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Abstract

The work presented in this thesis is built on three assertions: (1) uncertainties should

be perceived as integral components of GIS spatial databases; (2) as such and given

the importance of uncertainties at all stages of processing spatial data by digital

methods, an integrating strategy is needed to provide more direct access to the

uncertainties of spatial data during data collection, update, spatial analysis and during

the creation of output products; (3) surface-based models and methods are capable of

such an integral strategy, by which many kinds of uncertainties of spatial data can be

well represented and handled.

A cumulative description is given of various uncertainties occurring in geographical

abstraction and spatial data acquisitions with special reference to one common area of

geographical studies, that is, land cover mapping. Two alternative forms of

geographical abstraction or spatial data modelling are introduced: discrete objects and

continuous fields. The uncertainties are then discussed with respect to their

description, estimation and representation under object and field perspectives. For

categorical data, in particular, uncertainties are represented as fuzzy surfaces, whose

derivation and analysis are described in detail.

To provide an evaluation of the integrated approach and to show how such an

integrated strategy can be used to advantage, a case study is developed in the context

of suburban land cover mapping, based on a local Edinburgh area. The case study

begins with the construction of a co-registered hierarchy of test data with a

corresponding hierarchy of accuracies, and continues to the generation and analysis of

fuzzy surfaces using the suite of methods introduced previously. The various graphical

maps and quantitative data produced show that surface based approaches are well

suited to the representation and handling of uncertainties of spatial data, because they

are effective and flexible.
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Chapter 1

Introduction

1.1 Background to the research topic

Geographical Information Systems (GISs) are powerful sets of tools for collecting,

storing, retrieving, transforming, and displaying spatial data from the real world for a

particular set of purposes, a definition provided by Burrough (1986). It is generally

agreed that GISs are decision support systems involving the integration of spatially

referenced data in a problem solving environment (Abler 1987; Cowen 1988).

As Rhind (1987) has said, in a general introduction to developments of GISs in the

UK, a GIS is probably one of the most innovative and influential technologies in the

information era, especially in the handling of geographical information. Due to

increased investment and research, GISs have become more robust and efficient with

reinforced algorithms and improved hardware capacity (NCGLA 1989). A GIS has

been a useful tool for environmental studies and applications in a variety of disciplines

and fields. Comprehensive examples have been described by Tomlinson (1987).

The developments and applications of GISs in a modern world have been very

impressive. However, as Berry (1987) has argued, a GIS, though powerful in

managing and processing massive amounts of spatial data, also provides a vehicle for

generating seemingly accurate maps with minimum understanding of the actual spatial

relationships. To some extent, automating the map data processing by using a GIS

may lead to false perceptions about the quality of the results, as Bailey (1988), van

der Wei, Hootsmans and Ormeling (1994) have all described. In other words, the

powerful hardware capacity and high software precision emphasised by mainstream

GIS systems tend to convey a false impression about the accuracy of the spatial data
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held in GISs.

The various inaccuracies (errors) that arise in GISs do so for a number of reasons.

Most obviously, geographical reality is inherently so complex that it needs to be

abstracted, generalised and approximated in order to facilitate geographical studies, in

particular when using digital methods, according to Burrough (1992) and Goodchild

(1989a). The process of abstracting and generalising real geographical variations in

order to express them in a discrete digital store is commonly known as spatial data

modelling (Goodchild 1989a). The process of data modelling produces a conceptual

model of the real world. It is unlikely that a highly complex geographical reality can

be easily represented by a model with absolute accuracy. In other words, there exist

differences between the model and the underlying geographical reality. These

differences are known as conceptual errors (Bedard 1987; Goodchild 1989b; Veregin

1989).

Modelling represents a complex interaction of human and instrumental factors and

acquiring the raw components of each model, the spatial data themselves, is also

subject to error (Goodchild 1991). Depending on the skill of data analysts and the

sophistication of instruments concerned, spatial data acquisitions will have varying

levels of errors. Though advances in field technologies such as Global Positioning

Systems, and improvements in laboratory techniques such as digital photogrammetry

and digital image processing have greatly improved the quality of spatial data, errors

will not simply be eliminated. The errors occurring in spatial data acquisition are

called measurement errors (Burrough 1986). Errors also occur during geo-processing.

A good example is the conversion of a vector data structure to a raster data structure

or vice versa: the converted data rarely duplicate the original data, even if the original

data are error-free. Such kind of error is called processing error (Goodchild 1989a).
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Errors occurring in geographical abstraction and measurements will be made more

complicated during the combined uses of spatial data, as will be developed below. The

ability of a GIS to integrate diverse spatial data is frequently cited as its major defining

attribute, and as its major source of power and flexibility in meeting user needs, as

discussed by Maguire (1991). Spatial data integration can bring together all kinds of

data necessary to derive certain desirable products or to assemble raw data required

for spatial analysis or modelling in an automated fashion. However, the data

integration may also be misleading. This is because spatial data have their inherent

(and often limited) accuracies and different natural levels of detail. But, the usual data

integration procedures in GISs take no account of the varying levels of accuracy and

detail of the spatial data being merged, assuming scaleless and precise digital data

during geo-processing (Abler 1987). As a result, when digital maps of different scales,

for example, a detailed and accurate city map and a highly generalised stream network

map, are merged by adopting a common scale, the results may be meaningless or

potentially dangerous. For example, streams can be represented as running above

buildings. Error propagation, or more specifically, error concatenation occurs during

such geo-processing as map overlay (Veregin 1989).

Therefore, research into accuracy and error issues in GISs is well justified by the need

for better knowledge about the nature of the spatial data and proper handling of the

various errors occurring in geo-processing (Burrough and Frank 1996; Guptill and

Morrison 1995). Moreover, in the 1990s, users will demand reliability and confidence

as part of the acceptance of GISs as scientific and professional tools (Stuart 1996,

pers. comm.).

With the ever-increasing amount of GIS applications, error handling is an increasingly

urgent necessity for the reliable use of any GIS. This is more so in the case of urban

applications where many complex spatial entities are often superimposed and

compressed into small areas. Such a situation will in turn impose challenges to
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research into the errors occurring in data on urban areas. This is because there is a

need foyr large scale map data on the one hand (such as maps recording buildings

with high precision and contouring data) and less detailed data at small scales on the

other hand (such as highly generalised coverages of soil maps) in urban land use and

land cover mapping. Such a need will inevitably lead to great complexity not only in

terms of the resulting data products but also in error propagation when data layers of

varying accuracies and details are used in combination. For example, Kirby and Zhang

(1993) described their initial research on error modelling in an urban-orientated GIS,

where data layers of different accuracies were incorporated.

As Tomlinson (1987) predicted, future developments in GISs will not only depend on

better algorithms, data structures and continuing improvements in hardware, but will

also need research leading towards a better understanding of ihe nature of spatial data

themselves, their accuracy and errors. Therefore, this thesis aims for new strategies

for handling errors in GISs, which are expected to improve the handling of spatial

data themselves.

1.2 A review of the research on error issues

The goals of research on error issues in GISs, according to Burrough (1994) and

NCGIA (1989), are to investigate how errors arise, or are created and propagated in

the GIS information process, and what the effects of these errors might be on the

results of subsequent decision making. An ideal solution might be to have available

the necessary information on errors and uncertainties intrinsic to spatial data and data

layers during geo-processing, and to devise new algorithms that can track the

propagation of errors (Goodchild 1991; Lanter and Veregin 1990). In this way, both

producers and users of composite maps can have knowledge about the accuracy

obtainable with a certain map operation by digital methods. Similar observations were

made by Drummond and Ramlal (1992).
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To facilitate a systematic review of research on error issues in GISs, Table 1.1

provides a framework in which errors are dealt with from their sources, through their

propagation to their management and reduction. A similar framework is also provided

in Veregin (1989).

Table 1.1 Error issues and strategies for their analysis

Error issues Strategies for analysis

Identification distinction among error sources:

• conceptual error (geographical abstraction)

• measurement error (inaccuraccy in measurement of

positions, heights and attributes of spatial entities)

• processing error (geo-processing)

Detection and measurement accuracy assessment according to the types of data:

• points - error ellipses

• lines - the epsilon error band model

• areas

quantitative attributes - standard deviations

qualitative attributes - error matrices
- fuzzy methods

• surfaces - root mean square errors (RMSE)
- kriging variances

Propagation • numerical attribute data with arithmetic operations
- standard stochastic theory

• categorical attribute data with map overlay
- Boolean logic model (probability theory)
- fuzzy methods

Management and reduction • decision-making in the presence of errors

• reducing the errors in GIS data products
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The first and basic issue is identification of the sources of errors. The following
discussion is based on the definitions given in Bedard (1987), Chrisman (1991),

Goodchild (1989a) and Veregin (1989). As has already been mentioned in the

previous section, there is a distinction among three general sources of error:

conceptual error, which is associated with the process of abstraction or generalisation

about real world phenomena; measurement error, or error in position and height and

attributes of entities; and processing error, which is involved in geo-processing. As an

example of conceptual error, there may be a difficult decision to make about whether

a small patch, which differs from the surrounding region, should be picked up as a

separate class, or blended into the surrounding region. There are many occasions

where measurement errors occur; the operator can't track precisely the lines to be

digitised during a map digitising; the light dot is not accurately kept to the ground in

sampling contours on a photogrammetric plotter; an agricultural field is wrongly

classified as a recreational area by a classification of remote sensing images. For

processing error, Goodchild and Lam (1980) showed that errors occur in spatial

interpolation of area data. Aronoff (1989) provides a good summary of the common

sources of errors encountered in GIS applications, which shows how errors are

occurring from the data sources, through data storage and manipulation, to data

output and use of GIS data results.

The next issue is to detect and measure the errors. Error detection and measurement

are concerned with methods of assessing accuracy levels in spatial data. These

methods can be differentiated by the data types under study, whether point, line, area

or surface data. For points, the simplest method is based on the Gaussian distribution,

which describes the variation in sample measurements. Like most least-squares

models, an adjustment of survey data can estimate an error ellipse for each point along

with its computed coordinates. In some applications, such as cadastral maps, the

location of boundary corners may also follow these rules (Chrisman 1989; Cooper and

Cross 1988).
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For line data, Blakemore (1984) suggested that an epsilon error band model can be

used to indicate the accuracy level about a digitised line, so that the true line will

occur at some displacement (not more than e) from the measured position. Epsilon e

is defined as the displacement distance, and the epsilon error band is defined by twice

the epsilon distance, that is, 2e (see also Chrisman 1989). The epsilon band model can

be used to provide overlay operation in GIS software such as ARC/INFO with

specific tolerance for boundaries of individual combinations of classes (Aspinall and

Pearson 1994). This adjusted overlay is more flexible and reliable than the globally

specified tolerance at the outset, because it can be adapted to the underlying

uncertainty levels of lines.

Area data refer to the spatial data depicting areal distributions, and are usually

represented as irregular polygons or regular grid cells. For numerical (or quantitative)

attributes of individual areas, certain statistical measures such as means and standard

deviations can be used, as was described by Beard (1994). For categorical (or

qualitative) attributes, on the other hand, a measure of classification accuracy is

required. The assessment of classification accuracy as in remote sensing is based on a

confusion or error matrix, which is derived after the comparison of the result against

the "ground truth" based on a certain number and distribution of samples. One

obvious measure of agreement is the sum down the diagonal as a proportion of the

total sample. To take account of the magnitudes of the "marginal" probabilities and to

remove the effect of chance from the measure, the Kappa statistic is appropriate,

defined as the proportion of agreement over and above chance agreement (Rosenfield

and Fitzpatrick-Lins 1986).

Fuzzy methods are useful for addressing the uncertainty in, often categorical,

attributes (Altman 1994). Fisher and Pathirana (1989) reported on their derivation and

mapping of fuzzy maps using satellite data in an urban change detection environment.
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Lowell (1994) gave some general indications as regards the generation of fuzzy maps

in a forest-orientated spatial database, where map data, aerial photography and

remotely sensed data are incorporated. Goodchild, Sun and Yang (1992) described a

model for uncertainties in categorical maps, which uses fuzzy maps and a spatial

autocorrelation parameter together to characterise generic problems of heterogeneity

within polygons and transition across polygon boundaries. The fuzzy maps can be

derived from an image classifier, from the legend of a soil map or subjective

assessment of uncertainties of interpretations.

In addition to point, line and area data as discussed briefly above, there is another type

of geographical data: surfaces, of which Digital Elevation Models (DEMs) are

examples. Published DEMs are sometimes supplied with a report of the accuracy level

as a reference for users, as described in Guptill (1989). For example, the accuracy of

the DEMs by USGS is measured by root-mean-square-error (RMSE). When a surface

is expected to be essentially continuous, geostatistics can be usefully explored

(Burrough 1986; Chrisman 1989; Webster and Oliver 1990). For instance, kriging, as

a spatial prediction and interpolation technique based on geostatistical approaches,

generates variance surface as well as the surface estimated from certain distribution of

point observations or samples (Bregt 1991; Oliver and Webster 1990).

