering en-
vironments [6] use the structure and the history of a system to ease a subsequent
reengineering effort, the history being often extracted from a versioning system.
Indeed, the history of a system contains valuable information [7], [8].

We approach the problem of software evolution at a more fundamental level.
Our thesis is that an explicit model of software evolution improves the state of
the art in software engineering and evolution. Such a model must closely reflect

1 http://www.cs.jyu.fi/ koskinen/smcosts.htm

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

19

the reality of software development, which is very incremental in nature. Hence,
our model describes the phenomenon of change itself with great accuracy, i.e.
treats change to the system as a first-class entity. In the following we describe
the model we defined, then present our ongoing validation of it.

2 Our approach

Our thesis is that a change-based model of software evolution is beneficial to
software development and maintenance activities. By change-based, we mean
that the incremental development activities of maintainers and developers must
be modelled as changes to closely reflect what happens.

The model of the evolution of software systems we defined follows these
principles (more detail can be found in [9]):

Program Representation: We represent a state of a program as an abstract syntax
tree (AST) of its source code. We are hence close to the actual system, at the
price of being language-dependent. In our model, a program state (of an object-
oriented program), contains packages, classes, methods, and program statements.
Each program entity is a node of the tree with a parent, 0 or more children, and
a set of properties (such as name, type of the entity, comments, etc.).

Change Representation: We represent changes to the program as explicit change
operations to its abstract syntax tree. A change operation is executable, and
when executed takes as input a program state and returns an altered program
state. Since each state is an AST, change operations are tree operations, such as
addition or removal of nodes, and modifications of the properties of a node.

Change Composition: Low-level change operations can be composed to form
higher-level change operations typically performed by developers. For example,
the addition of a method is the addition of the method itself, as well as the
statements defined into it. At a higher level, refactorings are composed of several
“developer-level actions” (i.e. renaming a method actually modifies the renamed
method and all methods calling it). At an even higher level, our model includes
development sessions, which regroup all the changes performed by a developer
during a given period of time.

Change Retrieval: This model of the change-based evolution of programs is
extracted from IDE interactions of programmers, and stored into a change-
based repository. Advanced IDEs such as Eclipse, VisualWorks or Squeak contain
enough information and the necessary infrastructure to gather the evolutionary
data. This repository is then accessible to tools which can use it to provide useful
information to programmer or help him or her performing change requests.

3 Validation

To validate our ideas, we are employing the following 4-step approach:

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

20

1. Comparison to other models of evolution: We first surveyed existing models
of evolving software used by evolution researchers. These models are closely
based on the underlying model of versioning systems, hence we reviewed those
in [10]. We concluded that versioning systems used by researchers (because of
their popularity among developers, such as CVS or SubVersion) all have similar
characteristics: They version systems at the file level to be language-independent,
and take snapshots of the system at the developer’s request. [10] also outlines
why these two characteristics make them not accurate enough to perform finer-
grained evolution research.

2. Feasibility: We implemented our model and populated it by developing an
IDE plug-in which listens to programmer interactions in the IDE and stores the
changes corresponding to these interactions. This IDE plug-in was implemented
for the Squeak Smalltalk IDE. It has been ported to VisualWorks Smalltalk, and
is being ported to Eclipse for the Java language.

3. Analysing evolution: We then used the data gathered in our repository to
perform software evolution analysis, in order to improve program comprehension
and reverse engineering. We implemented several visualization and exploration
tools on top of the repository. These tools show promising improvements with re-
spect to traditional software evolution analysis based on versioning system data.
The information we gather is more precise. Since each change is analysed in con-
text, origin analysis [11] is simplified. We can record precise time information for
each change, and reconstitute accurate development sessions [12], whereas tra-
ditional approaches can only recover the end result of a session. Analysing such
precise sequences allowed us to define new metrics on the sequence of changes
itself, measuring for example the activity (number of changes per hour), or the
number of changes per entity.

4. Assisting Evolution: If we can record changes to a system, it is also possible to
generate these changes. To validate our model in a forward engineering context,
we will implement tools designed to ease changing the software itself, using our
change-based representation. Several tools can be implemented to validate our
approach. One obvious possibility is the implementation of a language-level undo
system. We also think a change-based representation could act as a common
platform between refactoring tools and other program transformation tools [13].
Code clones could have changes to one instance applied to other instances, in
the spirit of [14].

4 Conclusion

To reflect on the phenomenon of software evolution more accurately, we intro-
duced a model of the evolution of programs, in which changes are first-class
entities. We represent programs as ASTs and their history as change operations
on the AST. These change operations can be composed to represent higher-level

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

21

changes such as refactorings, or development sessions. Our ongoing validation
shows that our approach recovers more information than found in classical ver-
sioning system repositories. However, our approach has several drawbacks: it
is language-dependent and requires the presence of an IDE to be accurate. To
pursue our validation we are currently porting the approach from Smalltalk to
Java, in order to isolate the language-independent parts of our model. We are
also building tools exploiting our change-based model to assist software evolution
rather than analysing it.

References

1. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. Lon-
don Academic Press, London (1985)

2. Purushothaman, R., Perry, D.E.: Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering 31 (2005) 511–
526

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley
(2000)

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison Wesley (1999)

5. Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W.,
Wiborg-Weber, D.: Impact of software engineering research on the practice of
software configuration management. ACM Transactions on Software Engineering
and Methodology 14 (2005) 383–430

6. Nierstrasz, O., Ducasse, S., Gı̂rba, T.: The story of Moose: an agile reengineering
environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE 2005), New York NY, ACM Press (2005) 1–10 Invited paper.

7. Gı̂rba, T., Lanza, M., Ducasse, S.: Characterizing the evolution of class hierar-
chies. In: Proceedings of 9th European Conference on Software Maintenance and
Reengineering (CSMR’05), Los Alamitos CA, IEEE Computer Society (2005) 2–11

8. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. In: 26th International Conference on Software Engineering
(ICSE 2004), Los Alamitos CA, IEEE Computer Society Press (2004) 563–572

9. Robbes, R., Lanza, M.: A change-based approach to software evolution. In: ENTCS
volume 166, issue 1. (2007) 93–109

10. Robbes, R., Lanza, M.: Versioning systems for evolution research. In: Proceedings
of IWPSE 2005 (8th International Workshop on Principles of Software Evolution),
IEEE Computer Society (2005) 155–164

11. Tu, Q., Godfrey, M.W.: An integrated approach for studying architectural evo-
lution. In: 10th International Workshop on Program Comprehension (IWPC’02),
IEEE Computer Society Press (2002) 127–136

12. Robbes, R., Lanza, M.: Characterizing and understanding development sessions.
In: Proceedings of ICPC 2007. (2007) to appear

13. Robbes, R., Lanza, M.: The “extract refactoring” refactoring. In: ECOOP 2007
Workshop on Refactoring Tools. (2007) to appear

14. Duala-Ekoko, E., Robillard, M.P.: Tracking code clones in evolving software. In:
ICSE. (2007) 158–167

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

22

A Rewriting Approach to the Design and

Evolution of Object-Oriented Languages

Mark Hills and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

201 N Goodwin Ave, Urbana, IL 61801
{mhills,grosu}@cs.uiuc.edu

http://fsl.cs.uiuc.edu

Abstract. Object-oriented language concepts have been highly success-
ful, resulting in a large number of object-oriented languages and language
extensions. Unfortunately, formal methods for defining and reasoning
about these languages are still often performed after the fact, potentially
resulting in ambiguous, overly complex, or poorly understood language
features. We believe it is important to bring the use of formal techniques
forward in this process, using them as an aid to language design and evo-
lution. To this end, we propose a set of tools and techniques, making use
of rewriting logic, to provide an interactive environment for the design
and evolution of object-oriented languages, while also providing a solid
mathematical foundation for language analysis and verification.

Key words: object-oriented languages, programming language seman-
tics, language design, rewriting logic, formal analysis

1 Problem Description

Object-oriented languages and design techniques have been highly successful,
with OO languages now used for many important applications in academia and
industry. Along with commonly-used static languages, such as Java and C++,
there has been a resurgence in the use of dynamic languages, such as Python, and
domain-specific languages, often built on top of existing OO languages. This has
led to a flurry of research activity related both to the design and formal definition
of object-oriented languages and to methods of testing and analyzing programs.

Unfortunately, even as object-oriented languages are used in more and more
critical applications, formal techniques for understanding these languages are
still often post-hoc attempts to provide some formal meaning to already existing
language implementations. This decoupling of language design from language
semantics risks allowing features which seem straight-forward on paper, but are
actually ambiguous or complex in practice, into the language. Some practical
examples of this arose in the various designs of generics in Java, where interac-
tions between the generics mechanism, the type system, and the package-based
visibility system led to some subtle errors[2]; other ambiguities in Java have also

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

23

Mark Hills, Grigore Roşu

been documented [3]. Decoupling also makes analysis more difficult, since the
meaning of the language often becomes defined by either a large, potentially
ambiguous written definition or an implementation, which may be a black box.

With this in mind, it seems highly desirable to provide support for formal
definitions of languages during the process of language design and evolution.
However, existing formal tools are often not suitable to defining the entirety of a
complex language, which leads directly to their delayed use. Language definitions
based around structural operational semantics [21] and natural semantics [14]
both lead to natural methods for executing programs and creating supporting
tools [1], but both face limitations in supporting complex control flow features,
modularity, and (with natural semantics) concurrency [19]. Modular Structural
Operational Semantics [20] is an attempt to improve modularity of definitions,
but is still limited by difficulty in supporting some control flow constructs. Reduc-
tion semantics [8] provides strong support for complex control flow, but currently
has limited tool support with little focus on language analysis beyond typing.
Denotational methods have been created to improve modularity [18], but can
be quite complex, especially when dealing with concurrency. Current rewriting-
based methods provide powerful tool support [23, 17] and can be conceptually
simpler, but can be verbose and non-modular. A formal framework, concise,
modular, and broadly usable, providing support for defining even complex lan-
guage features, while providing tools for language interpretation and analysis, is
thus critical to opening up the use of formal techniques during language design.

