1,368 research outputs found

    k-anonymous Microdata Release via Post Randomisation Method

    Full text link
    The problem of the release of anonymized microdata is an important topic in the fields of statistical disclosure control (SDC) and privacy preserving data publishing (PPDP), and yet it remains sufficiently unsolved. In these research fields, k-anonymity has been widely studied as an anonymity notion for mainly deterministic anonymization algorithms, and some probabilistic relaxations have been developed. However, they are not sufficient due to their limitations, i.e., being weaker than the original k-anonymity or requiring strong parametric assumptions. First we propose Pk-anonymity, a new probabilistic k-anonymity, and prove that Pk-anonymity is a mathematical extension of k-anonymity rather than a relaxation. Furthermore, Pk-anonymity requires no parametric assumptions. This property has a significant meaning in the viewpoint that it enables us to compare privacy levels of probabilistic microdata release algorithms with deterministic ones. Second, we apply Pk-anonymity to the post randomization method (PRAM), which is an SDC algorithm based on randomization. PRAM is proven to satisfy Pk-anonymity in a controlled way, i.e, one can control PRAM's parameter so that Pk-anonymity is satisfied. On the other hand, PRAM is also known to satisfy ε{\varepsilon}-differential privacy, a recent popular and strong privacy notion. This fact means that our results significantly enhance PRAM since it implies the satisfaction of both important notions: k-anonymity and ε{\varepsilon}-differential privacy.Comment: 22 pages, 4 figure

    Approachable Error Bounded Lossy Compression

    Get PDF
    Compression is commonly used in HPC applications to move and store data. Traditional lossless compression, however, does not provide adequate compression of floating point data often found in scientific codes. Recently, researchers and scientists have turned to lossy compression techniques that approximate the original data rather than reproduce it in order to achieve desired levels of compression. Typical lossy compressors do not bound the errors introduced into the data, leading to the development of error bounded lossy compressors (EBLC). These tools provide the desired levels of compression as mathematical guarantees on the errors introduced. However, the current state of EBLC leaves much to be desired. The existing EBLC all have different interfaces requiring codes to be changed to adopt new techniques; EBLC have many more configuration options than their predecessors, making them more difficult to use; and EBLC typically bound quantities like point wise errors rather than higher level metrics such as spectra, p-values, or test statistics that scientists typically use. My dissertation aims to provide a uniform interface to compression and to develop tools to allow application scientists to understand and apply EBLC. This dissertation proposal presents three groups of work: LibPressio, a standard interface for compression and analysis; FRaZ/LibPressio-Opt frameworks for the automated configuration of compressors using LibPressio; and work on tools for analyzing errors in particular domains

    A New Approach to Synthetic Image Evaluation

    Get PDF
    This study is dedicated to enhancing the effectiveness of Optical Character Recognition (OCR) systems, with a special emphasis on Arabic handwritten digit recognition. The choice to focus on Arabic handwritten digits is twofold: first, there has been relatively less research conducted in this area compared to its English counterparts; second, the recognition of Arabic handwritten digits presents more challenges due to the inherent similarities between different Arabic digits.OCR systems, engineered to decipher both printed and handwritten text, often face difficulties in accurately identifying low-quality or distorted handwritten text. The quality of the input image and the complexity of the text significantly influence their performance. However, data augmentation strategies can notably improve these systems\u27 performance. These strategies generate new images that closely resemble the original ones, albeit with minor variations, thereby enriching the model\u27s learning and enhancing its adaptability. The research found Conditional Variational Autoencoders (C-VAE) and Conditional Generative Adversarial Networks (C-GAN) to be particularly effective in this context. These two generative models stand out due to their superior image generation and feature extraction capabilities. A significant contribution of the study has been the formulation of the Synthetic Image Evaluation Procedure, a systematic approach designed to evaluate and amplify the generative models\u27 image generation abilities. This procedure facilitates the extraction of meaningful features, computation of the Fréchet Inception Distance (LFID) score, and supports hyper-parameter optimization and model modifications

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design
    corecore