After the identification of errors and their measurements, attention is given to the

third issue: error propagation. This means error propagation per se or error

production. Error propagation refers to the process in which errors present in spatial

data pass through a GIS operation and accumulate in output products, while error

production refers to a situation in which errors in output products are attributable

mainly to the operation itself (in other words, errors present in spatial data have little

effect on the error in output products). Error production has been described

previously as processing errors.
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For modelling the effects of uncertainties as they propagate through GIS operations

and to report these effects in connection with the results of GIS analysis, there is an

accumulation of useful work. Heuvelink, Burrough and Stein (1989) used standard

stochastic theory of error propagation to model the propagation of errors in raster

GIS numerical data when applying continuous-differentiable arithmetic operations.

The inputs of their model include the coefficients and their standard errors, maps of

numerical variables and their prediction errors. While the prediction errors were

obtained from kriging or calculated from repetitive sampling in a mapping unit such as

a polygon, the errors associated with model coefficients were supplied by experts,

which would otherwise be difficult to derive.

On the other hand, for categorical data as opposed to numerical data, Newcomer and

Szajgin (1984) discussed propagation of uncertainties during simple Boolean overlay

using probability theory. Their model accounts explicitly for the degree of error

coincidence based on the computation of a conditional probability. They found that

map overlaying using AND operations tends to degrade the accuracy of the derived

map product when the number of overlaid layers increase. Walsh, Lightfoot and

Butler (1987) applied this model for the AND operations to a set of raster land cover,

slope-angle and soil type layers. The uncertainties in the source layers were measured

by field-checking a sample of cells. The empirical results conform to the model of

Newcomer and Szajgin (1984). Veregin (1989) extended the error propagation model

to both logical AND and logical OR operations. In contrast to AND operations, OR

operations tend to inflate the accuracy in the derived map products. Veregin (1995)

presented his recent work on testing an alternate model that propagates the entire

classification error matrix rather than a single index of error derived from this matrix

such as overall classification accuracy, which has been used as the sole basis for

propagating uncertainties in previous work. Simulation results tend to be consistent

with actual levels of propagation uncertainties. Model output provides more

information on the error characteristics of derived data than a single index of error.
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Recognising the deficiencies of Boolean logic model such as unrealistic sharp class

boundaries and spatial independence of uncertainties across the map layers concerned,

Heuvelink and Burrough (1993) described a method for propagating uncertainties in

cartographic modelling involving the intersection of several maps using fuzzy

methods. They defined suitable fuzzy membership functions to transfer Boolean

classes into fuzzy classes, and found that fuzzy methods are less sensitive to

uncertainties in the data.

The final issue refers to strategies for error management (methods for decision¬

making in the presence of errors) and strategies for error reduction (reduction or

elimination of errors in output products), which are of equal importance. These two

interconnected problems go beyond error assessment and are concerned with the

inferences that may be drawn from the results of error propagation. A detailed

discussion is well beyond the scope of this thesis.

1.3 Problems from the past and the aims of this research

Despite the increasing research on accuracy aspects of spatial data, as broadly

discussed in the previous section, there are many issues remaining to be studied at

depth, as the following section makes clear.

The error ellipse model for points has already been discussed, and will not be

discussed further. As an extension of the error ellipse model for points, the epsilon

error band model for lines has largely relied on traditional statistics for its proper

interpretations. This model may be appropriate for modelling errors in reasonably

homogeneous regions, where uncertainties involved in linear entities can be

approximated by "buffer zones" defined by epsilon distances. However, the true

nature of spatial error and spatial variability for geographical boundaries tends to be
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far more complicated than homogeneously defined epsilon error band models would

suggest, as admitted by Pullar and Beard (1989). Moreover, with the epsilon band

model, there is an analytical complication arising from the need to model polygonal

boundary errors while maintaining topological consistency (Aspinall and Pearson

1994; Goodchild 1989a).

For the study of uncertainties in categorical attribute data, a misclassification matrix

implicitly assumes that classification accuracy or probability is constant over the

mapped area, which is unlikely to be true, as coverages often have varying accuracies

within their extent (Goodchild, Sun and Yang 1992). In other words, a

misclassification matrix provides no information on the spatial variation in uncertainty

below the class level. Additional information is also needed on the correlation

between positional and classification errors (Estes 1992), since these two broad types

of errors are difficult to isolate from each other in practice (Chrisman 1989).

In the error model for categorical data as described by Goodchild, Sun and Yang

(1992), the use of a parameter of spatial autocorrelation, though explicit, has only an

indirect control of the size of inclusions, but no control over their positions within a

patch. As a result, more complex and specific models would be required when the

spatial dependency is anisotropic, or where detailed information is available on the

forms of spatial dependence present. Moreover, using this model, it is not possible to

simulate the effects of correlations of uncertainties between maps, though it is

possible to compute the uncertainties in outputs by overlaying on suits of simulated

maps.

For error propagation in map overlay, even in the recent work as published by

Veregin (1995), the propagation of an error matrix is still based on the assumption of

independence of combinations of actual and estimated values between sources layers.

However, this may not be appropriate in many situations where spatial dependence is
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central to the process of map overlay. Besides, synthesis of individual maps

representing specific factors of interests may not be able to honour the original

geographical reality, from which map layers of individual factors are abstracted

(Bailey 1988).

Though more suitable than Boolean logic, the fuzzy methods as described by

Heuvelink and Burrough (1993) have several shortcomings. One shortcoming is that

users will need to specify the parameters of fuzzy membership functions such as the

class boundary values and the widths of the transition zones. Besides, though

exceptionally implemented in their work, Heuvelink and Burrough (1993) admitted

that spatial correlations of uncertainties across map layers are rarely quantified by the

majority of researchers.

For continuous data such as DEMs, the variance surfaces, produced by kriging as by¬

products of spatial interpolation, have been taken to represent and model the spatial

variability of errors occurring in the underlying data (Beard 1994). However, the

variance surfaces need to be validated against an independent sample of field surveyed

data, as warned by Burrough, van Rijn and Rikken (1993).

In overview, error issues, except for geometric accuracy, are, in general, under-

researched (Burrough 1994; Rhind 1988). Moreover, current spatial databases

designs, though being particularly flexible and useful for well-defined entities, are

extremely difficult in modelling of natural variations evident in geographical processes

(Burrough 1992). The limitations in data modelling have, however, greatly affected

the extent possible to model and understand uncertainties of spatial data, as

Goodchild (1992) said. Therefore, further research is needed.

A good framework or a systematic strategy for research on error issues in GISs may

be based on the two alternative forms (or perspectives) of geographical abstraction,
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which, as mentioned previously, create a conceptual model of the real world. These

two perspectives of geographical abstraction are called field-based and object-based,

depending on whether reality is regarded as consisting of a set of single-valued

functions defined everywhere, or as occupied by a discrete collection of objects

(Goodchild 1989a).

Different perspectives of geographical abstraction create different data models. Field-

based models are favoured in physical geography and environmental applications,

while object-based models are more suitable for cartography and facility management

(Goodchild 1996; pers. comm.). The choice of object-based and field-based models

depends on the specific nature of the underlying phenomenon, is limited by the data

acquisition techniques and implementations of spatial databases, and will affect the

possibilities for modelling the errors in spatial databases (Goodchild 1993). A detailed

account of object-based and field-based data models will be provided in the next

chapter.

Errors are better modelled in fields rather than in objects, because a field perspective

facilitates the integration of roles of spatial data acquisition and spatial data analysis,

thus allowing for the raw data with their spatial heterogeneities to be retained before

compiling a specific map. These raw data are usually vital for deriving necessary

information on errors in the geo-processing (Goodchild 1989b). A similar observation

was implied in the work by Bailey (1988) and Drummond (1987). Moreover, errors in

objects could then be seen as outcomes or realisations of a stochastic model defined

on fields (Goodchild 1991).

The advantages of field-based models are particularly significant during the combined

use of different data layers that possess different levels of accuracies. Moreover, the

field-based models provide an open strategy for research on error issues in GISs,

especially when one recognises the potential held by geostatistics (Goodchild 1996;
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pers. comm.). Therefore, this thesis will pursue error issues in GISs from a field

perspective, though object-based models and methods will be discussed for

comparison.

Up until this point in the text, concepts of error and uncertainty seem to have been

used interchangeably. Errors include inexactness and imprecison, and are mainly seen

as characteristics of the underlying data. Uncertainties, on the other hand, imply

fuzziness, heterogeneity and ambiguity, and tend to be concerned more with

subjectiveness and the complexity of the geographical world (Altman 1994). It is thus

argued that uncertainties seem to be more relevant, in particular for geographical

studies concerning spatial variabilities such as land cover mapping. Therefore, the

term uncertainty will be used as a superset of all sorts of errors and uncertainties

mentioned above.

Pragmatically, a continuously varying field is perceived as a continuous surface. It

appears clear from the account above on the merits of fields as opposed to objects in

the handling of uncertainties that a surface-based method provides an integrating

strategy. Under this integral strategy, access to the information on uncertainties in

spatial databases will be more direct during data collection, data update, spatial

analysis and output of final products (Stuart 1996, pers. comm.).

In particular, this thesis will show how a surface approach to data offers a common

method for representation and operational handling of information on uncertainties,

irrespective of the initial types of the underlying data. The utility of the proposed

methods and models is illustrated by examples showing how the data commonly used

in the context of suburban land cover mapping are stored, how the resulting final

maps contain implicit information about their variable accuracies, how a sense of

uncertainties can be visualised, and how a variety of analyses and interpretations can

be performed to make fuller use of data on uncertainties.
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To illustrate the theory, a case study is presented. The case study was chosen in the

context of suburban land cover mapping for the following reasons. Suburban land

cover mapping involves uses of diverse and sometimes disparate data sets that vary in

dates, resolutions, scales, details, formats and accuracies. For example, it is common

for spatial data at large scale and small scale and of different dates to be incorporated

in land cover mapping and land use planning. As a result, inconsistencies arise from

temporal, spatial and thematic discrepancies and mismatches, which will bring

enormous pressure and complication to the digital handling of combined spatial data

(Chrisman 1991). In the case of suburban land cover mapping, a strategy for handling

uncertainty will need to be very effective and efficient to survive the challenges

mentioned above. Therefore, the combined use of spatial data at a wide range scales

with implied varying details and accuracies makes suburban land cover mapping an

ideal environment to try out the proposed surface methods (Kirby 1996, pers.

comm.).

There are useful methods recommended for modelling uncertainties via surfaces using

probabilistic and fuzzy concepts (Burrough 1994; Goodchild 1993). These methods

are not new, but nevertheless, they offer a sound basis for conducting research as

presented in this thesis. More exactly, there are specific novel contributions in this

thesis, which are now discussed.

Firstly, earlier work on using surface-based methods for representing and handling

uncertainties is mostly orientated towards the integration of environmental modelling

with GIS (Goodchild 1993). In the context of urban and suburban land cover

mapping, where spatial data of various sources, different accuracies and diverse

formats are usually involved, surface-based methods are seen to be lacking. This

thesis incorporates one of the few novel uses of surface-based methods for urban and

suburban land use and land cover mapping.
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Secondly, there has been a conspicuous lack of appreciation of the two distinctive

perspectives of geographical abstraction, i.e., objects versus fields, with respect to the

research on uncertainties in spatial databases, and how such a distinction may help

foster a more systematic strategy in handling uncertainties in spatial databases. So,

this thesis will synthesise the past work pertinent to both the object-based and field-

based models of uncertainties and express it in a rigorous way.

Furthermore, this thesis will contribute by clarifying probabilistic and fuzzy concepts

by drawing examples from land cover mapping, by investigating the relationships

between fuzzy surfaces and object-based models of errors such as the epsilon error

band model and error matrix, and by discussing the research links between uncertainty

concepts in GIS and geostatistics.

Finally, this thesis is characterised by its flexible exploitation of the established

functionality provided by photogrammetric, remote sensing and GIS packages, though

some programming was necessary to perform certain data transformations to allow

for data integration. Such a strategy will help expose the uncertainties of spatial data

without tremendously increasing the added expense of additional values.

1.4 An overview of the contents of this thesis

The first chapter provides an introduction to the research topic, followed by a short

review of the research on error issues in the past with specific reference to error

models pertinent to different types of spatial data and error propagation methods.

Following the exposure of the shortcomings inherent in the existing methods for the

representation and handling of uncertainties in spatial databases, the objectives

pursued in this thesis are then identified and outlined.
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Chapter 2 is a generalised introduction to spatial data and uncertainties in a GIS

environment with special reference to urban and suburban land cover mapping. Two
alternative perspectives of geographical abstraction, that is, discrete objects and

continuous fields, are described, with their differences highlighted. It is also shown

how various uncertainties occur as a compounded result of geographical abstraction

and data acquisition. It is discussed that greater uncertainties occur when using a

collection of discrete objects to model a continuously varying underlying phenomenon

than using a set of continuous fields. Besides, a grid type of field models is the most

suitable for representing and handling uncertainties in categorical maps, which are the

common representation of spatial data for urban and suburban land cover mapping.

Chapter 3 moves to the description of uncertainties in spatial databases with respect

to their measures and representation in objects and fields. While uncertainties in

objects have been relatively well-researched with a suit of methods for their

classification, measurements and estimation, uncertainties in fields are hardly studied

in a systematic manner, in particular for urban and suburban land cover mapping,

leading to a gap in research. Fuzzy surfaces are proposed for unified representations

of uncertainties in categorical maps typically used in urban and suburban land cover

mapping.