2 Goal Statement

The goal of our research is to provide an environment for the design and evo-
lution of programming languages that is based on a solid formal foundation.
This environment should be flexible enough to define the complexities of real
languages, such as Smalltalk, Java, Python, or Beta, with support for the rapid
prototyping of new languages and language features. Definitions should be for-
mal, executable, and modular, allowing the user to define new features and
immediately test them on actual programs. Analysis should also be easily sup-
ported, providing the ability to check existing programs and to ensure that new
language features (especially those related to areas like concurrency, which can
have unexpected interactions with other language features) work as expected.

Overall, we expect our research to produce: a framework for the modular
definition of languages, including a number of pre-defined language modules;
definitions of multiple new and existing languages, available as the basis for
language extensions and as example definitions; graphical tools for joining to-
gether language modules and animating the execution of the semantics (actual
program execution, typing, abstract interpretation, etc); and translations into
various runtime environments for the execution and analysis of programs using
the defined language semantics. We believe this framework, with the associated
tools and definitions, can help make formal techniques useful not only for post-
hoc studies of languages, but also during the language design process, providing
formal definitions as a natural part of language design and evolution.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

24

Rewriting for OO Language Design and Evolution

3 Approach

A Framework for Language Definition: Our work on programming languages
has focused mainly on the use of rewriting logic [16, 15], a logic of computation
that supports concurrency. While we believe rewriting logic, in combination with
engines such as Maude [5, 6], is a compelling solution for defining and reasoning
about languages [17], the generality of rewriting logic can sometimes lead to ver-
bose, non-modular language definitions [22]. To exploit the strengths of rewrit-
ing logic, while ameliorating some of the weaknesses, we have begun work on
K, a domain-specific variant of rewriting logic focused on defining programming
languages [22]. K is specifically being designed to provide for concise, modular
definitions of languages, written in an intuitive style. Initial versions of K have
been used in the classroom and to define portions of Java and an experimental
object-oriented language named KOOL [4, 11].

Defining and Evolving Object-Oriented Languages: An important test of our
techniques is to define and experiment with actual object-oriented languages.
This has been done both using K and directly in rewriting logic. One result
has been the KOOL language, a dynamic, concurrent, object-oriented language
[12], designed specifically to experiment with a variety of language extensions.
Other work has resulted in an initial rewriting logic definition of Beta [9] and
definitions of Java [7] and JVM bytecode [7]. We plan to extend this work, not
only defining languages but also building libraries of language features, while
using the feedback from this process to improve the K framework.

Tool Support: To make the K framework and associated language definition
techniques widely useful, we plan to develop tools to support language design,
analysis, and execution. We have done some initial work on how language design
decisions impact analysis performance [13], and our work on KOOL [12] pro-
vided an interesting example of how analysis can be used to check that language
features work as expected. Other initial work has demonstrated the promise of
translating language definitions in K into executable form [10]. Additional work
will involve developing a user interface for working with K definitions and ani-
mation tools to visualize the workings of the language semantics, with further
work on translations directly from K to Maude and various target languages.

References

1. P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: the system. In Proceedings of SDE 3, pages 14–24. ACM Press,
1988.

2. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: adding genericity to the Java programming language. In OOPSLA ’98,
pages 183–200, New York, NY, USA, 1998. ACM Press.

3. J.-T. Chan, W. Yang, and J.-W. Huang. Traps in Java. J. Syst. Softw., 72(1):33–47,
2004.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

25

Mark Hills, Grigore Roşu

4. F. Chen, M. Hills, and G. Roşu. A Rewrite Logic Approach to Semantic Definition,
Design and Analysis of Object-Oriented Languages. Technical Report UIUCDCS-
R-2006-2702, University of Illinois at Urbana-Champaign, 2006.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 System. In Proceedings of RTA’03, volume 2706 of LNCS,
pages 76–87. Springer, 2003.

7. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal Analysis of Java Programs
in JavaFAN. In Proceedings of CAV’04, volume 3114 of LNCS, pages 501–505.
Springer, 2004.

8. M. Felleisen and R. Hieb. A Revised Report on the Syntactic Theories of Sequential
Control and State. Theoretical Computer Science, 103(2):235–271, 1992.

9. M. Hills, T. B. Aktemur, and G. Roşu. An Executable Semantic Definition of the
Beta Language using Rewriting Logic. Technical Report UIUCDCS-R-2005-2650,
University of Illinois at Urbana-Champaign, 2005.

10. M. Hills, T. F. Şerbănuţă, and G. Roşu. A rewrite framework for language def-
initions and for generation of efficient interpreters. In Proceedings of WRLA’06,
ENTCS. Elsevier, 2007. To appear.

11. M. Hills and G. Roşu. KOOL: A K-based Object-Oriented Language. Technical
Report UIUCDCS-R-2006-2779, University of Illinois at Urbana-Champaign, 2006.

12. M. Hills and G. Roşu. KOOL: An Application of Rewriting Logic to Language
Prototyping and Analysis. In Proceedings of RTA’07, LNCS. Springer, 2007. To
appear.

13. M. Hills and G. Roşu. On Formal Analysis of OO Languages using Rewriting
Logic: Designing for Performance. In Proceedings of FMOODS’07, volume 4468 of
LNCS, pages 107–121. Springer, 2007.

14. G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of
Computer Sciences, LNCS, pages 22–39. Springer, 1987.

15. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. The-
oretical Computer Science, 285:121–154, 2002.

16. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

17. J. Meseguer and G. Roşu. The rewriting logic semantics project. Theoretical
Computer Science, to appear, 2007.

18. E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Computer Science Dept., University of Edinburgh, 1989.

19. P. D. Mosses. The varieties of programming language semantics. In D. Bjørner,
M. Broy, and A. V. Zamulin, editors, Ershov Memorial Conference, volume 2244
of LNCS, pages 165–190. Springer, 2001.

20. P. D. Mosses. Modular structural operational semantics. Journal of Logic and
Algebraic Programming, 60-61:195–228, July-December 2004 2004.

21. G. D. Plotkin. Lecture notes DAIMI FN-19: A Structural Approach to Operational
Semantics. Dept. of Computer Science, University of Aarhus, 1981.

22. G. Roşu. K: a Rewrite Logic Framework for Language Design, Semantics, Analy-
sis and Implementation. Technical Report UIUCDCS-R-2006-2802, University of
Illinois at Urbana-Champaign, 2006.

23. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling language
definitions: the ASF+SDF compiler. ACM TOPLAS, 24(4):334–368, 2002.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

26

PhD Students Workshop

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

27

17th edition of the ECOOP Doctoral Symposium and PhD Workshop)

28

Checking Semantic Usage of Frameworks

Ciera Christopher Jaspan

Institute for Software Research
Carnegie Mellon University
Pittsburgh PA 15213, USA

cchristo@cs.cmu.edu

Abstract. Software frameworks are difficult for plugin developers to use, even when they
are well designed and documented. Many of the framework problems stem from constraint
inversion and the inability for users to know all possible constraints that they may be
breaking in the framework. These constraints are relative to the context of the plugin,
and they can involve multiple framework objects. This paper describes the beginnings of
a language to check framework usage from a semantic perspective, rather than a purely
structural view.

1 Software Frameworks

Software frameworks allow developers to reuse not just an implementation, but a complete ar-
chitecture and design. By abstracting and reusing the architecture, the programmer also receives
the benefit of architectural solutions to difficult issues such as scalability, concurrency, security,
and performance. However, there is a cost to using a framework; software frameworks are very
complex and difficult to learn. [1]

Software frameworks depend heavily on the notion of a callback method. These methods are
defined by the framework through interfaces, but they are implemented by plugin code in the
style of the Template design pattern. [2] The plugin provides customized functionality to the
framework, and the result of combining the framework and plugin is a complete application. .

This notion of callback is the major difference between frameworks and libraries. In essence,
it is describing who has control of the program flow. In a library, the user of the library, or
application developer, is responsible for the architecture and control flow. This relationship is
inverted in a framework. A framework is in charge of the major control flow, and the application
developer can only control their customized plugin code.

This inversion of control also causes constraint inversion. A library certainly has internal
constraints, but they are encapsulated and hidden from the application developer. The constraints
which must be seen by the application developer are known as the library’s protocol. Enforcement
of protocols is ongoing but mature research.[3–5] In a framework, these roles are reversed. The
framework defines a protocol for how it will call the application code; this is called a lifecycle.
However, the framework must also expose its own constraints since the plugin code needs direct
access to many internals. It is very easy for an application developer to unknowingly break a
constraint because there is no enforcement of what they can and cannot do within their callback
methods, even though the framework is expecting the plugin to meet certain conditions.

It is very difficult for even experienced developers to keep track of all the constraints that they
must comply with. We propose to ease this burden by providing language support to discover
mismatches between the plugin code and the declared constraints of the framework. Our solution
is guided by the following principles:

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

29

1. No effort for the plugin developer The plugin developer should not have to make any addi-
tional effort to use the framework. In particular, they do not add any specifications to their
plugin code.

2. Minimal effort for the framework developer The framework developer will have to specify
how to use the framework and what constraints exist. This should not require a complete
specification of the framework’s internals.

3. Localized errors Frameworks require developers to use many objects from different places in
the framework. The constraints are inherently distributed across all of these objects. In order
for this solution to be adoptable, errors from incorrect usage can not simply state that there
was an error in a constraint; errors should be specific to the plugin code and should give a
localized description.

To better understand framework constraints, we will explore two examples from the ASP.NET
framework. We will use these examples to motivate relationships and scopes as a way to discover
semantic defects in framework usage.

2 Motivating Examples

To motivate this work, we will examine two examples from the ASP.NET framework. The first
example, DropDownList Selection, is from the author’s own experiences with ASP.NET. The
other example, Login Status, was mined from the ASP.NET help forums. [6]

2.1 DropDownList Selection

The ASP.NET framework allows developers to create pages with web controls on them. These
controls can be manipulated programatically through the callbacks provided by the framework.
Developers can respond to control events, add and remove controls, and change their state.

Fig. 1. ListControl Class Diagram

One task that a developer might want to do is programmatically change the selection of a
drop down list. The ASP.NET framework provides us with the relevant pieces as shown in Figure
1. 1 Notice that if we want to change the selection of a DropDownList (or any other derived
ListControl), we have to access the individual ListItems through the ListItemCollection
and change the selection there. Based on this information, a developer might naievely change
the selection as shown in Program 1.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

30

Program 1 Incorrectly selecting multiple items in a DropDownList
DropDownList list;

private void Page_Load(object sender, EventArgs e) {

string searchVal = ...

ListItem item = list.getItems.findByValue(searchVal);

item.setSelected(true);

}

Program 2 Correctly selecting an item using the API
DropDownList list;

private void Page_Load(object sender, EventArgs e) {

string searchVal = ...

list.getSelectedItem().setSelected(false);

ListItem item = list.getItems.findByValue(searchVal);

item.setSelected(true);

}

This code breaks an important framework constraint. A DropDownList must have one item
selected, and it may only have one item selected. Selecting multiple items causes a runtime excep-
tion when the DropDownList is rendered, while selecting no items causes the framework to select
the first item in the list. To make this problem more interesting, the selection constraint changes
for each derived class of ListControl, even though ListControl defines selection mechanism.
For example, a CheckboxList may have 0-n items selected, and a ListBox’s selection constraint
changes according to a SelectionMode property.

Program 2 shows a correct example for this task. By the time we end the method, there is
only one item selected.

2.2 Login Status

On the ASP.NET forums, a developer reported that he was attempting to retrieve a DropDownList
from his page, but his code was throwing a NullReferenceException. [7] An abbreviated version
of the ASPX file is in Program 3, and the code snippet causing the error is in Program 4. Another
developer responded to the post and explained the issue. The LoginView will only contain the
controls in the LoggedInTemplate if the user is authenticated. If not, those controls will not even
exist. The solution proposed was to first check the log in status from Request.IsAuthenticated,
as shown in the corrected Program 5.

In both of these examples, the plugin developer broke an unknown framework constraint. They
had used the framework in a way which seemed intuitive because they had a slightly misshapen
view of what the framework was doing. We can not realistically expect that a plugin developer
will understand all of the internals of a framework, so we propose a framework specification that
will discover these issues without input from the plugin developer.

1 To make this code more accessible to those unfamiliar with C#, I am using traditional getter/setter
syntax rather than properties.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

31

Program 3 ASPX with a LoginView
<asp:LoginView ID="LoginScreen" runat="server">

<AnonymousTemplate>

You can only set up your account when you are logged in.

</AnonymousTemplate>

<LoggedInTemplate>

<h2>Select a Membership</h2>

<asp:DropDownList ID="MembershipList" runat="server"/>

<asp:Button ID="ContinueButton" runat="server" Text="Continue"/>

</LoggedInTemplate>

</asp:LoginView>

Program 4 Incorrect way of retrieving controls in a LoginView
private void Page_Load(object sender, EventArgs e) {

DropDownList list = (DropDownList)LoginScreen.FindControl("MembershipList");

list.DataSource = Roles.GetAllRoles();

list.DataBind();

}

Program 5 Correct way of retrieving controls in a LoginView
private void Page_Load(object sender, EventArgs e) {

if (Request.IsAuthenticated()) {

DropDownList list = (DropDownList) LoginScreen.FindControl("MembershipList");

list.DataSource = Roles.GetAllRoles()

list.DataBind();

}

}

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

32

3 Relationships and Scopes

To express the constraints described above, we use two constructs. The first construct is the
relationships among objects. Relationships will provide us with a semantic context of the frame-
work. The second construct, scopes, allows us to define regions of code in the plugin. Within
these regions, new operations may be available, or old operations may be disabled. This section
will use the ListControl Selection example to examine how relationships and scopes interact to
find defects.

Relationships associate two objects with a user-defined meaning. The attribute [Child(o1,
o2)] creates a relationship between o1 and o2, while [Child(o1, o2, false)] removes this
relationship from the current context. Object parameters can be wild-carded, so [Child(o1,
, false)] removes all the “Child” relationships from o1 to any other object. After calling a
method, we acquire (or kill) a set of relationships. We track relationships through the plugin code
using a dataflow analysis. The current relationships provide us with a context that describes what
we know about the framework’s state. The relationship attributes for the ListControl framework
are displayed in Program 6.

Program 6 Annotated API of the ListControl
public class ListControl {

[Member(ret, this)]

ListItemCollection getItems();

[Child(ret, this)]

[Selected(ret, true)]

ListItem getSelectedItem();

}

public class ListControl {

[Item(ret, this)]

[Value(val, ret)]

ListItem findByValue(string val);

}

public class ListItem {

[Selected(this, true)]

boolean isSelected();

[Selected(this, _, false)]

[Selected(this, select)]

void setSelected(boolean select);

}

Once we can track relationships, we can use scopes to describe framework constraints about
these relationships. A scope defines a region of code where some operations are allowed or dis-
allowed. In the Login Control example, there is a scope within the if-block that states we can
now access the controls within the LoginControl’s LoggedInTemplate. These scopes may not
be just at regular code block boundaries; as we will see, the DropDownList defines a scope that
exists between two method calls. We call these places where scopes can start and end program
points.

Scopes are more than just a syntactic region though. Scopes depend on not only program
points, but the relationships that exist at those points in time. By depending on relationships,

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

33

we are checking the semantics of the expressions rather than the syntax. This allows us to handle
multiple scopes in the code that cover the same objects, or the same scope definitions operating
on different objects. A scope is defined by many parts, as described below.

– declared These objects are used in the program points and relationships.
– start A list of program points and relationships that start the scope. The program points are

syntactic expressions while the relationships provide the semantic context that is required.
The relationships are a precondition for the scope to start.

– end A list of program points and relationships that end the scope. Like start, end requires
relationships; the program point by itself does not end the scope.

– enable A list of program points and relationships that are allowed to occur in the scope.
– disable A list of program points and relationships that are not allowed to occur in the scope.
– scoped A list of objects that are temporary to this scope. They are not valid outside the

scope and can not be stored.

We will create a scope for the DropDownList Selection example. For now, we will write this
informally, but there is a formal notation for scopes. We create a scope which starts when we
deselect the currently selected item on the list, and the scope ends when we select another item.
This scope prevents a user from selecting multiple items by forcing the old item to be deselected
before selecting a new item. It also prevents a user from leaving nothing selected by disabling
the end of the method while we are in the scope.

– declared: DropDownList ctrl, ListItem oldSel, ListItem newSel
– start: oldSel.SetSelected(false); {Child(oldSel, ctrl), Selected(oldSel, true)}
– end: newSel.SetSelected(true); {Child(newSel, ctrl), Selected(oldSel, false)}
– enable: newSel.SetSelected(true); {Child(newSel, ctrl), Selected(oldSel, false)}
– disable: end of method; {Child(newSel, ctrl), Selected(oldSel, false)}
– scoped: none

We will not create the scope for our other example here, but the scope would start and end
on the if block. The objects within the LoggedInTemplate would only be accessible within that
scope.

4 Validation Plan

This work needs to be evaluated in two dimensions: it must be able to succinctly express common
framework constraints and it must be able to find defects in plugin code. To evaluate this work,
we will run small case studies using real examples in the ASP.NET and Eclipse frameworks.
These frameworks each have developer forums where we can find sample problems along with
defective plugin code and an explanation of the broken framework constraint. By specifying the
framework that this sample code uses, we can show that the specifications are expressive enough
to capture the required framework constraint. If time allows, we will also run a larger case study
on a single framework. If possible, we will have a framework developer specify their framework,
and we will have new plugin developers use the analysis tool over an extended period of time.
From these case studies, we would like to show that scopes can specify a wide range of framework
constraints and that they are able to find defects early.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

34

5 Future Work

Scopes are the first step toward creating a language to describe framework semantics. In future
work, I would like to explore other constructs that will make describing frameworks and checking
plugins easier. There are several constructs that frameworks use informally, including lifecycles of
plugins, callback methods, and extension points. Future work will explore each of these possible
constructs and understand how semantic context affects these constructs.

A framework language would also provide information for new developer tools. For example,
a plugin developer might want to know what relationships a particular object is involved in,
or what scopes are active at a particular point. If a developer receives an error because they
called an operation that was disabled in a current scope, the developer might ask what available
operations will close the offending scope. By providing tools with semantic information about
the framework and plugin, they can give more directed error reporting and provide more relevant
information.

6 Related Work

Some of the original work in frameworks [8] discussed using design patterns as a way of describ-
ing frameworks. Later research has looked at formalizing design patterns and extracting design
patterns from code[9–11]. Patterns alone can not completely specify a framework. While they
provide information about high-level interaction mechanisms, they do not describe the temporal
framework constraints shown in our examples.

SCL [12, 13] allows framework developers to create a specification for the structural con-
straints of using the framework. The proposed framework language focuses on semantic con-
straints rather than structural constraints. Some of the key ideas from SCL could be used to
drive the more structural focused parts of the specifications.