Chapter 4 stands as the main theoretical and methodological part of this thesis. It

synthesises how the fuzzy surfaces are derived from remotely sensed images by using

a suite of fuzzy classification methods, and from aerial photographs by using

component land cover proportions in mapping units, and by using geostatistics, in

particular indicator kriging. An account of the construction of fuzzy surfaces is

followed by a section discussing the variety of methods for analysing the various fuzzy

surfaces. Lastly, probabilistic and fuzzy measures used in estimating fuzzy surfaces are

clarified in a discussion section.
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Chapter 5 begins the introduction of the case study undertaken. This case study is

presented with respect to the study area chosen, the data sources available and

accessed, and the test data compiled. The hierarchy of test data is co-registered with a

corresponding hierarchy of accuracies: ground truth data, photogrammetric data

digitised from 1:24,000 scale aerial photographs, classified SPOT HRV data and

Landsat TM data. While it will be shown therein that spatial data acquisition is a very

costly process in terms of time and manpower, especially in a situation where a

diversity of spatial data is involved, a dual purpose for this chapter is to show how

uncertainties in objects are measured and represented. It is also seen that, though

object-based models are suitable for uncertainties relevant to well-defined entities,

they are not suitable for fuzzy phenomena, which are characterised by spatial

heterogeneities. This is where a field-based model works well, as developed in

Chapter 6.

Chapter 6 sets out to generate and analyse the fuzzy surfaces by using methods

described in Chapter 4. While fuzzy surfaces are derived from remotely sensed images

by using an improved version of the fuzzy c-means clustering algorithm, fuzzy

surfaces are produced from photogrammetric data by firstly using sub-pixel

proportions of component land covers, and then by using indicator kriging. The

nature of the remote sensing data means that fuzzy surfaces produced from these data

will be more varied than fuzzy surfaces produced from photogrammetric data. The

analysis of fuzzy surfaces generated from photogrammetric data confirms that they are

better derived by using indicator kriging than by using sub-pixel component

proportions. Further, categorical maps are derived from fuzzy surfaces by using

"maximising" and "slicing" operations, which are seen to contain richer information

on the spatially varying nature of uncertainties than traditional categorical maps.

Results confirm that uncertainties are better researched from fields than from objects.

Finally, an evaluation of the accuracies of classification of remote sensing images is

performed comparatively, by using "fuzzy" and "hard" methods, and suggests the
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extraordinary usefulness of fuzzy methods in situations where mixed pixels are

significant and where fuzziness is intrinsic to both the remotely sensed data and the

ground data.

The concluding chapter, Chapter 7, examines in retrospect the particular

implementation and application of the surface approach in this study. In prospect, this

chapter strongly recommends that further work should be pursued in order to develop

the fuller potential of surface-based methods. This becomes more convincing when it

is recognised that natural links between fuzzy surfaces and geostatistics have been

reinforced in this thesis.

19



Chapter 2

Uncertainties in spatial data modelling and acquisition

2.1 Introduction

The GIS communities have seen a proliferation of general and specific purpose GISs

and spatial data handling packages made available to them over the past decade.

However, the fundamental research on spatial data themselves tends to be overlooked

by those seeking to harvest the benefits from GIS applications. Increasingly refined

GIS hardware and software will not guarantee an unbiased and complete

understanding of the nature of spatial data and their uncertainties. Thus, this chapter is

dedicated to the description of spatial data and uncertainties.

As mentioned in the previous chapter, the case study has been contextualised in

suburban land cover mapping, where, because the spatial data are so diverse, it

becomes more necessary to elaborate on spatial data and uncertainty issues. Attention

is therefore given to various uncertainties that result from geographical abstraction

(also known as spatial data modelling) and spatial data acquisition, with particular

reference to land cover mapping. It becomes clear therein that various uncertainties

occur as a compounded effect of spatial data modelling and acquisition. In the final

section, it is seen that it is sensible to begin the study of uncertainties from the

fundamental issue of spatial data modelling, because such a strategy provides valuable

insights into how a choice of object-based and field-based spatial data models may

affect the possibilities with which uncertainties are handled and usefully explored.
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2.2 Spatial data modelling and uncertainties

As mentioned in Chapter 1, geographical reality is inherently complex, and needs to

be abstracted, generalised and approximated in order to facilitate geographical

studies. This obvious fact is stressed in the context of modern digital methods by

many authors, for example by Burrough (1992) and Goodchild (1992). Usually, the

process of abstracting and generalising real geographical variations in order to express

them in a discrete digital store is known as spatial data modelling (Goodchild 1989a).

The process of spatial data modelling produces conceptual models of the real world.

As has already been described in Chapter 1, there are two kinds of spatial data

modelling: object-based and field-based. An object-based model views the real world

as occupied by a collection of discrete objects, while a field-based model regards the

reality as consisting of a set of single-valued functions defined everywhere (Goodchild

1989a).

For an object-based model, it is necessary to introduce a few concepts about entities,

objects, features and attributes. An entity is a real world phenomenon that is not

subdivided into phenomena of the same kind. An object is a digital representation of

all or part of an entity. A feature is a defined entity and its object representation.

Further, an attribute is defined as a characteristic of an entity, and an attribute value is

a specific quality or quantity assigned to an object. These definitions were supplied by

NCDCDS (1988). Based on these definitions, it becomes clear that an object-based

data model expresses the real world as consisting of objects associated with their

attributes. NCDCDS (1988) published an illustrated classification of cartographic

objects, part of which is presented as Figure 2.1.

Firstly, as shown in Figure 2.1, for points, there are two types of generic point

objects: points (including entity points, label points and area points) and nodes. An

entity point is used principally for identifying the location of a point entity such as a

21



tower (the location is usually specified by a set of coordinates). A label point is used

principally for displaying map and chart text to assist in feature identification. An area

point is a point within an area carrying attribute information about that area. A node is

a topological junction or end point that may specify geometric location (again,

specified by a set of coordinates).

Point

(O-dimensional)
Point

Entity point
Label point
Area point

-+-

Node •

Line

(1 -dimensional)

Line segment -I t-

String
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Directed link • >•
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i.e., with inner rings)
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Figure 2.1 NCDCDS classification of cartographic objects (source: NCDCDS 1988)

Secondly, for lines, there are line segments, strings, arcs, links, chains and rings. A



line segment is a direct line between two points. A string is a sequence of line

segments that does not have nodes, node IDs, Left/Right IDs, any intersect itself or

other strings. An arc is a locus of points that forms a curve, defined by a mathematical

function. A link is a connection between two nodes, while a directed link is a link with

one direction specified. A chain is a directed sequence of non-intersecting line

segments and/or arcs with nodes at each end. It may be a complete chain having node

IDs and Left/Right area IDs, an area chain having Left/Right area IDs but no nodes

IDs, a network chain having nodes IDs but no Left/Right area IDs. A ring is a

sequence of non-intersecting chains, strings, links or arcs with closure. It represents a

closed boundary, but not the interior. As an example, a ring created from links is

shown in Figure 2.1.

Lastly, an area object is a bounded continuous two-dimensional object which may or

may not include its boundary. There are irregularly-shaped and regularly-shaped

(usually rectangular) area objects. Irregularly-shaped area objects include interior

areas and polygons. An interior area does not include its boundary. A polygon

consists of an interior area, one outer ring and zero or more non-intersecting, non¬

nested inner rings: a simple polygon has no inner rings, while a complex polygon has

one or more inner rings. There are two types of rectangular area objects: pixels and

grid cells. A pixel is a 2-dimensional picture element that is the smallest non-divisible

element of an image. A grid cell is a 2-dimensional object that represents an element

of a regular or nearly regular tessellation of a surface.

So, under an object-based model, spatial data exist in the forms of discrete points,

lines and areas. Points occupy very small areas in relation to the scale of the data base

(e.g., towns and cities on small scale maps). Lines are used for real linear phenomena,

and are exemplified by entities such as highways, rivers, pipelines, and power lines.

Area objects are used to represent distributions such as building blocks, lakes and land

parcels and other patterns that occupy areas at the scale of the GIS. Area data are
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represented usually as categorical maps, which take the form of a finite number of

discrete nominal classes represented either by polygons with homogeneous values or

collections of adjacent raster cells with the same values (Campbell 1987).

For individual objects, their various characteristics will be analysed by measuring and

analysing corresponding attributes. Attributes can be measured on different types of

scale. The scale of measurement is a system of classification of measurements

depending on the mathematical operations permitted: the simplest scale is the nominal

scale which only permits a test of equivalence; ordinal scale adds the property of order

and the operations greater than or less than; interval scale defines addition and

subtraction; and ratio scale substitutes the earlier ones with the inclusion of

multiplication and division (Stevens 1946). Chorley (1966) provided specific examples

in geomorphological research.

Examples of nominal data are the name of a city, the material of a road surface and

the ownership of a land parcel. Ordinal data are used where a set of categories has a

natural ranking associated with it (e.g., grades of agricultural land), or may be ranked

from first to last according to some criterion (e.g., the ranking of residential

properties for taxing). Interval data are referred to a purely arbitrary zero value, for
which good examples are elevation above mean sea level and temperature

measurement on a centigrade or Fahrenheit scale. Examples for data on ratio scales

are given by city population, road speed limits and parcel areal extent (Flowerdew

1991). Sometimes, nominal and ordinal data are referred to as categorical or

qualitative data, while interval and ratio data are called numerical or quantitative data.

As seen above, with an object-based model, the real world is represented as discrete

points, lines and areas with associated attributes. An object-based model is suitable for
well-defined entities such as roads, buildings and land parcels, and is widely used in

cartography and facility management. However, it is important to note that
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representing well-defined entities by using object-based models is considered suitable

only on relative conditions and within tolerance, because pure points, lines and areas

do not exist in the real world. Besides, entities have varying and irregular sizes and

shapes. Thus, it is rare to find an object-based model that duplicates the real world

accurately. The difference between a modelled world and the real world represents the

uncertainty due to geographical abstraction. Such an uncertainty is complicated by the

limitations in the process of spatial data acquisition: inaccuracies in the positions and

attributes of objects. This is discussed in the next section.

Attention is now given to the field-based models for spatial data. According to

Goodchild (1989b and 1993), there are six different types of field-based models:

irregular points, regular points, contours, polygons, grid and TIN (triangulated

irregular network), as illustrated in Figure 2.2. Two types of variables are involved in

field models: categorical and numerical. Categorical variables are measured on

discrete scales (nominal and ordinal), while numerical variables are measured on

continuous scales with interval and ratio properties. Categorical variables are

exemplified by land cover and soil type, while examples of numerical variables include

elevation, noise level, annual rainfall and atmospheric pressure.

There are four field models for categorical variables of which two are used for areas:

the grid model, where variation is described by determining its value within each

rectangular cell; and the polygon model, where the plane is divided into irregular

polygons. For both models, spatial variation within cells and polygons are ignored.

Besides, a polygon often removes some of the geometric complexity of boundary

lines. This is evident in a classification of remote sensing images, where each pixel is

assigned a single dominant class, and where contiguous patches of pixels with

identical classes are further smoothed to generate polygon-like data. Therefore, there

are uncertainties occurring in using grid and polygon model, where spatial variations

within cells and polygons are generalised, allowing only for a single and dominant
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class for each cell or polygon.
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Figure 2.2 Field-based models of geographical abstraction

For numerical variables, all the six models are commonly used. Using a TIN model,

only critical points defining local discontinuities are required to model the spatial

variation under study. Thus, TINs are often "reserved" for elevation data, where

linear features and breaks of slope along triangle edges fit well with any naturally

occurring topography (see Theobald 1989 for discussion). As shown in Figure 2.2,
with polygon and grid models it is possible to query the value of a variable at any
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point in the plane, whereas, with others, values can be obtained at arbitrarily located

points only through the use of an additional process called interpolation. Moreover,

because interpolation is not standard, it is more difficult to address the problem of

uncertainties for those field-based models which require an interpolation process, as

the uncertainties in an estimate of a variable such as elevation from a set of regularly

spaced points depends on the interpolation method used. This is more so for

interpolations based on irregularly spaced points and contours, in which the spatial

pattern of uncertainties is highly non-uniform, with lowest levels of uncertainties close

to the points and contour lines. Thus, only grid and polygon models are fully field-

based models in this sense, and a further distinction between these is made in the

discussion section.

As with object-based models, uncertainties occur also with field-based models. This is

because it is rarely the case that complex spatial variations can be easily and

accurately modelled by mathematical functions. Thus, the spatial variations need to be

generalised and simplified in order that they can be approximated by a finite number

of observations. Besides, observations themselves will suffer further uncertainties in

spatial data acquisition, as will be established in the next section.

It has been seen so far in this section that the concepts of objects and fields, as

embodied during the course of object-based and field-based geographical abstraction,

provide necessary mechanisms, by which geographical reality is abstracted, simplified,

and measured to permit computer storage, modelling and analysis. However, as

mentioned above, geographical abstraction leads to a limitation in the accuracy of

spatial data, acknowledgement of which has been largely omitted in the past. Besides,

past research has somehow unduly emphasised precision rather than accuracy. Such a

misplaced emphasis reinforced a spurious precision, which contributes to the creation

of "slivers", that is, small polygons occurring in polygon overlay, a topic reviewed by

Goodchild (1991). Figure 2.3 provides an example of slivers created from overlaying
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polygons, which are digitised slightly differently, as represented by the long, narrow

shaded areas, where the boundary separating polygons PI and P2 is digitised as a 1-6,

on one map layer, and as al, b2-5, a6 on the other.

If polygons boundaries were represented in accordance to their underlying levels of

accuracies, that is, if there were a tolerance adopted for the differences existing

between the two digitised "versions" of the polygon boundary, slivers would not

occur. This can be easily understood from Figure 2.3, where the slivers would

collapse, resulting in the boundary lines coinciding, if a threshold is set big enough to

resolve the discrepancy existing between the two versions of the boundary.

It is therefore important that further research on uncertainties in spatial databases be

based on the understanding of the process of geographical abstraction. This is because

it is generally agreed that uncertainties resulting from the process of geographical

abstraction tend to be the most influential ones. Similar observations have been made

by Goodchild (1989a) and Veregin (1989).

PI
b4

P2

Figure 2.3 Slivers created from polygon overlay
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2.3 Spatial data acquisition and uncertainties

Spatial data acquisition is performed in accordance with abstraction of geographical

reality. As will be shown below, the spatial data acquisition will have further impacts

on the accuracies in the measured data sets. Since this research has been set in the

context of urban and suburban land use and land cover mapping, an introduction to

this topic is necessary. Land cover refers to the material cover on the surface of the

Earth, while land use refers to the cultural use of land. A good example is an area

which is forested in terms of land cover, but may be used as habitat for wild life or as

recreational land in terms of land use (Jensen 1983).

Land cover mapping is a fundamental activity, necessary for a variety of applications:

land use planning, agricultural development, forestry management and environmental

monitoring (Townshend 1992). For urban applications, land use and land cover

mapping provides basic data for purposes ranging from inventory to prediction

(Jensen 1983; Jensen et al. 1994). As mentioned in the introductory chapter, land

cover mapping usually incorporates various data of different origins, resolutions,

accuracies and formats. These diverse spatial data are typically derived from a variety

of techniques ranging from land surveying to satellite remote sensing, as is described

below. Besides, as this thesis seeks to understand the uncertainties existing in spatial

data more fully, this section also provides initial clues to the various uncertainties

involved in the data acquisition process, following the discussion presented in the

previous section of uncertainties occurring in geographical abstraction.

2.3.1 Land surveying

Instrumental land surveying plays an important role in the spatial data collection

process. It is used to derive adequate and well-distributed ground control points

(GCPs), which are required to geo-reference the separate data layers or contiguous
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data sets involved in a particular GIS application properly. This function is particularly
valuable in an urban and suburban land cover mapping, where many layers of data

need to be co-registered for spatial analysis and planning. Moreover, land surveying Ls

used to provide ground truth data for interpretation and measurement based on aerial

photographs and remotely sensed images, as will be described in the following sub¬

sections.

Traditional land surveying requires skill and experience in the observation of angles,

distances and height differences. Introduction of the electronic theodolite or the total

station (i.e. an electronic theodolite integrated with or attached to an EDM) has made

conventional surveying easier and faster. Some established procedures are made

available as standard programmes and are even built into GIS packages as sub¬

systems (e.g., COGO commands in ARC/INFO), computerising the entry of angle and

distance measurements and subsequent coordinate calculation. Global positioning

systems (GPSs) have been developed since the 1980s and increasingly are replacing

traditional land surveying systems as efficient ground data collection tools, with

improved precision and lowered cost. The link between GPS and GIS is rapidly

developing (Kennedy 1996).

It is known that the sophistication of instruments and the refinement of surveying

procedures lead to efficient treatment of the errors inherent in surveying process and

measurements. Most importantly, land surveyors check the accuracy of their work

directly in the field using highly refined surveying procedures or rules. Also, by survey

adjustment techniques (Cooper and Cross 1988), field measurements can be modified

very precisely into most probable values. Thus, it is appropriate to say that

uncertainties are relatively easy to measure and control in land surveying. The

understanding and the handling of errors will become more important as the

automation of surveying work will generate increasing amounts of data, whose errors

may accumulate and propagate very quickly, especially when land surveying is carried
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out over large areas with high density of detail.

2.3.2 Photogrammetric techniques

While land surveying is required to provide accurate GCPs for many GIS applications,

it would be impractical and prohibitive to employ land surveying to perform point by

point detail mapping in urban areas, where efficiency and currency are more crucial

for fast and updated information on urban land use development. This is where

photogrammetric techniques can help.

According to the International Society for Photogrammetry and Remote Sensing

(ISPRS), photogrammetry is defined as the art, science and technique of obtaining

reliable information about physical objects and the environment through recording,

measuring and interpreting photographic images and patterns of electromagnetic

radiant energy and other phenomena.

As a discipline typically using aerial photography for the production of topographical

maps, DEMs and other forms of geometric land information (Torlegard 1986),

photogrammetry now has a major role in spatial data acquisition (topographical and

thematic) for GISs over a wide range of scales: urban land cover mapping and urban

land use planning (Forster 1983), resources management and environment monitoring

(Kirby 1992; Welch 1987).

There is a variety of aerial photographic techniques, which provide different sources

to derive geometric and thematic information for urban applications. Panchromatic

film for aerial photography is being progressively superseded by natural colour film

which is widely used in urban applications because of ease of interpretation: the

colour balance parallels the interpreter's real world experience (Jensen 1983). Colour

infrared film is particularly valuable because of the increased contrast between
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vegetation, water and man-made structures, but is less suitable for general purpose

interpretation.

The photogrammetric stereo plotter is the instrument most commonly used to transfer

aerial photography information to planimetric and topographical maps. In a stereo

plotter, the operator views two mutually overlapping aerial photographs taken from

different positions to form a three-dimensional model. By moving a floating point

around in the stereo model, the operator can draw in roads, rivers, contours and other

features. If the plotter has a digital transmitter, all movements used in drawing in the

photogrammetric model can be numerically encoded and entered in computer storage.

The main advantage of collecting data by digitising from photogrammetric stereo

models rather than from existing maps is that greater positional accuracy of the

features should be possible. In addition, digital data collection using photogrammetry

is flexible in terms of scale and choice of features to be digitised. It can also be used to

update an existing data base. Elevation data acquisition by points, profiles and

contour lines can be performed according to distance, time or coordinate increment.

In addition to measurements of size, perimeter, area, volume, and elevation of objects

based on a reconstituted stereo model, a substantial amount of thematic information

can also be obtained from aerial photographs by applying photo interpretation

techniques. Aerial photo interpretation is a process by which information on site,

association, tone, geometry, texture, pattern, size and shadow is utilised by an

interpreter to obtain reliable identification of entities on the ground (Jensen 1983).

Further details of the nature of aerial photo interpretation will be assumed.

In order to obtain a general but comparative understanding of photogrammetric

techniques with respect to the historical development of photogrammetric plotters in

the modern world, a summary of the features of different photogrammetric plotters is
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shown in Table 2.1.

Table 2.1 A classification and comparison of stereoplotters

Characteristics

Stereoplotters

analogue analytical digital

Instruments optical-mechanical optical-mechanical computer

Date introduced c. 1920s c. 1970 c. 1990

Input photographs photographs scanned images

Stereomodel true mathematical mathematical

Orientations manual fast automated

Restrictions on yes no no

photo/plot scales

DEMs manual enhanced automated

Orthophoto optical-mechanical enhanced digital

Interpretation manual manual increasingly
automated

Output generally graphical digital, graphical digital, graphical

Database generally no, some yes yes
function with interface to

computers

Examples Kern PG2, Kern DSR 14, Kern DSP1,
Galileo G6 Carto. Eng. AP190 Leica DVP

As shown in Table 2.1, the traditional instruments are analogue plotters which use

space rods and an optical-mechanical system to facilitate the reconstitution of the

stereo models. In analytical plotters, software replaces the rods and all instrument

movements are digitally controlled. Transformation parameters are used to transform

continuously the image coordinates to ground coordinates. Known lens distortions

can be corrected. There are no restrictions regarding the photoscales, principal

distances and plot scales. There are additional data edit and management functions.

Output can be digital data bases or maps in graphical forms.
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For analytical plotters, however, human control is still needed to identify and track

entities to be digitised and keep the light dot exacdy on the ground surface. On the

other hand, digital photogrammetric stations are based on a stereo-reconstitution on a

high resolution computer monitor driven by a PC or a workstation. Digital plotters

can fully automate the generation of DEMs and orthophotos, and may have automatic

feature extraction depending on the machine's capability and function. They can

process mono, stereo, and multi-images; terrestrial, aerial and satellite images;

different kinds and combinations of imaging sensors and nonimaging sensor data; and

digitised photography and digital scenes.

However, despite the wide-spread application of these different photogrammetric

techniques for the provision of geometric and thematic information, various

uncertainties occur in all steps of photogrammetric data acquisition and processing.

These uncertainties occur from aerial photography to the final data output: camera

lens distortion, atmospheric refraction, displacement due to tilt and relief, instruments

limitation, and operator's bias. The accuracy of digitising from a correctly orientated

stereo model will depend not only on the stereoscopic acuity of the operator at work

but also his/her interpretation. Often, the interpretation bias has greater effects on the

digitising results than the accuracy of measurement (Kirby 1988).

In urban areas, the uncertainties involved in aerial photo interpretation are more

substantial than in rural areas for the following reasons. Urban land cover, consisting

of residential and industrial buildings, transportation networks, parks and a variety of

mixed cover types, represents a large variety of fine detail (Kirby and Zhang 1993).

The highly varied land use and land cover in urban areas is complicated by the often

limited contrast between different land use and land cover types. As a result, it is not

uncommon for land cover mapping in urban areas to be of limited accuracies, even

when high quality aerial photographs are used (Jensen 1983; Wolf 1988).
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It is clear from the account above that geometric and thematic information obtained

by measurement and interpretation based on aerial photographs suffers various

uncertainties. Although the development of digital photogrammetry with automated

feature extraction may lessen the problems of uncertainties in delineation and

interpretation on aerial photographs, uncertainties will not be eliminated. Because

automated feature extraction is far from satisfactory, various uncertainties will

continue to exist in the data products. Nevertheless, it is important to recognise that

the advancement of digital plotters will speed the production of topographic and

thematic data and at lower cost. Extra amounts of raw data will be of benefit for

handling uncertainties.

2.3.3 Remote sensing

As described above, recent developments in photogrammetry have significantly

improved the efficiency and currency in spatial data acquisition, with increased

accuracy. This is especially apparent in digital photogrammetry, implying great

opportunity for automated feature identification and image understanding as well as

geometric measurement. In terms of digital image processing, there is another closely

related branch of techniques: remote sensing, as established below.

According to the definition by Lillesand and Kiefer (1994), remote sensing is the art

and science of obtaining information about an object, area, or phenomenon through

the analysis of data acquired by a device that is not in contact with the object, area or

phenomenon. Remote sensing technology is more complex than either land surveying

or photogrammetry, and therefore there are more possibilities for errors, as will be

made clear subsequently.

Remote sensors may operate on airborne or spaceborne platforms. An example of the

former is the airborne thematic mapper (ATM) sensor on board aeroplanes, providing
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data with fine resolutions (pixel sizes ranging from sub-metre to several metres).

Foody and Cox (1994) used ATM data for land cover mapping in an urbanised area, a

university campus. On the other hand, spaceborne remote sensors on a number of

satellites in orbit, such as Landsat MSS (multispectral scanner), Landsat TM, SPOT

HRV (high resolution visible), JERS OPS (optical sensor), are providing update and

regular coverages useful for deriving natural resources and environmental data from

regional to global scales, as summarised in Table 2.2 from Neto (1996).

Table 2.2 Optical and radar sensors on spaceborne platforms

Platform Sensor bands ground
resolution

(m)

scale recom. applications

Landsat MSS 4 79 1:200,000 land use, mapping,
geology

Landsat TM 7 30 1:100,000 land use, mapping,
120 (ch. 6) geology

land use, DEMs,
SPOT HRV 4 10 (P) 1:50,000 cartography,

20 (XS) regional planning
IRS-1A LISSI 4 73 1:200,000 land use,

LISS II 4 36.5 1:100,000 cartography

JERS-1 OPS 1 18.3x24.2 1:50,000 geology,
land use

JERS-1 SAR L-band 18 1:100,000 geology
-1:600 000

ERS-1 AMI C-band 30 1:100,000 ecology
- 1:600,000 geology

RADARSAT SAR C-band 25 x28 1:100,000 agriculture,
11x9 - 1:600,000 forestry,

topography
(source: Neto 1996)

As shown in Table 2.2, two kinds of remote sensors are relevant for mapping: optical



and microwave. The optical sensors such as Landsat and SPOT sensors detect

reflected sunlight and re-emitted thermal radiation; while microwave sensors deal with

transmission and reflection of energy in the microwave portion of the radio frequency

spectrum, such as the active microwave instrumentation (AMI) on board ERS-1, and

the synthetic aperture radar (SAR) on board JERS-1 and RADARSAT.