Object typestates [4, 5] provide a mechanism for specifying a protocol between a library and
a client. The client sees the library to be in a particular state, and calling methods on the library
transitions to a new state. This general concept can also be applied to frameworks and plugins.
However, due to inversion of control, the protocol is now on the plugin; in a framework setting,
we call this a lifecycle. If we continue to use typestates to represent lifecycles, then the plugin
methods are the state transitions. This is not how a plugin developer thinks of the code; we would
prefer to think of the framework as transitioning the state and the plugin doing specialized code
within the current framework state. Additionally, framework states involve multiple interacting
objects; this is awkward to model with typestates. A framework language should have a construct
to represent lifecycles; while it may be inherently different from a typestate-based protocol, it
might be possible to reuse some of the underlying theory.

Some typestate work has explored inter-object typestate. This work still considers each object
to have an individual typestate, though it can be affected by other objects [14] or manipulated
through participation in data structures [15]. Scopes differ in that they view multiple heteroge-
neous objects as having a shared state.

Scoped Methods [3] are another mechanism for enforcing protocol. They create a specialized
language construct that requires a protocol to be followed within it. Like SCL, this is structural
and does not take context into account.

Like the proposed framework language, Contracts [16] also view the relationships between
objects as a key factor in specifying systems. A contract also declares the objects involved in the
contract, an invariant, and a lifetime where the invariant is guaranteed to hold. Contracts allow
all the power of first-order predicate logic and can express very complex invariants. Contracts

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

35

differ from the proposed framework language because they do not make the tie directly back to
the plugin code and have a higher complexity for the writer of the contract.

Other research projects [17–19] help plugin developers by finding or encoding known good
patterns for using frameworks. The proposed work differs significantly in that it does not suggest
a way to complete the task, but it finds defects once a task has been started. We see the two
bodies of research as complimentary; a framework language should increase the ability to find
and encode these patterns by providing a common language.

This work also has some overlap with formal methods, particularly in describing the rela-
tionships and invariants of code [20, 21]. These formal methods verify that the specified code
is correct to the specification. Instead, we are checking the unspecified plugin code against the
framework’s specification.

7 Conclusion

Frameworks place constraints on plugins that are relative to a a semantic context of the code.
These constraints can be dependent upon many interacting objects, and they can affect the
operations which a user has access to.

We plan to create a language that describes the constraints that a framework may place on
the plugin. This language would be used to find semantic problems with plugin code, such as
how the plugin code uses the framework at points in the lifecycle, which objects the plugin can
access and save references to, and what relationships must be maintained between framework
objects.

As a first step toward this goal, we have created relationships and scopes to specify frame-
work constraints. Relationships keep track of the knowledge a plugin has based upon its previous
framework interactions. Scopes provide a mechanism for describing framework constraints that
occur within a region of code. These regions are described by program expressions and relation-
ships so that both the syntactic and semantic nature of the constraint are expressed. An analysis
can check that a plugin only uses operations when they are allowed.

In future work, we will explore other framework concepts as additions to the language, such
as lifecycles, callbacks, and extension points. Moving these concepts into first class constructs
will provide us with a way to check plugins against a framework specification.

8 Acknowledgments

I’d like to thank my advisor, Jonathan Aldrich, for his contributions and guidance with this
work. Thanks also to George Fairbanks and Kevin Beirhoff for their insightful discussions. This
work was supported in part by NSF grant CCF-0546550, DARPA contract HR00110710019, the
Department of Defense, and the Software Industry Center at CMU and its sponsors, especially
the Alfred P. Sloan Foundation.

References

1. Johnson, R.E.: Frameworks = (components + patterns). Commun. ACM 40(10) (1997)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co., Inc. (1995)

3. Tan, G., Ou, X., Walker, D.: Enforcing resource usage protocols via scoped methods (2003) Appeared
in the 10th International Workshops on Foundations of Object-Oriented Languages.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

36

4. DeLine, R., Fahndrich, M.: Typestates for objects. In: ECOOP ’04: Proceedings of the 18th European
Conference on Object Oriented Programming. (2004)

5. Bierhoff, K., Aldrich, J.: Lightweight object specification with typestates. In: ESEC/FSE-13: Pro-
ceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering. (2005)

6. : (The asp.net forums) http://forums.asp.net.
7. : Binding to a dropdownlist membership roles (2006) http://forums.asp.net/thread/1415249.aspx.
8. Johnson, R.E.: Documenting frameworks using patterns. In: OOPSLA ’92: conference proceedings

on Object-oriented programming systems, languages, and applications. (1992)
9. G. Florijn, M. Meijers, P.v.W.: Tool support for object-oriented patterns. In: ECOOP ’97: Proceed-

ings of European Conference of Object-oriented Programming. (1997)
10. D. Heuzeroth, S. Mandel, W.L.: Generating design pattern detectors from pattern specifications.

In: 18th IEEE International Conference on Automated Software Engineering. (2003)
11. Soundarajan, N., Hallstrom, J.O.: Responsibilities and rewards: Specifying design patterns. In: ICSE

’04: Proceedings of the 26th International Conference on Software Engineering. (2004)
12. Hou, D., Hoover, H.J.: Towards specifying constraints for object-oriented frameworks. In: CASCON

’01: Proceedings of the 2001 conference of the Centre for Advanced Studies on Collaborative research.
(2001)

13. Hou, D., Hoover, H.J.: Using scl to specify and check design intent in source code. IEEE Transactions
on Software Engineering 32 (2006)

14. Nanda, M.G., Grothoff, C., Chandra, S.: Deriving object typestates in the presence of inter-object
references. In: OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications. (2005)

15. Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data structure consistency. In:
Verification, Model Checking, and Abstract Interpretation. (2005)

16. Helm, R., Holland, I.M., Gangopadhyay, D.: Contracts: specifying behavioral compositions in object-
oriented systems. SIGPLAN Not. 25(10) (1990)

17. Froehlich, G., Hoover, H.J., Liu, L., Sorenson, P.: Hooking into object-oriented application frame-
works. In: ICSE ’97: Proceedings of the 19th international conference on Software engineering.
(1997)

18. Mandelin, D., Xu, L., Bod, R., Kimelman, D.: Jungloid mining: helping to navigate the api jungle.
In: PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation. (2005)

19. Fairbanks, G., Garlan, D., Scherlis, W.: Using framework interfaces with design fragments. In:
OOPSLA ’06: Companion to the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications. (2006)

20. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static
checking for java. SIGPLAN Not. 37(5) (2002)

21. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml: a behavioral interface specification
language for java. SIGSOFT Softw. Eng. Notes 31(3) (2006)

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

37

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

38

An Integrated Method based on Multi-Models
and Levels of Modeling for Design and Analysis

of Complex Engineering Systems

Michel dos Santos Soares and Jos Vrancken

Faculty of Technology, Policy and Management
Delft University of Technology

The Netherlands
m.dossantossoares@tudelft.nl, j.l.m.vrancken@tudelft.nl

Abstract. Model-Driven Systems Engineering (MDSE) is rapidly evolv-
ing and new modeling languages, processes, methods, and tools are ad-
vancing in parallel to support it. MDSE differs from traditional Systems
Engineering, which is characterized as document centric, through the
application of models as primary engineering artifacts throughout the
engineering life cycle, and dealing with systems decomposition rather
than requirements decomposition, increasing possibilities of reusing arti-
facts. This research is about using and integrating different System and
Software Engineering tools and languages to model, design and analyze
complex engineering systems. One of the most important features is that
complexity is treated in several levels, through abstraction, decomposi-
tion and modularization. The main purpose is to create an integrated
MDSE method, apply it in the Road Traffic domain and evaluate its
advantages, avoiding inconsistency and fragmentation.

1 Introduction

The complexity of large engineering systems makes their development very hard,
costly and error-prone. In order to manage this complexity, systems are normally
built based on diverse models at different levels of abstraction. Abstraction is a
central principle in Software and Systems Engineering, referring mainly to the
separation of essential points and leaving what is not essential at a determined
stage of the design life cycle.

Models provide abstractions in order to reason about a system. Modeling
is an approach to try to understand complex real world constructions and sys-
tems through models, which is important to help stakeholders to understand
systems and as a communication medium. There’s a gap between the needs and
constraints, which usually are expressed in natural language and informal dia-
grams, and the detailed specifications needed to build systems. Modeling can
fill this gap, with standard notations that are used and understandable by the
stakeholders, improving communication between teams and at least significantly
diminishing natural language ambiguities. Besides, models can also be executed

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

39

and analyzed. The analysis allows the validation of the system and verification
of desirable properties, which contributes to decrease risks and future problems.

One fundamental solution to deal with complex engineering systems is to
build models hierarchically. It is not possible to capture functional features and
quality properties of complex systems in a single model that is understandable
by and of value to all stakeholders [1]. A widely used approach is then to build
different but interrelated views, which collectively describes the whole system.
Depending on the relevance of a determined stage of product design, different
models are constructed using diverse languages/tools in order to center attention
on particular perspectives. These diverse views of a system are important when
there are several stakeholders involved, with each one interested in more or less
details.

The main purpose of model-driven approaches [2] [3] is to build software and
systems with a more controlled and efficient process, resulting in higher quality
products. This research is about creating a model-driven method to model, de-
sign and analyze complex engineering systems with applications to Road Traffic
Management Systems. Due to their complexity, the proposed approach is to di-
vide the design of a system into levels. Each level has some goals, and is composed
of several models built using specific languages/tools.

2 Problem Description

The term “complex system” is still controversial; the definition depends on the
perspectives and objectives of the stakeholders. One definition close to the pur-
pose of this research is: “a system with numerous components and intercon-
nections, interactions or interdependencies that are difficult to describe, under-
stand, predict, manage, design, and/or change” [4]. In [5], the author presents
four different views of a complex system: hierarchical mappings, state equations,
nonlinear mechanisms and autonomous agents. The chosen view for this research
is that of hierarchical mappings, in which complex systems are studied by hier-
archical decomposition of a very complicated design into smaller components.

There are several causes of problems that can lead to failures when designing
a complex system. For instance, errors in estimating tasks and their durations, a
poor interface, and risks not well analyzed. These are important problems, but in
this research, software and systems aspects are evaluated instead of economic or
psychological ones. A fundamental reason for the difficulties in designing modern
large engineering projects is their inherent complexity [6]. Software intensive
systems are more complex for their size than perhaps any other human construct
[7]. The degree of repetition is low, and every design has some challenges that
perhaps have not appeared before.

The lack of communication is a factor that can lead to system failure. In this
research, communication is considered in a more broad aspect, as for instance,
between subsystems, teams, organizations or stakeholders. Common vocabulary
can help in improving the understandability of specifications, as requirements
misunderstanding is one principal cause for project failures. In addition, with so

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

40

many different methods, languages and formalisms to model, design and analyze
systems, it is difficult to decide which approach is more suitable to each problem
and part of the life cycle. Incorrect decisions may lead to misuse a formalism or
use it in an inappropriate context.

One solution to deal with the problems presented above is to use models to
represent the various aspects of systems. Models are useful to specify, visual-
ize, communicate and document systems, and can simplify reality in a domain.
Although the application of models for Systems Engineering is not new, sys-
tems engineers have significantly increased their use of model-driven develop-
ment technologies. Traditional approaches, such as requirements-driven systems
development methods [8] that apply functional decomposition to map require-
ments into system components are limited to address the challenges of developing
complex systems. As systems become more complex and integrated, this tradi-
tional approach becomes difficult to manage due to the large number of possible
mappings from the problem to the solution domain [9]. In addition, these meth-
ods, based on a stable and predictable set of requirements, are limited in their
capability to address models integration, information sharing and requirements
changing. Systems engineering methods have to be extended in order to address
these problems.

The principal focus of this research is to address the problems presented
above applying methods and languages to build models to engineering complex
systems. The research domain is in the field of transportation. Transportation
systems are complex networked systems that provide accessibility to places and
mobility to people and goods [10]. The occurrence of traffic jams is increasing
in many countries, which leads to economic losses, augments pollution and has
a great impact on the quality of life. One common approach to try to handle
traffic congestion is to build more infrastructures, such as roads and bridges.
But, in the past years, it is becoming increasingly more difficult to build more
infrastructures. Not only the high cost, but also the lack of space and the en-
vironmental damage of building new roads have to be considered. A different
approach is needed, based on applying intelligence in order to manage traffic
flow in a more effective and efficient manner. This leads to a relatively new re-
search area named Intelligent Transportation Systems (ITS) [11]. Basically, ITS
is the application of Information and Communication Technologies (ICT) to the
planning and operation of transportation systems.

ITS research is multidisciplinary, depending on results from several different
research areas, such as electronics, control engineering, communications, sensing,
signal processing and information systems [12]. This multidisciplinary nature
increases the problem’s complexity because it requires knowledge transference,
communication and cooperation among diverse research areas and specialists.
Difficulties have been addressed through the growing application of Systems
Engineering processes and methods for ITS projects and research [13].

Among the several research areas of ITS, one of the main is the manage-
ment of traffic. Road Traffic Management Systems (RTMS) are complex systems
composed of several integrated parts. Some examples of RTMS parts are traf-

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

41

fic signals, detectors, dynamic route information panels, intersections and links.
The design, modeling and analysis of RTMS can’t be done only considering lo-
cal traffic. For example, it’s not feasible to model and analyze separately traffic
systems controlling road intersections. To be effective, the network level must be
evaluated, and problems solved not only locally, but in a wide area [14]. Other-
wise, the risk is not to solve problems, but just move them to another place in
the network.

Because of the complexity of RTMS, it is difficult to represent their aspects
using a single level, only one method or any single tool/language. Within complex
engineering systems, it is necessary to model components with different charac-
teristics and nature, for instance, mechanical, hardware, software, etc. Another
difficulty is that initial requirements are normally written in natural language,
possibly with aid of informal diagrams, which can be inconsistent and confusing,
leading to communication problems with other stakeholders. In addition, infor-
mal specifications can’t be verified in a formal way in order to guarantee the
correct functionality of systems.

3 Related Work

Perhaps the best known model-driven initiative is OMG’s Model Driven Archi-
tecture (MDA) [15]. A central MDA idea is the separation of specification of
the system from the details of its platform. With MDA approach, software de-
velopment is based on series of model transformation steps, which starts with a
high level specification using the domain vocabulary and ends with a platform
specific model.

There are several researches on model-driven approaches with application to
a variety of complex engineering systems. The aim of project MOVES [16] is
to analyze problems raised by the evolution of model-driven approaches. DRIP
Catalyst [17] is a framework-specific MDE/MDA method developed combining
model-driven, generative and formal techniques to support cost-effective and dis-
ciplined development of fault-tolerant applications. The RODIN project [18] aims
to contribute to create a methodology and tools, combining UML, Petri nets and
the B method, for rigorous development of dependable complex systems. Among
the several case studies, one is related to the construction and composition of
systems utilizing object-oriented and model-driven techniques for telecommuni-
cation systems [19]. In the project “Model-Based System Engineering” [20], the
authors use executable specifications, along with advanced analysis tools and
simulation environments to evaluate system design before construction begins.
Several other researches and information about model-driven techniques can be
found at the Planet MDE website 1.

1 www.planetmde.org

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

42

4 Proposed Approach

A good practice when modeling systems is to use a view of the model that
only includes the concepts and relations that are relevant for each stakeholder
[21]. Also, maintain traceability between models is an important quality factor.
After modeling, for complex engineering systems it is desirable to simulate and
formally analyze models to ensure the presence of important properties and
absence of problems such as deadlocks. Normally, models are evaluated using
inspections and reviews, which are useful to detect simple errors, but are tedious
and error-prone when dealing with large models. Executable models, as model-
driven approach proposes, are better suited to give feedback to designers of large
systems.

Model-Driven System Engineering (MDSE) differs from traditional systems
engineering, which is characterized as document centric, through the application
of models as primary engineering artifacts throughout engineering life cycle [2].
During system development, models are transformed, and each transformation
adds levels of specificity and details. Models can also be refined when more
information is added due to better understanding of the system during the life
cycle. Although there is already a large body of work reported, a large amount
of work remains to be completed for this new discipline to achieve its potential.
Because MDSE is still in its infancy, there is a need for formalisms, methods,
techniques and associated tools supporting model development, transformation
and evolution.

MDSE doesn’t deny the success of the requirements-driven approach. For
instance, system decomposition into smaller components (divide and conquer)
has a historical success. But within MDSE, system decomposition is based on
structure rather than by function, enabling the framework to provide several
levels of structure. According to [9], MDSE starts with system decomposition
into elements, each one with a set of requirements, in order to improve system
comprehension and manage complexity. Effective application of system decom-
position requires modeling the system from several viewpoints and at increas-
ing levels of detail. The approach is based on a set of transformations between
models, with each transformation providing means for deriving the next level
of specificity while maintaining traceability with the entire model through the
development life cycle.

MDSE consists of creating the models as a mean of specifying the system
elements and their integration. System models are constructed normally with
formal or semi-formal methods/languages. Semi-formal methods are user ori-
ented but lack mathematical rigor and can’t formally prove desirable behavior
of systems. Formal methods are well-suitable to analyze system behavior, but
have some disadvantages. For instance, their mathematical and logical approach
makes it difficult to most of the stakeholders to understand. Another big diffi-
culty is that normally software is developed from informal requirements. So, one
problem to be addressed is how to use formal specifications to model informal re-
quirements. And so, once this is done, how to easily change formal specifications
every time there’s a change in informal requirements by stakeholders. Combining

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

43

formal and semi-formal methods is a well-known and applied approach that tries
to use the best of each type of method [22].

When comparing the proposed approach of this research and other related
works, some similarities are evident, as, for instance, the combination of lan-
guages and methods. This is important because of the difficulty of using a single
language to several system aspects. On the other hand, the systems view is still
not well-considered in earlier projects, and when it is the case, it still lacks a
proper systems language. Normally, UML [23] and Petri nets [24] are adapted to
model and design systems. In this research, system aspects are taken into account
from the early beginning with SysML [25], a specific systems language. Also, in
some approaches, the lack of formal knowledge representation is common. To
address this problem, Semantic Web technologies, such as ontologies, are ap-
plied. The combination of Software Engineering and Knowledge Engineering is
a promising research area [26]. Finally, due to the impossibility (and imprac-
ticality) of formally analyzing a whole system, normally just some critical and
more important parts are analyzed, based on some criteria. The problem here is
that the selection of which subsystems/parts deserve special attention still lacks
more defined criteria.

In this research, SysML is applied for Systems Engineering aspects, such as
structure definition, stakeholder context, decomposition and requirements repre-
sentation, UML for software architecture, static behavior and basic dynamic be-
havior, Petri nets for detailed design and formal verification, and Ontologies for
semantics representation. Each language/tool can contribute in modeling some
parts of systems, according to its strengths. For instance, SysML is suitable to
represent the overall architecture of the system and non-functional properties,
such as performance and safety. These properties and terms are specified for-
mally with ontologies; as a matter of fact, domain knowledge is also considered
as part of system architecture. Software is modeled with UML, including static
behavior and some basic dynamic constraints. Due to the lack of formal defini-
tion of UML, for some aspects, such as specific real time requirements, a formal
approach is necessary. Complex parts that may need formal verification, such as
specific subsystems, UML objects or SysML blocks, are modeled, executed and
verified with Petri nets.