In some situations, remote sensing data are used to provide direct estimates of certain

physical variables independently of other data. Operational examples are found in the

studies related to vegetation or forestry, whose spatial extent is frequently comparable

to the scale of the satellite data, as promoted by Harris (1987). Although the

continuum of urban land cover classes cannot be divided readily into discrete classes

with a conventional image classification approach, satellite sensors with a relatively

fine spatial resolution, such as those carried on the SPOT or Landsat satellites, have

considerable potential in urban studies (Campbell 1987). In fact, Weber (1994) argued

that the repetitivity of remote sensing data makes them attractive for many

applications, including updating information on urban areas, for monitoring urban

growth.

Some variables may be inferred from the measurement of a related variable based on

remote sensing data. For example, by relating population density to building

characteristics such as building type and coverage, remote sensing data may also be

used to derive estimates of demographic variables (refer to Weber 1994 for technical

detail). Another example may be found in Langford and Unwin (1994), where

population density surfaces were derived from estimates of built up areas based on

classified Landsat TM data.

However, uncertainties exist in remotely sensed data, both in their acquisition and in

their subsequent handling. Firstly, there are radiometric and geometric distortions

present, which occur for various reasons: the measurement magnitude, or radiometric
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value, of each pixel may be degraded by noise caused by sensor inaccuracy, variation

of reflected energy due to change of terrain and solar incidence; the geometric

distortions are created by rotation of the Earth, instability of satellite in orbit or

aircraft in flight, atmospheric aberrations and variations in surface elevation.

Secondly, uncertainties occur in the classification of remotely sensed images, of which

there are two main approaches, supervised and unsupervised. A supervised method

uses ground truth data, that is, observations of conditions on the ground. It begins

with a compilation of training data for each class to be mapped. A skilled analyst

works on the screen, selecting areas known to contain the classes named. Spectral

means and standard deviations are calculated for each class. Each pixel is classified by

such simple methods as the parallelepiped or minimum distance rule, or by following

more probabilistically sophisticated methods such as maximum likelihood classifier

(MLC) or Bayes' decision rule (when a priori knowledge of the likely relative

frequency of classes is available). In particular, the MLC method assumes that the

training sample of each class has a multi-variate normal probability density distribution

on spectral space so that the pattern of each can be defined by the position of the

centroid and the variance and covariance matrix of its spectral distribution (Campbell

1987; Townshend 1981; Wood and Foody 1993).

However, there are limitations to the supervised classification method. Because the

supervised method, in particular the MLC approach, is based on the assumption that

the classes have multi-variate normal probability functions, which is not usually held in

the real world, especially in suburban land cover mapping, as a result, the classified

data are often far from perfect. In addition, the classification rule tends to discriminate

against classes with a low probability of occurrence.

Unsupervised classification, as an alternative to supervised classification, exploits the

inherent structure in the data. It starts with a cluster training procedure based on
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spectral characteristics. The clustering is a way of ordering data by sorting pixels into

classes according to a distance measure. The analytical procedure for clustering may

be interactive and includes iterative steps of initialising cluster number, assigning

pixels to the nearest cluster according to a method of distance measuring, calculating

updated clusters means. The process stops when the clusters no longer change

between successive iterations. The character of the clusters is determined a posteriori

by looking at ground properties of samples from each cluster (Swain and Davis 1978).

The unsupervised method is specially useful when working in a new area, because the

clustered classes should reveal what land cover or terrain types can most successfully

be distinguished by using the image data. It is strongly recommended within regions

of natural, non-agricultural terrain, because of the difficulty of obtaining unique

spectral signatures or homogeneous training samples. The difficulty may be due to

spectral differences in the cover types themselves or variations in the terrain in the use

of supervised methods. However, the resultant classes from an unsupervised method

are not guaranteed to be useful. Some of the clusters may be meaningless because

they may contain too wide a variety of ground conditions. Moreover, the interpreter

will make less use of ground and ancillary data that are usually available for

interpretation, implying limited accuracies in classified data.

In overview, the accuracy of classification of remote sensing images, either by

supervised or unsupervised methods, is affected by many factors. First of all, the

classification has relied on the assumption that the area of study is composed of a

number of unique internally homogeneous classes and that classification analysis based

on reflectance data and ancillary data can be used to identify these unique classes by

means of ground truth areas, as discussed in Townshend (1981). In other words, both

supervised and unsupervised classification assume that image data form separate

groups in feature space, and the groups can be associated with ground observations.

These groups are described by some boundaries such as the rectangular parallelepiped
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shape and the hyper-ellipsoid in MLC. According to Skidmore and Turner (1988), it

is frequently observed that clusters in feature space hardly find themselves exhibiting

distinctive patterns which may be approximated by a rectangular or hyper-ellipsoid

shape. Therefore, classification uncertainties are bound to exist in remote sensing

data.

In another view, uncertainties occur due to the presence of mixels (mixed pixels, that

are not completely occupied by a single, homogeneous category). For example, the

heterogeneous nature of urban areas (i.e., the varying mixture of urban surface)

produces a mixed pixel response, as shown in Forster (1983). As argued by Fisher and

Pathirana (1989), the assumption that pure pixels comprise a homogeneous area

representative of one land cover class does not usually hold. Campbell (1987) showed
that mixed pixels are common especially at the edge of large parcels, or along long

linear features, or among scattered occurrences of small parcels. Besides, mixed pixels

also occur where the land cover elements are continuous and gradual. Wood and

Foody (1993) provided empirical results about the gradual changing land cover in a

natural environment.

Though the mixed pixel contains more than one class, it may only be allocated to one

class. Furthermore, as the mixed pixel displays a composite spectral response which

may be dissimilar to each of its component classes, the pixels tend not to be allocated

to one of the component classes. Error is therefore present in the classified image

containing mixels. The estimation of the areal extent of the land cover classes may

thus also be prone to error. In short, mixed pixels degrade the accuracy of image

classification.

Despite growing research into new methods for classification of remotely sensed

images, such as contextual, neural network, rule-based approaches, which may

overcome some of the shortcomings in supervised and unsupervised approaches and
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adapt to the uncertainties occurring in remote sensing process, no method can claim

to be perfect (Davis and Simonett 1991). And, given the fact that remotely sensed

images have undergone just approximate corrections for radiometric and geometric

distortions, any appropriate use of remote sensing data must address the error issues.

In summary, the multi-spectral data of air or space borne sensors are used for natural

resources mapping and environment monitoring on a variety of image processing

systems. However, remotely sensed data continue to suffer radiometric and geometric

distortions. Besides, the relatively large pixel size of the sensors implies that there is a

high probability of more than one cover type contributing to reflectance values as

recorded. The varied nature of urban areas produces mixed pixels (termed mixels)

even with higher spatial resolution data, as shown by Mather (1987). Moreover,

individual patches of the same category may have different spectral signatures (see

Bailey 1988 for ecological applications). The net result of these problems of sampling

resolution and complex relationships between ground conditions and recorded

signatures is that it is difficult to obtain classification accuracy better than 70% for any

class on an image other than water, as consistently shown by various studies (Stuart

1996, pers. comm.)

2.3.4 Secondary data acquisition

Land surveying, photogrammetric and remote sensing techniques perform

measurements and collect data directly from the field, from photographs (terrestrial

and aerial) or from remotely sensed images. They are considered as primary data

acquisition methods, and they lend themselves to current, reliable and direct

measurements (Thapa and Burtch 1991).

On the other hand, depending on the specific requirements and projects, data may be

acquired with sufficient accuracy from existing sources, such as maps, charts or
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graphs, which are secondary products derived from the primary products. Map

digitising is probably one of the most widely used secondary data acquisition methods.

The most commonly used map digitising method is manual digitisation, performed by

locating a cursor at the point or moving a cursor along the line to be digitised. The

method also requires software to display and store the digitised data. Automated line-

following techniques are devised to automate the manual digitising to some extent.

They are widely used to digitise linear features, e.g., rivers, roads and contour tines.

To minimise the uncertainties in the line-following process, different map separates

may be used. Map or image scanning involves a computer-controlled instrument

equipped with optics and detectors that can create the digital data from the document.

The scanners may be divided into drum scanners, laser beam scanners, and video

camera scanners. The scanning of a document may take only a few seconds, but the

subsequent vectorisation and editing will take longer to complete, as reviewed by

Fisher (1991).

Digitised data from maps will have uncertainties both derived from the maps

themselves and introduced by the digitising process (Bolstad, Gessler and Lillesand

1990). Published maps have usually been subjected to a map generalisation process,

which implies a variety of abstraction, selection, simplification and approximation

(Joao et al. 1992). Thus, in some sense, maps portray selected features of reality in a

highly abstracted and generalised form, as described by Harley (1975). Some maps

can be strictly free of impurity, e.g., property parcel maps. In spatial data on natural

resources such as vegetation, soil and land use, a major cause of errors is the omission

of heterogeneous mapping units within areas delineated on the map as uniform (see

Bailey 1988 and Chrisman 1989 for examples). This problem is caused by the

oversimplification of a more complex real world.

The digitising of maps, either by manual or scanning methods, suffers further
uncertainties imposed by machine and operator limitations (Thapa and Bossier 1992),
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though scanning methods are more consistent and controllable in regard to the

uncertainties during digitising than the manual methods. Dunn, Harrison and White

(1990) discussed the uncertainties during their digitising of land use map data.

Comparatively, uncertainties "locked in" during map generalisation are not easily

identified and measured, unless more information is provided with respect to the

specifications and procedures applied in map generalisation as a prerequisite.

Therefore, the distinction between primary and secondary data acquisition is useful,

because uncertainties in primary data are easier to identify and quantify than those in

secondary data. Furthermore, categorical maps may have varying levels of detail

mapped, resulting in the "slivers" problem encountered in map overlay processing.

Further discussion on the characteristics of maps and map data can be found in Fisher

(1991) and Flowerdew (1991).

2.4 Discussion

This chapter began by introducing different forms of geographical abstraction: objects

and fields. An object-based model with concepts of spatial entities, objects and

attributes seems to be largely shaped by the conventional cartographic view, by which

real geographical phenomena are modelled via a collection of discrete points, lines and

areas (Even continuously varying surfaces are commonly displayed by means of

contour lines!). Object-based models are suitable for well-defined phenomena.

However, this suitability should be understood on relative terms, because

geographical variations and details can rarely be duplicated by discrete objects.

Alternatively, a set of fields is commonly used to model, usually continuously varying,

geographical phenomena, and is suitable for physical geography and environmental

studies. But, again, field models are by no means perfect representations of a highly

complex real world.

As a result of complex interaction of human and machine factors, there exist various
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uncertainties of different patterns and magnitudes during the acquisition of spatial

data, no matter how advanced are the methods and techniques for data acquisition.

The usefulness of the data will depend on their reliability and quality in respect of the

specific applications or purposes. The assessment of data quality will be difficult

without the necessary information about the raw data used and the procedures applied

in generating the data. So, this is one of the reasons why further studies on spatial

data themselves are crucial to appropriate applications of GISs. The uncertainty issues

will be discussed in more detail in the next chapter. Furthermore, it is due to the

uncertainties residing in spatial data that it is not straightforward jointly to represent

and analyse disparate spatial data that may vary in structure, currency, resolution and

level of human inteipretation. A similar observation was made by Dahlberg (1986) in

the context of a land information system combining data from different sources. It is

thus of vital importance in GIS to address the data integration issues from a fresh

recognition of the differences existing between the real world being investigated and

the models being utilised.

As a further consideration, there are many geographical phenomena such as land

cover, geology, soil and vegetation, which cannot be suitably modelled because they

do not consist of well-defined and discrete entities. For example, Mark and Csillag

(1989) identified that there are various types of lines: some refer to real entities such

as rivers and roads, and thus can be recorded at high accuracy; others are abstracted

objects, such as boundary lines on soil maps, which are only meaningful in their

specific contexts. Though categorical maps are traditionally employed to represent

such kind of phenomena as discrete polygons or contiguous patches of cells, these

"objects" are actually abstracted objects, which do not exist in the real world. This is

because there are spatial variabilities present in individual polygons or pixels and the

boundaries of adjacent polygons are transition zones of varying patterns. In this case,

real world phenomena are considered "fuzzy". Fuzzy phenomena such as fuzzy

boundaries are recurrent topic of concerns (Burrough and Frank 1996; Wang and Hall
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1996). Obviously, representing fuzzy phenomena by using discrete points, lines and

areas will be a severe simplification, thus leading to significant uncertainties. In this

case, a field-based model may be more suitable, because field models, especially those

represented by grids, provide a mechanism by which spatial variabilities and

heterogeneities are effectively captured, as developed below.

As seen in Section 2.2, polygons and grids are the two fully field-based models that

are used for both categorical and numerical variables. A further distinction can be

made here. By a grid model, geometric forms of the objects created are independent

of the spatial distribution of the variable under study. But, in polygon models,

geometries of objects are determined by the underlying phenomenon under study. For

example, uncertainties in deciding soil types or soil pH values can move the boundary

of a polygon. So, polygon models are less useful because of non-separability of

position and attributes. In other words, when a numerical variable is under study or

when a categorical variable can be transformed to continuous data, it is the grid model

that is chosen as the most suitable for modelling a continuously varying variable,

which is often perceived as a surface (Goodchild 1989b).

A surface contains an infinite number of locations and values. For instance, elevation

can be measured at any location on the terrain; each x,y location has a surface value.

Surface data are able to capture and represent spatial variabilities and heterogeneity

intrinsic to many geographical phenomena. For example, in most natural resources

applications, elevation data represent an important component, both directly and

indirectly by the means of derivatives such as slopes and aspects (Mark, Lauzon and

Cebrian 1989). There are other highly varied surface data such as vegetation continua

data (see Wood and Foody 1989 for their application in lowland heaths), rainfall,

snowfall and temperature data (Atkinson 1996, pers. comm.). The spatial variabilities

and heterogeneities seen in these types of surface data are the basis for deriving the

uncertainties in each specific data set, as will be established in the next two chapters.
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Chapter 3

Object and field perspectives of uncertainties

3.1 Introduction

As was established in the previous chapter, spatial data are distinguished from other

kinds of data in terms of their underlying spatial complexities, dependencies,

variations and their alternative data modelling methods. It has also been shown that

spatial data will always contain certain elements of compromise in the process of

geographical abstraction and data acquisition, and are thus liable to various

uncertainties.

In handling uncertainties in GISs, the separate components are their identification,

measurement and representation. As the identification issue has been discussed in the

previous chapters, this chapter will consider the measurements of uncertainties of

spatial data, followed by a discussion of representations of uncertainties in spatial

databases. As there are object-based and field-based data models, this chapter will

discuss how uncertainties are described, measured and represented under object and

field perspectives of spatial data modelling. Such a strategy may lead to an

understanding that object-based methods, though often adopted in land cover

mapping, find themselves unable to cope with spatial variabilities and heterogeneities

deemed important for modelling uncertainties in land cover mapping, whereas field-

based data methods lend themselves to effective uncertainty modelling.

3.2 Uncertainties in objects

It has been seen that an object-based model perceives the real world as consisting of
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discrete points, lines and areas, which have positions and attributes. Because of the

generalisation and approximation implied in the process of geographical abstraction

and limitation unavoidable during spatial data acquisition, there are various

uncertainties concerning discrete objects.

Uncertainties of different kinds need to be properly classified before being further

discussed with respect to their measures, estimations and representations. Aronoff

(1989), again, provides a good account of the common sources of uncertainties

encountered in GIS applications, from the data sources, through data storage and

manipulation, to data output and uses of GIS data results. Drawing upon the

discussions presented in Bedard (1987), Chrisman (1991), Flowerdew (1991) and

Veregin (1989), this thesis adopts the definitions as explained in the text below, some

of which have been previewed in Chapter 1. Three types of uncertainties have been

recognised earlier: conceptual uncertainties, measurement uncertainties and

processing uncertainties. Conceptual uncertainties are associated with the process of

abstraction or generalisation about the real world. Measurement uncertainties are

uncertainties in position, height and attributes of objects. Processing uncertainties are

primarily due to geo-processing such as data transformation from a vector structure

to a raster structure or vice versa.

Measurement uncertainty can be differentiated into positional (or locational, or

cartographic) uncertainty, uncertainty in the positions of points, lines and polygons,

and attribute (or thematic) uncertainty, uncertainty in the values given to the attributes

of objects. Attribute uncertainty can itself be subdivided according to the scale at

which the attribute is measured: numerical uncertainty, if it is measured on a

continuous scale such as elevation or land value, and categorical uncertainty, if it is

measured on a classification system such as the ownership of a land parcel. Based on

the account established above, Table 3.1 below summarises the different types of

uncertainties in objects, using examples from land cover mapping.
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Table 3.1 Definitions of different types of uncertainties in spatial data

with examples in digital land cover mapping

Uncertainties and their
subdivisions

Occurrence Examples

1. Conceptual geographical
abstraction

whether to isolate small

patches of trees from the
surrounding grass fields

2. Measurement object position and
characterisation

(a) Positional position
measurements

uncertainties in digitising the
boundaries of specific land
parcels from maps or aerial
photographs

(b) Attribute attribute
measurements

(i) Numerical numerical data uncertainties in measuring the
spot heights for certain critical
points from aerial
photographs

(ii) Categorical categorical data uncertainties in land cover

classification from aerial

photographic interpretation or
remotely sensed images

3. Processing geo-processing uncertainties due to data
transformation from a vector

to a raster structure or vice
versa.

Now that uncertainties have been classified, the following text concentrates on a

consideration of the uncertainties of measurement. Conceptual uncertainties and

processing uncertainties are not discussed further in this thesis. While uncertainty is

generally concerned with the deviation between the measured or computed value and

the true value or the value accepted as being true, accuracy measures the closeness
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between them. Therefore, it is suitable to say that the measure of uncertainty is

opposite in meaning to that of accuracy. As such, measures of uncertainties are

interchangeable with measures of accuracies.

Further, it is useful to clarify the concepts of accuracy and precision. Precision

measures the degree of conformity of measurements among themselves. For example,

the average difference between the surveyed data and their corresponding map data

would estimate the accuracy of map data, while frequency distribution could be used

to establish the precision of map data, as explained in Bolstad, Gessler and Lillesand

(1990). Thus, high precision may not guarantee good accuracy because there are no

cause and result relationships between precision and accuracy. Moreover, the

confusion and misunderstanding about precision and accuracy may be dangerous, as

spurious precision is at the core of the "slivers" problem (Goodchild 1991).

According to NCDCDS (1988), there are six fundamental components to the

accuracy of digital cartographic data: lineage, positional accuracy, attribute accuracy,

logical consistency, completeness, and temporal accuracy. Lineage refers to a

description of the source material from which the data were derived, and the methods

of derivation involved in producing the final digital data, including details such as the

specific control points used and the computational steps taken. Lanter and Veregin

(1990) developed a program for propagating measures of spatial and thematic error,

in which lineage was used to document the quality of derived GIS data products.

Maintenance of logical consistency may be tested with respect to topology.

Completeness of the data quality report would include such information as selection

criterion, definitions, and relevant mapping rules, as well as geometric thresholds such

as minimum width and minimum area. Temporal accuracy refers to the currency of

data. Lineage, logical consistency, completeness and temporal accuracy have been

discussed in detail in the textbook edited by Guptill and Morrison (1995); thus are not

dealt with further in this thesis. Instead, attention is concentrated on positional and
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attributes accuracies and how they are described, depending on the types of objects

under study.

The simplest objects are points. The accuracy of the position, in coordinates, of a

point can be represented in the form of an ellipse centred on the point, if the

uncertainties in x and y coordinates are represented by Gaussian distributions

(Goodchild 1991). When the uncertainties in both coordinates are the same and

independent, the ellipse becomes a circle, again centred on the point. This is the

circular normal model of positional uncertainty (ASPRS 1989).

Using this model, it is possible to compute the probability that the true position lies

within any given distance of the measured position, with the average distortion

expressed in the form of a standard deviation. When the standard deviations in x and y

are not equal, the circular standard deviation is no longer the same as the standard

deviations in the two coordinates, but is approximated as the mean of the two. The

probability that a point's true position lies somewhere within the circle of radius equal

to the circular standard deviation is 39.35 %. Under the circular normal model, a

radius of 2.146 times the circular standard deviation will contain 90 % of the

distribution (ASPRS 1989; Goodchild 1991).

In vector databases, lines (polygon boundary lines) are represented as sequences of

digitised points connected by straight segments. It would seem plausible to model the

uncertainty of a line by modelling each point's accuracy, assuming that uncertainty in

the line is entirely due to uncertainties in the points. However, the points are captured

subjectively during digitising, and the uncertainties in digitising the points comprising

the line are not independent, but tend to be correlated (Goodchild 1991). The

relationship between true and digitised lines cannot therefore be modelled as a series

of independent uncertainties in points.
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Blakemore (1984) suggested that an epsilon error band can be used to indicate the

accuracy level about a digitised line, so the true line will occur at some displacement

from the measured position (see also Chrisman 1989). This model has been used in

both deterministic and probabilistic forms (Goodchild 1991). In the deterministic

form, it is considered that the true line lies within the band and never deviates outside

it. In the probabilistic form, on the other hand, the band is understood as one standard

deviation in width, so that one might assume that a randomly chosen point on the

observed line had a probability of 68 % of lying within the band.

The assessment of accuracy for a numerical attribute can be based on the calculation

of mean and standard deviation from a set of samples. The samples are often

repetitive measurements of the attribute in or on the relevant object. It is then

interpreted that the true value of the attribute will not deviate more than twice the

standard deviation from the mean value with a probability of about 95 %. For

categorical attributes, on the other hand, it is only suitable to judge whether a labelling

or classification is correct or wrong. It is thus often the practice to calculate

probability of a classification being correct or wrong based on adequate sampling.

After the description of a variety of measures for uncertainties, attention is now give

to their estimation. For estimating positional and attribute uncertainties, there is a

hierarchy of methods. Deductive estimates may be made in the light of the appropriate

lineage information. At a higher lever, repeated measurement can provide some

internal evidence, which works by using the redundancy designed into many data

collection systems (e.g., closure of traverse, contours expected to meet at sheet

edges).

The most reliable method is by using accuracy assessment via an independent source

of higher accuracy, though there are many test results on uncertainty estimation using

either simulation (Dunn, Harrison and White 1990; Dutton 1992), or other methods



such as multiple delineation and interpretation of objects and their attributes

(Middelkoop 1990). As specified by the American Society for Photogrammetry and

Remote Sensing (ASPRS, 1989), an empirical, site-specific estimate of positional

uncertainties can be produced via tests against an independent source of higher

accuracy (see also Vonderohe and Chrisman 1985 for a case study). Depending on the

specific requirements, the independent source of higher accuracy may be obtained

through land surveying or derived from aerial photography. It is specified that the

'nominal positional accuracy' of the check survey be three times that required of the

product to be tested. In all tests, it is important to achieve the reliability and adequate

number of test data sampled in a well-distributed way.

After the check survey, there is a set of statistical measures to calculate for positional

accuracy. Defining that discrepancies (dj) are the differences in coordinate as derived

from the data sets to be tested and as determined by a check survey, the sample

statistics used for assessing accuracy of map data are explained by the following

formulae (applied in x, y coordinates):

where:

n = sample size

m = sample mean of test point discrepancies

s = the square root of the averaged squared discrepancies

sd = sample standard deviation of these discrepancies.

The sample mean of test point discrepancies will be 0 if the discrepancies are of

random nature. If they are not random, i.e., the value of m is not 0, there is an overall

n

m=l/n£di (3-1)

(3-2)

(3-3)
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shift in the discrepancies. Therefore, the sample standard deviation sd is introduced to

take the systematic error (m) from the individual discrepancy at each check point.

Harley (1975) described how the accuracies of OS maps are tested by using this set of

equations.

As an estimate of positional uncertainty for a line, the epsilon band width may be

measured by the gross misfit between the observed line and the assumed true line.

However, for an individual point, it is not so simple to measure the epsilon distance,

as there is no obvious basis to select a point on the true line as representing a point on

the distorted line (Goodchild 1991).

Accuracy for numerical attributes can be assessed by using similar techniques as in

estimating positional accuracy of points. Accuracy assessment for categorical

attributes such as land cover data, on the other hand, is carried out by first deciding

on the suitable comparing units such as pixels in the case of remote sensing image

(Campbell 1987). Reference data are usually provided by means of field survey, map

data or aerial photography. It is necessary that the two data sets register to one

another and they use mutually compatible classification systems with respect to

number and identities of parcels and mapping detail.

Comparisons are then made based on superimposed overlaying or via sampling. A

superimposed overlaying produces an overlaid map with combination of classes from

the test data and the reference data. A sampling process, on the other hand, generates

a set of samples according to pre-selected sampling schemes. It is straightforward to

tabulate for each pixel or sample the predominant category shown on the reference

map, and the category as shown on the map or image to be evaluated. A summation

of this tabulation forms the basis for the construction of the uncertainty matrix. For

the purpose of illustration, an error matrix is provided in Table 3.2 with symbolic

entries ( Cy, i, j = 1, 2, 3), while Table 3.3 provides a numerical example.
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Table 3.2 An error matrix for classification accuracy assessment

Ground or reference data

Classified 1

1

Cn

2

C12

3

Cl3

row

total

trd)

row

marginal
Pr(l)

user's

accuracy
ua(l)

or mapped 2 C21 C22 C23 tr(2) Pr(2) ua(2)

data 3 C31 C32 C33 tr(3) Pr(3) ua(3)

column

total
tc(l) tc(2) tc(3) t

column

marginal
Pc(l) Pc(2) Pc(3)

producer's
accuracy

pa(l) pa(2) pa(3)

trO)
3 3

~ X Cij ? f(j) — X Cij
j =1 i=l

, t =

3 3

X X Cy
i=i j=i

pr(i) = tr(i)/t, ua(i) = c,i / tr(i), pc(j) = tc(j)/t, pa(j) = Cjj / tc(j).