The decisions of which tools/languages are applied are given as follows. UML
is the de facto standard language to model software, being applied for more than
10 years, and during this period, some versions were delivered with important
modifications asked by the software industry. In addition, the language is al-
ready a compilation of successful methodologies for Object-Oriented Software
Engineering that evolves since the 1980’s. The newest version, UML 2.1.1, was
launched on early 2007. SysML is a language based on UML, sometimes refer-
eed as an UML extension for Systems Engineering, or an UML profile. The first
version was launched on July, 2006. The use of UML and SysML together seems
to be a natural choice, as both languages are sponsored by the OMG group and
share common diagrams. UML is a successful standard for modeling software,
and SysML was created based on UML but with focus on Systems Engineering.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

44

As SysML and UML are similar, the integration of both system and software
models should be made with fewer efforts and collaboration between the various
stakeholders will be improved.

Ontologies are widely used in Knowledge and Software Engineering in a va-
riety of applications such as e-commerce and Semantic Web. The benefits of
ontologies are that they are well-suited for specification of complex structured
domain knowledge, they make explicit the way domain tasks are performed and
are independent of the application’s implementation language. OWL [27] is one
of the main languages to build ontologies. Some other possible applications of
ontologies for System and Software Engineering are presented in [26] and [28].

Finally, Petri nets are a formal and graphical tool very suitable to model and
analyze several types of systems. There are ways to transform UML dynamic
diagrams into Petri nets models, which can be executed. The activity diagram
of the new UML version is based on Petri nets, but without a formal basis.
Also, it cannot show resource sharing and explicit time constraints. So, activity
diagrams can be substituted by Petri nets with advantage. There are a variety
of extensions to the initial Petri net model, including the representation of time
and data structures.

One of the most important feature of this research is that complexity is
treated in several levels. The fact that abstraction, decomposition, and modu-
larization are applied in all levels helps to reduce and manage complexity. In
addition, the approach starts at high level and through model transformations
achieve more specific models, which are executed (simulated) and proved, in
order to guarantee reliability and soundness.

5 First Results and Further Research

The first results of this research were concerned with the application of Petri
nets for modeling and analyzing Traffic Signals control and SysML diagrams in
the Road Traffic domain.

In [29], it is proposed an approach to model and analyze road intersection
traffic signals by means of Petri nets and Linear Logic [30]. A formal proof based
on the linear sequent calculus is done in order to analyze the properties of the
model for a given scenario. In [31], Petri nets with time associated to transitions
were applied in the design of a network of intersections. The approach can prove
that unsafe states are not reached, and that desirable states are reached. The
results are being extended to be applied to Petri nets with time associated to
places for controlling a network of traffic signals. In [32], SysML Requirements
diagram are combined with UML Use Cases to improve requirements engineer-
ing. System requirements are presented in a graphical and tabular form, and are
modeled instead of just written in natural language. Several relationships be-
tween requirements, such as decomposition and refinement, are presented with
SysML requirements diagram.

The main remaining topics for research are:

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

45

– Evaluate the application of System Engineering to Intelligent Transportation
Systems.

– Create a process for SysML, and evaluate the advantages and suitability of
SysML for complex systems modeling and design.

– Apply SysML and UML to create distributed architectures and models for
RTMS.

– Identify and evaluate important properties using Petri nets.
– Create ontologies with OWL for RTMS.
– Create or use UML and SysML profiles for RTMS.
– Evaluate the benefits of Model-Driven Engineering when compared to tra-

ditional Requirements-Driven Engineering, in terms of addressing system
complexity, reuse and future evolution.

6 Acknowledgement

This work was supported by the Next Generation Infrastructures Foundation
and the Research Center Next Generation Infrastructures, both situated in Delft,
The Netherlands.

References

1. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakehold-
ers Using Viewpoints and Perspectives. Addison-Wesley. (2005)

2. Schmidt, C.D.: Model-driven engineering. IEEE Computer. 39 (2006) 41–47.
3. Brown, A.W., Conallen, J., Tropeano, D.: Introduction: Models, modeling, and

model-driven architecture (MDA) (Chapter 1). In Beydeda, S., Book, M., Gruhn,
V., eds.: Model-Driven Software Development. Springer-Verlag., Berlin (2005) 1–
16.

4. Magee, C.L., Weck, O.L.: Complex system classification. In Brebbia, C.A., Mak-
simovic, C., Radojkowic., M., eds.: Proc. of the Fourteenth Annual International
Symposium of the International Council On Systems Engineering (INCOSE), Am-
sterdam (2004)

5. Rouse, W.B.: Engineering complex systems: implications for research in systems
engineering. IEEE Transactions on Systems, Man & Cybernetics - Part C: Appli-
cations and Reviews. 33 (2003) 154–156.

6. Bar-Yam, Y.: When systems engineering fails - toward complex systems engineer-
ing. In: Proc. of the International Conference on Systems, Man & Cybernetics.,
Piscataway, IEEE Press. (2003) 2021–2028.

7. Brooks, F.P.: No silver bullet essence and accidents of software engineering. Com-
puter. 20 (1987) 10–19.

8. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison-Wesley. (1999)

9. Balmelli, L., Brown, D., Cantor, M., Mott, M.: Model-driven systems development.
IBM Systems Journal. 45 (2006) 569–586.

10. Khisty, C., Lall, B.: Transportation Engineering: An Introduction. Prentice Hall.
(2003)

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

46

11. Stough, R.: Intelligent Transport Systems: cases and policies. Cheltenham: Elgar.
(2001)

12. Figueiredo, L., Jesus, I., Machado, J., Ferreira, J., Martins de Carvalho, J.: To-
wards the development of intelligent transportation systems. In: Proc. of the 4th
International Conference on Intelligent Transportation Systems., Oakland (2001)

13. National ITS Architecture Team.: Systems Engineering for Intelligent Transporta-
tion Systems: An Introduction for Transportation Professionals., Washington, DC.
(2007)

14. Kruse, O., Vrancken, J., Soares, M.: Architecture for distributed traffic control: A
bottom-up approach for deploying traffic control measures. In: Proc. of the 13th
World Congress and Exhibition on Intelligent Transport Systems and Services.,
London (2006)

15. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley Professional. (2003)

16. MOVES: Moves - modeling verification and evolution of software. Technical report,
Vrije Universiteit Brussel. (2007)

17. Guelfi, N., Razavi, R., Romanovsky, A., Vandenbergh, S.: DRIP Catalyst: An
MDE/MDA method for fault-tolerant distributed software families development.
In: Proc. of the OOPSLA & GPCE Workshop on Best Practices for Model Driven
Software Development., Vancouver (2004)

18. Coleman, J., Jones, C., Oliver, I., Romanovsky, A., Troubitsyna, E.: RODIN (Rig-
orous open Development Environment for Complex Systems). In: Proc. of the
Fifth European Dependable Computing Conference: EDCC-5 supplementary vol-
ume., Budapest (2005) 23–26.

19. Laibinis, L., Troubitsyna, E., Leppnen, S., Lilius, J., Malik, Q.: Formal model-
driven development of communicating systems. In Lau, K.K., Banach, R., eds.:
Formal Methods and Software Engineering: 7th International Conference on For-
mal Engineering Methods, ICFEM 2005. Volume 3785 of Lecture Notes in Com-
puter Science., Springer. (2005) 188–203.

20. Kathryn, A.W., Elwin, C.O., Nancy, G.L.: Reusable specification components for
model-driven development. In: Proceedings of the International Conference on
System Engineering (INCOSE ’03). (2003)

21. Lankhorst, M.: Enterprise Architecture at Work: Modeling, Communication, and
Analysis. Springer. (2005)

22. Snook, C., Butler, M.: UML-B: Formal modelling and design aided by UML. ACM
Transactions on Software Engineering and Methodology. 15 (2006) 92–122.

23. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
2nd Edition. Addison-Wesley Professional. (2005)

24. Murata., T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE. 77 (1989) 541–580.

25. OMG.: SysML final adopted specification. Technical report (2006)
26. Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software

Technology. Springer-Verlag., Berlin, Heidelberg (2006)
27. Lacy, L.W.: OWL: Representing Information Using the Web Ontology Language.

Trafford Publishing. (2005)
28. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:

Proc. of the 2nd International Workshop on Semantic Web Enabled Software En-
gineering (SWESE), London (2006)

29. Soares, M., Vrancken, J.: Road Traffic Signals Modeling and Analysis with Petri
nets and Linear Logic. In: Proceedings of the 2007 IEEE International Conference
on Networking, Sensing and Control (ICNSC 2007), London (2007) 169–174.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

47

30. Girard, J.: Linear logic. Theoretical Computer Science. 50 (1987) 1–102.
31. Soares, M., Vrancken, J.: Scenario Analysis of a Network of Traffic Signals Designed

with Petri nets. In: Thirteenth International Conference on Urban Transport and
the Environment in the 21st Century, Coimbra (2007)

32. Soares, M., Vrancken, J.: Requirements Specification and Modeling through
SysML. In: IEEE International Conference on Systems, Man, and Cybernetics
(SMC 2007), Montreal (2007)

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

48

Ordering Functionally Equivalent Software
Components

Giovanni Falcone and Colin Atkinson

Chair of Softwareengineering
University of Mannheim, Germany

Abstract. The problem of ordering a set of software components occurs
in many application areas. An important case is the problem of order-
ing the set of components returned in a search, where the results need
to be ordered and displayed in a way that is helpful to the requesting
user. The dominant ordering criterion is the degree to which components
match the functional requirements, but within such a ranking there are
often several components which score equally from a purely functional
perspective. The challenge addressed in this paper is how to order a
set of functionally equivalent components based on non-functional crite-
ria. After identifying the different kinds of non-functional characteristics
that could be used to distinguish components, and discussing the issues
involved in combining them into a single score, we describe the differ-
ent approaches and technologies that could be used to create a practical
implementation of such a ranking technique.