Table 3.3 A numerical example of Table 3.2

Ground or reference data

Classified soil

soil

24

grass

9

forest

0

row

total
33

row

marginal
0.33

user's

accuracy
0.73

or mapped grass 10 25 5 40 0.40 0.63

data forest 2 5 20 27 0.27 0.74

column
total

36 39 25 100

column

marginal
0.36 0.39 0.25

producer's
accuracy

0.67 0.64 0.80

p0 = (24 + 25 + 20) / 100 = 69%,

chance agreement = 0.33x0.36 + 0.40x0.39 + 0.27x0.25 = 0.34

K = (0.69 - 0.34) / (1 - 0.34) = 53%
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The user's accuracy is the probability that a location labelled as category k (k = 1,2,

3) actually belongs to category k, and is a measure of commission error ( = 1 - ua);

producer's accuracy is the probability that a location known to belong to category k is

accurately labelled as category k, and is a measure of omission error ( = 1 - pa). The

overall classification accuracy (i.e., the observed proportion of agreement or percent

correctly classified) is calculated by dividing the sum of the diagonals in the error

matrix by the total number of all matrix elements (i.e., sum(Cii) / t). This overall

classification accuracy is denoted by pQ, which is usually reported as the percent

correct classification. For example in Table 3.3, p0 = 69%.

The overall classification accuracy represents the probability that a randomly selected

location is correctly classified. But it takes no account of chance agreement, because

even a purely random assignment of class labels will result in a positive value. In other

words, the overall classification accuracy tends to give an inflated index about the

classification accuracy, as Veregin (1995) described.

To remedy this shortcoming, the Kappa coefficient of agreement, K, has been

recommended. As a quantitative measure of classification accuracy, K is calculated as

following:

K=(p0-pe)/(l-pe), (3-4)

where pQ is the observed proportion of agreement as explained previously, and pe is

the proportion of agreement that may be expected to occur by chance, which is

calculated from the row and column marginals of the error matrix from summation of

Pr(i)pc(j) (refer to Campbell 1987 for detail). For example, in Table 3.3, the chance

agreement is 0.34, while the Kappa coefficient is 0.53. Kappa coefficient indicates

that the accuracy of a classification is K * 100 % better than the accuracy that would

result from a random assignment (Janssen and van der Wei 1994). It has become a

widely used measure of classification accuracy, because all elements in the

classification error matrix contribute to its calculation, and because it compensates for
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chance agreement. See Foody (1992) for some examples.

So far, a variety of uncertainty measures and their estimates in object-based models

have been described. It is necessary to check how useful this set of models and

methods is for the representation and handling of uncertainties in the context of land

cover mapping. Land cover data are usually mapped as categorical maps, on which a

discrete collection of polygons are labelled to represent the different land cover types

according to a chosen classification system. The accuracies of boundaries are

described by epsilon band models, which are useful to address the issue of transition

zones. However, epsilon band models are unable to represent within-polygon

heterogeneities.

Though meant to assess classification accuracy, error matrixes are not suitable to

describe accuracy below the level of individual classes. This is because an invariant

accuracy of classification is implied for individual classes or polygons. As a result,

within each polygon, spatial heterogeneities are suppressed, though they are

sometimes implied in a textual report specifying inclusion and minimum mapping unit.

When dealing with propagation of uncertainties during geo-processing such as map

overlay, the problems confronting object models are even worse. A lot of slivers are

created as a result of slight differences in positional accuracies of the map layers

involved, or as a result of different interpretations recorded on different map layers

(Chrisman 1989; Dougenik 1979). Though Chrisman (1989) attempted to isolate the

effects due to positional accuracy and attribute accuracy, his work, as any other

object-based methods, fell short of an integrated approach to modelling positional and

attribute uncertainties.

In an attempt to remove the conflicting effects of positional uncertainties, Veregin

(1989 and 1995) adopted a field-like strategy, and used probabilistic methods to
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investigate the propagation of uncertainties in map overlay. However, his work was

based on error matrixes, whose general use was hence rather limited, because no

spatial heterogeneities are incorporated. Besides, in his work, spatial independence in

uncertainties across map layers is assumed. Therefore, field-based approaches need to

be further explored in the next section.

3.3 Uncertainties in fields

As implied in the previous section, ground truth exists for all objects, that is, objects

have true values of positions and attributes, which can, in principle, be determined.

Therefore, it is possible to measure positional and attribute uncertainties of objects by

testing against ground truth data. This assumption is suitable for real, well-defined

entities such as buildings and land parcels, and invoked in many of the underlying

principles in object-based handling of uncertainties.

As seen in Section 2.2, field models consider the real world as a set of single-valued

functions defined everywhere. Depending on the scales of measurements, there are

numerical variables and categorical variables. For a numerical variable such as

elevation z, it is possible to measure the uncertainty of z at a point by its root mean

square error (RMSE). Suppose a RMSE of 50 cm is recorded for a spot height of 100

m; it is then interpreted that the true height will be within the range 99 m to 101 m

with a probability of about 95 %. Hunter and Goodchild (1995) employed similar

methods in their research on uncertainties involved in applications of DEMs of a flood

plain.

Uncertainty measures such as RMSE may be derived from multiple sampling, which,

though very costly, serves to provide raw data to calculate means and standard

deviations. This is only possible for topographic variables like elevation, which, as a

parameter of a visible and well-known landscape, can be measured several times. For
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other variables such as urban noise level, atmospheric pressure and population

density, however, it is impossible to go back to collect a few more samples once a

specific sampling is done. Thus, multiple sampling can not be used to measure

uncertainties involved in these variables. Besides, such variables are usually invisible

and changeable, and true data are known, to some extent, only by extra sampling

(Carter 1988). These extra samples are used to detect gross aberrations, but provide

no basis to argue over small detail. Further, interpolation of samples of such variables

is subjective, because it is only possible to judge whether an interpolated surface is

plausible or absurd, rather than right or wrong.

In this case, kriging is often used to generate a variance surface, as a by-product, for

an estimated surface (Oliver and Webster 1990). So, for every point in an estimated

surface, a measure of uncertainty is readily available from the variance surface. The

interpretation of a variance surface may follow similar rules as RMSE, on the

assumption of normal distribution (Bregt 1991).

For categorical variables such as land cover, a suitable method might be to consider

the situation in which every point of a field is concerned with a discrete outcome such

as a nominal or an ordinal label in a classification system. Thus, an appropriate

measure of uncertainty for a categorical variable at a point is the probability that a

classification is not correct. Such a probabilistic measure may be obtained from

repetitive sampling as described previously for elevation data. It is also possible to use

an error matrix to derive a variety of measures such as the overall classification

accuracy and Kappa coefficient.

The measure of uncertainty as mentioned above might suggest a spatially invariant

level of uncertainty for each class. However, it is rarely the case that a field-wide

classification can be reached with equal accuracy. This is because many variables, as

properties of natural phenomena, exhibit significant spatial variations, which will exist
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at all scales (Burrough 1987; Goodchild 1989a). Moreover, spatial variations arise as

a result of ambiguities involved in the process of definition and classification necessary

for incorporating categorical variables in spatial databases (Goodchild 1989a).

Suppose a class of grassland is found for two patches A and B. It is not unusual to

find that the growth of grass at these two patches is distinctively different. Even

within each patch, the condition is not quite the same.

The spatial variations mentioned above suggest that many categorical variables are

continuously varying, and so are the uncertainties. Thus, suppose c classes are

possible, a suitable approach might be to view a categorical variable as multi-nominal

field Pi(x), where pi(x) represents the probability of point x belonging to a candidate

class i (i = 1, ..., c) (Goodchild, Lin and Leung 1994). So, instead of a uniform level

of uncertainties at individual class level as suggested by an error matrix, the use of

Pi(x) facilitates a continuously varying representation of uncertainties.

While probabilistic measures are used above, many variables are often fuzzy, as

fuzziness is seen as an inherent feature of categorical or qualitative measurements in

classifications such as for land cover and land use. This idea has also been suggested

by Altman (1994) in an introduction to fuzzy spatial relations. There are also

situations as in the case of spatial decisions based on multiple criteria such as land

suitability assessment, where classical set theory may not be suitable, as discussed by

Drummond and Ramlal (1992). Therefore, fuzzy approaches are needed for

describing and modelling fuzzy phenomena.

Luzzy set theory has been developed specifically to deal with fuzzy phenomena

(Kaufmann 1975; Zadeh 1965). Let X be a universe of discourse, whose generic

elements are denoted x: X = {x}. The membership in a classical set B of X is often

viewed as a characteristic function %B from X to {0,1} such that %b(x) = 1 if and only

if xe B. A fuzzy set A in X, on the other hand, is characterised by a fuzzy membership
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function ftA(x), which associates with each x a real number ranging from 0.0 to 1.0

(Wang 1990). The fuzzy set A can be designated as:

A = {(x, |lA(x)) | xeX} (3-5)

where the value of |iA(x) at x represents the grade of membership of x in A, and is

commonly termed as a fuzzy membership value (FMV). The closer the FMV is to 1.0,

the higher the grade of membership of x in A. The fuzzy membership function (iA(x)

may be probabilistic, but may also be based on unrepeatable expertise (Drummond

and Ramlal 1992).

Fuzzy set theory is versatile, because it allows many otherwise non-quantifiable

phenomena to be usefully dealt with. In other words, fuzzy set theory provides a

quantitative way to measure and model qualitative variables such as categorical land

cover data, which is useful in decision-making (Gopal and Woodcock 1994). Besides,

given uncertainties surrounding the measures of uncertainties and uncertainties, it is

probably more sensible to use fuzzy set theory than rigorous statistical and

probabilistic means (Drummond and Ramlal 1992). Therefore, FMVs will be used as a

superset combining all kinds of fuzzy membership measures, be they fuzzy or

probabilistic. Such a generalisation is useful because of the need to synthesise the past

work concerning fuzziness in spatial databases, as will be developed in the following

chapter.

So far, it has been seen that both probabilistic and fuzzy measures are useful for

describing uncertainties in categorical variables. A question remains of how to

estimate the required probabilistic and fuzzy measures. Because of the diversity of

data incorporated in urban and suburban land cover mapping, the methods for

estimating fuzzy land cover data seem to be rather complicated. A detailed discussion

on the estimation of probabilistic and fuzzy measures of uncertainties in fields will be

developed as Chapter 4, after a further section below describing representations of

uncertainties.
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3.4 Representing uncertainties in objects and fields

As shown in Sections 3.2 and 3.3, possible measures of uncertainties include

qualitative descriptions such as a lineage report, and quantitative parameters such as

standard deviations, probabilities and fuzzy membership values, depending on specific

data models. After discussing the measures of uncertainties, attention is given to their

representations in spatial databases. As predicted by Lunetta et al. (1991), the

integration of spatial data seems to be complicated by the need to cope with different

uncertainties in addition to the diverse data themselves. Therefore, it is very crucial to

consider effective and flexible approaches to the representations of spatial data and

their uncertainties. In practice, representations of uncertainties in spatial databases

have followed some logical extensions of the underlying data models for the data

themselves. These will be reviewed before going on to propose further synthesis and

refinement of the techniques that are needed for spatial data in land cover mapping.

As seen above, spatial data modelling has been seen as being either object-based or

field-based. There is another interconnected concept: data structure. It has been seen

previously that spatial data modelling is the process of abstracting and generalising

real geographical variations, thus expressing it in a suitable form for representation in

a discrete digital store. A data structure, on the other hand, is the specific

representation scheme within a computer system based on a certain data model

(Peuquet 1984).

In general, there are two distinct data structures in GIS: vector and tessellation (raster

or grid), as shown in Figure 3.1. Vector structure represents spatial variation using

points and lines located in continuous coordinate space. Vectors may be unlinked, that

is, their object boundaries are encoded without reference to neighbours, or

topologically linked, that is, their arcs are referenced by their end points, orientation

and the attributes of adjoining regions, as listed in Table 3.4. Table 3.4 provides an
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example for the topologically linked vector structures, where each line has an ID, a

from-node, a to-node, a left-polygon and a right-polygon. The vector structure similar

to that shown in Figure 3.1 (a) in connection with Table 3.4 is known as a geo-

relational data model in the ARC/INFO GIS package.

Rec# ID FNODE# TNODE# LPOLY# RPOLY#

1 al n4 nl 0 pl

2 a2 nl n3 0 p2

3 a3 n3 n4 0 p3

4 a4 n4 n2 Pi p3

5 a5 n2 n3 p2 p3

6 a6 n2 nl Pi p2

Table 3.4 A topological data structure for lines as drawn in Figure 3.1(a)

(the Os denote outer areas)

(b)
(a) vector structure, (b) raster structure.

(a)
Figure 3.1 Data structures in GISs:

A raster structure, on the other hand, tessellates space and assigns a unique identifier

to each spatial element. The position of objects is defined impliedly by the row and
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column position of the cells they occupy. The value stored for each cell indicates the

type or condition of the object found at that position, as shown in Figure 3.1(b)

(Aronoff 1989; Burrough 1986).

In a vector structure, the entity's identity is preserved, thus lending itself to storage of

spatial data in a object-based data model, as argued by Davis and Simonett (1991).