1 Introduction

With the growth of open source code repositories and the recent advent of code
search engines to retrieve software from them, the problem of ordering or rank-
ing software component has grown in importance over the last few years. The
problem is not limited to ranking search results, but this is by far the most
important application. As with all ranking problems, the basic goal is to order
entities according to some measure of their “fitness for purpose”. For regular web
pages, “fitness of purpose” means the relevance of the content of the web page
to the subject the searcher is interested in. As is well known, Google’s pagerank
algorithm [BP98] has proven to be one of the most successful measures of this.

In software engineering, the fitness of a software artifact (i.e. a component)
for a particular purpose has traditionally involved two factors, the so called
functional requirements which are concerned with what a component does, and
non-functional requirements which are concerned with how well a component
does it. Non-functional requirements are therefore often thought of as determin-
ing the quality of a component.

Often, the fitness of the functional requirements is given more importance
than the fitness of the non-functional requirement, because a component that
does the wrong thing is normally of little value even if it does that thing well,
whereas a component that does the right thing may still be of some value even

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

49

if it does that thing poorly. Sometimes, however, non-functional requirements
can be as important as functional requirements in determining the acceptability
of a component. For example, if a contractual or legal obligation requires a
component to be written in Ada, a component written in another language is
not directly “fit for purpose” regardless of how well it meets the functional
requirements.

The goal of traditional software engineering methods is, so far as possible,
to create components that do exactly the right thing and fulfil all the “must
have” requirements. Testing is usually the mechanism used to evaluate the cor-
rectness of a component against the functional requirements. If any problems
are discovered these are usually removed before the software is shipped.

However, with the advent of software search engines there is now more than
one way of obtaining a software component for a particular purpose. As well
as developing the component oneself from scratch it has become possible to
“harvest” prefabricated components (Components Of The Shelf (COTS)) from
specialized software markets or repositories. Most of the specialized search en-
gines available on the web mainly focus on searching for source code like Koders
[Kod07], Codase [Inc06], Krugle [Inc07] or GoogleCodeSearch [Lab07]. Currently
the only search engines that supports searches for full components based on their
interface is Merobase [Mer07].

All of these “engines” for retrieving software components have the same basic
problem. When a user presents a query defining the properties he is looking
for, the engine needs to find all components that “match” these properties in
some way and rank (i.e. order) them according to some objective criteria. In
general, there are two fundamental issues involved in ordering a set of software
components according to their “fitness for purpose” -

1. ordering them according to their fulfilment of the functional requirements,
2. ordering them according to their quality (i.e. according to non-functional

requirements).

In this paper we focus on the latter. We assume that the overall set of search
results has been divided into subsets of components, each of which contains
components which have the same level of fitness with regard to the functional
requirements. The problem that we are addressing in this paper is how to order
the members of such a “functionally equivalent” set based on their “quality” (i.e.
their fitness for purpose based on non-functional requirements). In other words,
we are considering the problem of ordering functionally equivalent components.

The only other ranking approach currently used in a component searching
context is the Component Rank approach [Ino03]. This is based on the idea of
citation-based ordering as popularized in the PageRank algorithm [BP98] used
in an advanced version of Google. The more a component is used by others,
the higher the component is ranked. In [IYY+05] the authors describe how the
ComponentRank approach is used within the Spars-J search environment.

The reminder of this paper is organized as follows. To provide a better under-
standing of the importance of ordering a set of functionally equivalent software

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

50

components, we start with a general description of the problem area in the con-
text of a large-scale software component search engine. In the subsequent section
we analyze different property sets related to software components and explain
in general how these can be used for ordering components. We also discuss dif-
ferent possible ways of calculating a single ranking value in order to simplify the
ordering of the entries in a result set.

2 Functional Equivalent Sets

In the introduction we already mentioned the two fundamental issues involved
in ranking the software components discovered by a search engine. To provide a
better understanding of the problem area, in this section we explain how func-
tionally equivalent sets of software components can be obtained from a compo-
nent search engine. We use merobase.com for the example, since it provides the
best support for component-oriented searches, but the discussion is applicable
to other code search engines as well. We close this section by defining the term
functionally equivalent more precisely.

2.1 Creating Functional Equivalent Sets

The easiest way of defining a search query is by identifying the topic of interest
through simple keywords, as is well known from text-based search engines like
Google. Generally speaking, the better the description of the topic, the smaller
the number of documents likely to be added to the result set and the greater the
likelihood that they will fit the user’s purpose.

In contrast to textual documents, software documents possess a defined struc-
ture based on the grammar of the used programming language. For software
components, it is therefore possible to use programming abstractions such as
classes and methods etc., to support interface-oriented searches [Mer07] as well
as simple text-based searches. These essentially represent two extremes in the
range of search queries that can be used to drive component searches.

Text-based queries usually contain a small number of topic-describing key-
words which can easily be refined if the entities in the result set do not correspond
to the users needs or the size of the result set is too large. Interface-oriented
queries, on the other hand, define the specific properties the user is looking for
and thus usually yields small results sets since only components that exactly
fulfil the given requirements are returned. This kind of query is aimed at sup-
porting reuse within mainstream software development projects as envisaged,
for example, by Sommerville [Som04]. The software developer defines the overall
software architecture and the stubs of some of the application parts. These stubs
can then be directly used as the basis for interface-oriented search requests, and
if needed the user can redefine the application stubs or use a less precise request
to retrieve a larger number of software components.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

51

2.2 Definitions on Functional Equivalent Sets

Depending on the precision of a search request, the number of entries in a result
set can vary from a small number to a very large number. Regardless of how
the query is defined, however, the entities in the final result set should conform
to the given request to some degree. For interface-based searches, the entities
should closely match the criteria given by the query. However, the more precise
the description of the interface that the user is searching for, the lower the
number of matching components usually found. In the extreme case, the result
set might be empty even when there are components that fulfil the user’s general
requirements to a lesser degree of conformance. Therefore, merobase implements
a so called multi-phase searching algorithm where entities with less than 100%
conformance are added to the result set until a sufficient number of candidates
have been found. Each phase of this multi-phase search process produces a set of
results which build a subset of the final result set. Since each successive subset
has a lower level of conformance to the query than it predecessor, there is a
natural ordering of these subsets within the final set according to their level of
conformance.

The elements within a given subset are effectively functionally equivalent
(i.e. have the same level of functional conformance) so additional non-functional
information needs to be taken into account to order them internally. By ordering
the subsets based on their level of conformance to the query defined by the user,
and order the components within the subsets based on non-functional properties,
an overall ordering of the result set is achieved.

3 Using Non-functional Requirements for Ordering

In the previous section we described how a software search engine can be used
to obtain a set of reusable software components. An initial ordering is achieved
by grouping the overall set of available components into subsets, each with the
same degree of functional conformance to the query. However, since these subsets
can themselves contain several components, an internal ordering is needed within
each subset. Since this cannot use functional information, this has to be based on
non-functional properties of the components. Before we elaborate on the details
of how this is done, in the following section we analyze the different classes of
information that could be used for this purpose.

3.1 Orderable versus Non-Orderable Properties

Some non-functional properties of software components are inherently discrete
and non-orderable. A good example is the language that a component is written
in. There is no universal ordering between languages (e.g. Ada is better than
C is better than Java etc.). This is usually regarded as a black and white (i.e.
binary) property. Either a component has the property or it does not. Of course,
a particular user may well define his/her own hierarchy. Other properties are

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

52

inherently orderable, such as the delivered bandwidth etc. It is also important
to note that binary acceptance of a component can also be thought of as an
ordering problem (i.e. those that are accepted are ranked before those that are
not).

3.2 Static versus Dynamic

Considering both source code components and binary components, possible in-
formation used for ordering can be retrieved either from a static analysis of the
component, and in the case of binary components, also by executing them with
predefined test cases. This is the idea that underpins the Extreme Harvesting
approach [HA04]. There are various kinds of information that can be gathered
from static analysis of software components but they generally fall into three
subcategories: code related information, certification information and metadata
(i.e. author, company etc.).

Code Related Informations By code related information we mean metrics
that can be obtained by a static analysis of the software. In the literature, there
is a huge set of different software metrics. However, there are a few well known
groups of metric suites which are of particular importance like the Halstead
metrics [Hal77], the McCabe metrics [McC76] or the so called OOMetrics [CK94]
for object oriented software. Other metrics are also known and widely used. The
huge set of available metrics is not of immediate value in helping distinguish
components in a result set, as these often describe different facets of the software.
This means that even if we choose a small subset of code related information, we
need to combine the values to a single one in order to achieve a final ordering. In
the following section we describe possible ways of combining the different kinds
of data derivable from components, not just metrics in the classic sense.

First we need to analyze which kinds of metrics are suitable for characterizing
a component. In general, a metric is useful if it has a large range of numeric
values. Each metric describes a certain facet of a component, even if some of
them often describe the same facet in a slightly different way. Therefore, one of
the main challenges is choosing the best set of metrics to describe components
from different point of views.

Static metrics can be complemented by information gained when the compo-
nent is executed. This is possible if a component is directly available in a binary
form or can be transformed to a binary form by compilation. This is not always
straightforward, since a component can often depend on other components which
themselves depend on other components etc. leading to quite complex depen-
dency structures. However, the problems involved in executing components in
the general case are not the focus of this work and are not considered further.

The information that can be gained from the execution of a component,
such as the quality of service, may describe additional useful aspects of the
component. Usually, however, they provide more information about the same
underlying characteristics as the static metrics but in a more accurate form.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

53

Certification In addition to the code related information some components are
certified by third parties and therefore we would expect these to be of higher
quality, even if an analysis of the code related information would lead to them
being regarded as being equivalent. Using the whole web as a possible component
repository, only a small subset of components might be certified. At present,
therefore, certification is only usable as auxiliary information.

Meta Data Beside the code related data, describing the quality (static analysis)
or the quality of service (dynamic analysis) of a component, other information
not directly related to the code may be derived. We group this kind of infor-
mation under the term metadata. Examples are the components origin, author,
license or the position of keywords within the content etc.

The components origin and the position of keywords within the content are
both used in text-based document searches. In the latter case, the PageRank al-
gorithm uses this kind of information directly by giving text a higher relevance if
it is found at a particular position like a header. The component’s origin is used
indirectly in the form of the URL from which the document can be obtained.
Both kinds of information might also be used in the ordering of software com-
ponents. In the case of keywords, names are of higher importance if they play
particular roles like being a class-name or a method-name, or if they are found
in a particular place e.g. in a method body. In contrast to text-based searching,
where the URL of a document is regarded as an important factor in their ”fitness
of purpose” relative to the given keywords, this is of minor importance for soft-
ware components. However, the origin of a component might play an important
role if the organization which developed it has a good reputation. For exam-
ple, components provided as commercial products by big players in the software
market might be regarded as being of higher relevance than those from smaller,
lesser known organizations. However, this is highly subjective and is related to
the problem of having non orderable properties.

In addition to its origin, the type of license associated with a component is
often of interest to users. Since the number of different license types is not par-
ticularly large, one might expect that an absolute ordering of the license types
might be the easiest way of using this information in the ranking process. How-
ever, from our experience the relevance of license type for ordering the result of
a component search is highly dependant on the kind of software under develop-
ment. For example, a developer of commercial code might only accept a license
type like the GNU Lesser General Public License (LGPL) or the Apache License
and others would be of minor value. In contrast, a developer of open source code
might accept also other licensing types.

In general, the choice of information to use as the basis for an ordering plays
a significant role in the quality of the ranking algorithm for software components
used in large scale component search engines. Once the choice has been made, the
next challenge is to develop an optimal algorithm for combining the information
into a single score that can be used as the basis for the overall ordering of
components. This is discussed in the following section. Since such an individual

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

54

score can satisfy different needs, we first give a short overview of the different
ways a single score can be perceived (i.e. can be used as a customized measure
of the user’s needs)

4 Representative Scores

Analyzing the different ways of combining the raw information discussed above
into a single score for ordering software components we observe two extremes.
At one extreme, each individual user might have his own understanding of the
properties that should be taken into account to order the components and what
their relative important should be. At the other extreme, we could define one
universal ordering which can be used as the default when the user has no wish
for one customized to his own needs. The best choice might lie somewhere in
between these extremes, since we think that the most important influence on
the algorithm used to calculate scores is the application domain, rather than the
wishes of individual users. In other words, we believe that users within a given
domain will have very similar perceptions of ranking requirements, while users
from different domains will differ more widely in their view (see Figure 1).

General representation(default score)

Representation for specific domains
Individual user representation

Fig. 1. The extremes of representative scores

5 Calculating a single Score

In the previous sections we described what kind of information related to a
component can be used as the basis for an ordering. However, in order to compare
two or more components on the basis of their relevance to a given request, a
single score needs to characterize a component’s overall quality. In the following
subsection we present an effective way of calculating a single universal score,
neglecting for the moment the problem of defining individual-customized scores
or domain specific scores.

5.1 Weighted sub-scores

A simple but effective way of calculating a single value from a set of characteris-
tic values is to assign each value a weighting according to its importance in the
overall quality measure. However, this way of calculating a single score has some

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

55

major drawbacks, because the individual weights need to be known in advance
of the calculation. Since the weights can only be reasonably determined from
knowledge of the significance of the characteristics used to calculate a single
score, adapting them to the needs of a specific user or domain is only possible
with major effort. Another drawback arises if the quality of a single character-
istic does not vary in a linear way (is not a linearly increasing or decreasing
quality) but instead is characterized by a compound function which can only be
determined with major effort.

A simple example is given by the lines of code(LOC) metric which is widely
used in software engineering. In the case of a programming language like Java
we find a correlation between the metric and the type of the component. For
example, interfaces by nature have a smaller number of lines of code than regular
class files. If this metric is used as the basis for differentiation and we search for
software components rather than interfaces, we observe that starting at 0 lines
of code the general relevance increases. Once a certain threshold is achieved we
observe, in turn, that the quality decreases again. Figure 2 illustrates this ob-
servation schematically. In the case of such non-linear behaviour it is no longer
possible to use simple weighting factors for each characteristic value. It is still
possible to use functions as weighting parameters, but these might only be cal-
culatable with major effort and possibly only by specialists.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

Q
ua

lit
y

(%
)

Lines of Code

Fig. 2. Non-Linear relation between Quality and LOC

A simple weighting based approach does not therefore seem to be a good
basis for calculating a single universal score from the raw characteristics of a
software component. Therefore, to provide a general and user friendly way of
calculating such scores we need to consider other approaches.

5.2 Neural Networks

The usage of neural networks (i.e. a rule based calculation of a universal score)
allows a significant simplification over the previous described approach. The
importance of each characteristic in the final score is calculated in a simple rule
based way. Additionally, neural networks can be trained with training values in

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

56

which the rules, input and outputs sets are automatically modified and adapted
to the training values. This allows even complicated functions that may arise in
the consideration of characteristic input values to be represented easily without
further knowledge.

User feedback on orderings provides enough training data to improve the
network if needed. As we have seen in the previous section, the domain plays a
significant role for an ordering. Therefore a set of rule bases can be provided for
the different domains.

However, the use of neural networks still has some drawbacks. The mem-
bership to a given set can only be true or false, which is problematic if we use
numeric intervals as the basis for the subsets, where the values at the bound-
aries of the intervals are treated equally to the values inside and are mapped to
the same value in the result set. This would wipe out relative quality scores of
components. A solution to this problem is to use a range of values to measure
a component’s quality score and to characterize its overall quality using fuzzy
sets[Zad65].

5.3 Neuro Fuzzy Systems

Neuro Fuzzy systems are an enhancement of standard neural networks with the
notion of fuzzy sets, as these provide the properties given in the previous sections
[Lip06]. The use of a neuro fuzzy system to calculate a quality score on the basis
of the characteristic values would consist of at least three levels: an input level,
a rule level in the middle and an output level.

As the basis for the input level the characteristic values of a software compo-
nent are used. These are mapped to the output set according to their membership
in the input fuzzy sets and by using one or more rules from the rule level. If a
Mamdami [MA99] controller is used, the output value is still fuzzified. The final
score can therefore easily be obtained by defuzzification of the output level (see
figure 3).

Characteristic
value #1

Characteristic
value #2

Characteristic
value #3

Characteristic
value #4

Rule #1 Rule #1 Rule #1Rule #1

…

Scoring
domain

Fig. 3. Neural net representing the neuron levels

The major drawback with this method of calculating a quality-based score for
software components is the computational performance. However, the advantages
of this method in terms of the possibility of online adaptation to a user’s needs

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

57

easily outweigh this disadvantage. The performance problems are reducible if a
default score is used which can be calculated before a search query is processed.

6 Conclusions and Future Work

Starting with a set of functional equivalent software components we discussed the
issues involved in establishing an ordering based on non-functional properties. To
this end we discussed which values could usefully characterize a component and
how one could derive a single value out of these under different circumstances. As
we explained, when a simple weighting based approach is not suitable, there is a
need to allow users to adapt the scoring technique on-the-fly without any detailed
knowledge about the ordering mechanism itself. We discussed the advantages of
using neural networks and in particular neuro fuzzy systems which allow a fuzzy
treatment of the characteristic values. In order to realize these mechanisms we
are currently analyzing the relative importance of the discussed characteristic
values with a view to identifying the optimum weighting factors.

References

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, 30(1–7):107–117,
1998.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[HA04] Oliver Hummel and Colin Atkinson. Extreme harvesting: Test driven discov-
ery and reuse of software components. In IRI, pages 66–72, 2004.

[Hal77] Maurice H. Halstead. Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., New York, NY, USA, 1977.

[Inc06] Codase Inc. Codase - Source Code Search Engine. http://www.codase.com,
2006.

[Inc07] Krugle Inc. Krugle- Code Search for Developers. http://www.krugle.com,
2006-2007.

[IYY+05] Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto, Makoto Matsushita,
and Shinji Kusumoto. Ranking significance of software components based on
use relations. IEEE Transactions on Software Engineering, 31(3):213–225,
2005.

[Kod07] Koders. Koders - Source Code Search Engine. http://www.koders.com, 2007.
[Lab07] Google Labs. Google Code Search. http://www.google.com/codesearch,

2007.
[Lip06] Wolfram-Manfred Lippe. Soft-Computing. Springer, Berlin [u.a.], 2006.
[MA99] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with

a fuzzy logic controller. Int. J. Hum.-Comput. Stud., 51(2):135–147, 1999.
[McC76] McCabe. A complexity measure. IEEE Transactions on Software Engineer-

ing, 2:308–320, 1976.
[Mer07] Merotronics. Merobase - the Component finder. http://www.merobase.com,

2006-2007.
[Som04] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wes-

ley, 2004.
[Zad65] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

17th edition of the ECOOP Doctoral Symposium and PhD Workshop

58

	aTable of Contents.pdf
	Binder1.pdf
	DoctoralSymposium.pdf
	submission_11.pdf
	submission_1correct.pdf
	submission_5.pdf
	submission_6.pdf
	submission_7.pdf
	submission_9.pdf
	SubWorkshopHeader.pdf
	workshop_submission_10.pdf
	workshop_submission_3.pdf
	workshop_submission_4.pdf