Because object-based data models describe the geographical phenomena as discrete

collections of points, lines and polygons, the corresponding representation of

uncertainty measures in databases is also object-based. It incorporates information on

positional and attributes accuracy into vector-based spatial databases by attaching the

accuracy parameters (e.g., standard deviations or probability indicators, as discussed

in Section 3.2) to individual points, lines and polygons or individual attributes (e.g.,

district population counts) (Drummond and Ramlal 1992). A similar approach may be

found in Guptill (1989), where data on the uncertainties are accommodated in an

extended geo-relational data model similar to that illustrated in Table 3.5. This table

includes hypothetical epsilon band widths for incorporating uncertainty of lines.

Table 3.5 An extended relational data structure for incorporating uncertainties of lines

as drawn in Figure 3.1(a).

Rec# ID FNODE# TNODE# LPOLY# RPOLY# e-WIDTH

1 al n4 nl 0 pl 1.0

2 a2 nl n3 0 p2 1.0

3 a3 n3 n4 0 p3 1.0

4 a4 n4 n2 Pi p3 1.0

5 a5 n2 n3 p2 p3 1.0

6 a6 n2 nl Pi p2 1.0

In vector structures, objects are defined by their positions and attributes. As a result,

uncertainties in positions and attributes are usually addressed separately. The separate
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handling of positional and attribute uncertainties has, unfortunately, been the core for

weakness of object-based methods in modelling uncertainties (Goodchild 1992).

On the other hand, raster structures are favoured by researchers (Goodchild, Lin and

Leung 1994; Veregin 1989). This is because attributes in a raster data structure are

stored explicitly cell by cell, whose positions can be calculated by referring to the

origin and cell size of the raster structure. The square grid, which is the most

common, has additional advantages such as simplicity of structure and ease of

processing. For these reasons, though often criticised for data redundancy due to a

fixed resolution or the "pixel" size adopted by a raster structure, which sets the upper

bound for its accuracy, raster structures are ranked highest in terms of suitability for

modelling uncertainties in fields (Goodchild 1989b).

Therefore, one may represent the uncertainties in land cover data as a set of fuzzy

surfaces using rasters with FMVs defined for every grid cell. Each surface represents

the contribution from an individual class. The value on a given surface represents the

strength or certainty of having that class at that given position. As an example, a set

of fuzzy surfaces adopting raster structures is shown in Figure 3.2, where the value

labelled for each grid cell stands for its strength of membership belonging to the

named class.

As shown in Figure 3.2, using a raster-based structure, fuzzy surfaces enable FMVs to

be explicitly recorded for each grid cell. Such a scheme facilitates the maintenance of

spatially-varying class memberships. Thus, the uncertainties associated with class

allocation are easily accessible during data analysis based on the fuzzy surfaces. Such

a strategy is superior to a vector-based structure (Table 3.5) where uncertainties are

recorded for individual objects and hence it is difficult to infer spatially-varying

uncertainties at arbitrary locations unless a suitable model is assumed. Further

discussion is provided in the next section.
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100 90 80 70 70 60 40 30 20 10
100100 80 70 60 40 30 20 10 0
100100 80 60 40 30 20 10 0 0
100 90 70 60 40 30 20 10 0 0
CO 70 60 40 30 20 10 0 0 0
70 60 30 30 20 10 0 0 0 0
70 50 30 20 10 0 0 0 0 0
60 40 30 20 10 0 0 0 0 0
40 30 20 10 0 0 0 0 0 0
30 20 10 0 0 0 0 0 0 0

(a)

0 10 20 30 30 40 60 70 oo 90
0 0 20 30 40 60 70 80 90 IOC
0 0 20 40 60 70 80 90 10010C
0 10 30 40 50 60 70 80 10010C
20 30 40 50 50 60 70 70 70 70
10 20 40 50 60 60 60 60 60 60
0 20 30 30 30 30 30 30 30 30
0 10 20 10 10 10 10 20 20 20
0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 10 10 10 10 0 0
0 0 0 10 20 20 20 30 30 30
20 20 30 20 20 30 40 40 40 40
30 30 40 50 60 70 70 70 70 70
40 50 50 70 80 90 90 80 80 80
60 70 70 90 10010010010010010C
70 80 90 10010010010010C 100IOC

(b)

Figure 3.2 A set of fuzzy surfaces with hypothetical data:

(a) class PI, (b) class P2, and (c) class P3, distributed as in Figure 3.1.

3.5 Discussion

There are many advantages to be gained from using surface models in the handling of

uncertainties in spatial databases. The first advantage is that surface models are able
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to capture the spatial variabilities of uncertainties, which are lacking in object-based

data models. For example, derived fuzzy values indicate the relative strength of class

membership across the classes being considered and can be used therefore to map the

spatial variation in class especially when the study area displays gradual change in

classes, as described in Wood and Foody (1993).

Categorical maps usually contain nominal data which have been stripped of spatial

heterogeneities and fuzziness, whereas remotely sensed data inherently involve some

continuous sampling in spatial, spectral and temporal domains. Differences in their

data structures and also in the nature of the underlying data pose impediments to the

effective integration of GIS and remote sensing data (Flutchinson 1982). As an

alternative, by using surface methods, various data are represented in a unified format

irrespective of their original formats, making spatial data integration more efficient

and meaningful. This is the second advantage of surface methods.

In terms of the visualisation of data quality, the traditional approach on topographic

maps is to use reliability diagrams produced to assist the potential users in determining

the maps' fitness or suitability to specific applications or projects. There are also

textual means to indicate overall levels of data accuracy: data resolution ("the smallest

map unit represented is about 10 m X 10 m"), error ("map unit boundaries should be

accurate within +/- 15 m; in areas labelled as specific land cover type, this cover type

occupies at least 75% of the areas"). However, representing the overall spatial

variability of data accuracy is more worthwhile than simple diagrams or texts, as such

a strategy will greatly facilitate such processing as error propagation (Berry 1993).

Three dimensional views built straightforwardly from surface data will give the spatial

variability of the uncertainties in spatial data in an inherently visually appeasing and

convincing way, as will be demonstrated in the empirical tests. This constitutes the

third advantage of the surface-based approaches.
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The fourth and the most important advantage is that surface approaches provide an

integral strategy to give more direct access to the uncertainties in the whole process

of spatial databases, as outlined in Chapter 1. Clearly, uncertainty surfaces will

provide the extra information necessary to determine the accuracy in a composite

map. As mentioned in Section 3.2, Veregin (1995) presented empirical results for

error propagation using probability values of individual map layers. Now with a

continuously varying surface of uncertainty, this research would be able to be

extended to a point basis. This is the main driving force behind the development of

surface-based approaches as presented in this thesis. Moreover, the combined use of

probabilistic and fuzzy measures will allow for a suit of quantitative analyses for

handling uncertainties in spatial databases, as will be developed in the next chapter.

In summary, in line with the two alternative forms of spatial data modelling as

covered in Chapter 2, uncertainties have been discussed with respect to their measures

and representations in object-based and field-based models. Under object-based

models, uncertainties were dealt with separately in positional and attribute domains.

These uncertainties are appropriately viewed as special attributes of objects, and can

thus he accommodated in extended geo-relational data structures. Under field-based

models, on the other hand, fuzzy surfaces were proposed, which can give more direct

access to the continuously varying nature of uncertainties during data input, update,

geo-processing and production of output data.

While methods for estimating uncertainties in objects have been discussed, drawing on

the past work, the estimation of fuzzy surfaces in categorical fields has not be

examined. Though there have been useful proposals or practical tests aimed for the

generation of fuzzy surfaces, the research has been largely non-systematic, in

particular for urban and suburban land cover mapping. Therefore, the next chapter

will endeavour to fill in this gap.

67



Chapter 4

Deriving and analysing fuzzy surfaces

4.1 Introduction

As indicated in the last chapter, methods for estimating uncertainties in objects are

relatively well-established. On the other hand, much work remains to be done to

derive fuzzy surfaces as relevant for categorical fields. Moreover, as also discussed in

the previous chapter, the feasibility of surface-based models and methods does not

imply that deriving fuzzy surfaces will be easy or cheap in any sense. The reasons are

discussed below.

For modelling fuzzy bands of polygon boundaries, Drummond (1987), Lowell (1994)

and Middelkoop (1990) employed multiple interpretation techniques in order to

calculate and model the magnitudes and distributions of uncertainties occurring in

polygon boundaries. They were fortunate to have a number of students to perform the

interpretation and delineation of polygon boundaries. In practice, probably due to

limited budgets and time, spatial data acquisitions tend to be concerned more with

practical and economic factors including constraints than about how redundant

measurements might be used to check the data quality internally. Thus oversampling is

likely to be something exceptional rather than usual. This fact implies that there are

usually very limited amount of raw data, which may not be sufficient to derive fuzzy

surfaces accurately. Therefore, some cost-effective methods are required to generate

fuzzy surfaces in situations where only limited sets of data for checking are available.

Furthermore, empirical accuracy tests implicitly assume that the databases are

populated by well-defined objects with exactly valued numerical or categorical

attribute data. However, most naturally occurring phenomena such as land cover or
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vegetation may not be as well depicted as generally homogeneous regular or irregular

units. As a result, there are no ground truth data in any absolute sense for poorly or

fuzzily defined phenomena. Therefore, it is necessary to address the problems in

constructing fuzzy surfaces from a relatively new perspective.

Because land cover, as a special categorical variable, is the focus of this research,

attention is given to the derivation of fuzzy surfaces for land cover data. Chapter 2

described a range of spatial data acquisition methods including photogrammetric and

remote sensing techniques. It is now useful to make some further distinction among

these commonly used methods of land cover data acquisition, in order to provide

initial insights into how different fuzzy surfaces can be derived, depending on the

specific data types being acquired.

The first group of spatial data acquisition methods is represented by digital image

processing. It has been shown previously that remote sensing images, largely in the

form of digital multi-spectral reflectance data, readily lend themselves to a variety of

digital processes (Richards 1993). Increasingly computerised image processing

techniques enable remote sensing analysts to perform a variety of image processing

procedures and to derive a wide range of data products. For remote sensing

classification, such highly computerised image processing tends to result in the

analysts rushing to the classified data after playing with the classifiers provided in an

image processing system, implying that the intermediate procedures and outputs are

not likely to be studied at any length once a satisfactory classification has been

achieved. Such a kind of classification is called "hard" by other workers (Foody 1995a

and 1995b), because only the final labelled product is generated, and is also called

hard in this thesis. "Hard" is used as the opposite of "fuzzy" and in preference to

"discrete".

For example, a maximum likelihood classification involves the computation and
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comparison of probabilities of a pixel belonging to all candidate classes, and assigns

the pixel to the class to which it has the biggest probability of belonging. These

probability data are rarely explored further by the analysts and are seldom transparent

to the end users of the classified data. These intermediate data, however, often

directly indicate or are indirectly related to the relative strengths of membership of a

pixel to all candidate classes, and thus are vital to the derivation of spatially varying

uncertainties for the classified data (Foody and Cox 1994). Clearly, it is useful if the

relative strengths of class membership are maintained throughout the classification

processing. Such a strategy leads to a fuzzy classification, as opposed to a hard

classification. Usually, a fuzzy classification can be carried out by defining a suitable

fuzzy membership function or by clustering in the spectral domain, as will be

described in the next section.

The second group of methods for categorical mapping is exemplified by aerial photo

interpretation, which constitutes a substantial element in photogrammetry. As seen in

Chapter 2, in the process of aerial photo interpretations, interpreters simultaneously

make use of the information on association, tone, geometry, texture and pattern as

well as a variety of knowledge available from field survey and existing maps (Jensen

1983). The classification is carried out in accordance with certain hierarchical

classification schemes. Traditionally, the information on categorical maps is shown in

the form of discrete polygons, each of which is internally homogeneous and can be

differentiated from adjacent polygons by sharp boundaries. The information on the

heterogeneity and spatial variability present in the reality may be apparent to data

acquisition personnel, but is rarely further exploited for assessing the spatial variations

of the classification accuracy. By conventional methods, classification accuracies are

assessed on a global basis, or are spatially or thematically aggregated, implying that

no information is provided of the spatially varying accuracies below the level of

individual classes.
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To provide further detail, accuracy assessment for individual polygons can be

achieved by noting the proportion of the component classes in each regular or

irregular mapping unit (Foody 1995a). This method can be applied in situations where

the mixture of classes is significant in mapping units due to spatial aggregation. For

example, it is often the case that pixel sizes of remote sensing images are relatively

large in relation to the compressed features in urban areas which need to be resolved.

When photogrammetric data, often in the form of vectors, are used as either ancillary

data or ground truth data, different land cover types are expected to be present in

many pixel-equivalent grid cells transformed from the photogrammetric data, usually

stored as polygonal data. Therefore, one method for constructing fuzzy surfaces is to

maintain the proportions of sub-pixel component land cover types. Under such a

strategy, information is made available not only for the dominant land cover types but

also for the whole set of component land cover types at the individual pixel level.

However, this method implicitly assumes that boundaries separating component land

covers can be accurately delineated. This assumption is usually unattainable in

situations where the mapped phenomena are inherently fuzzy and spatial variations

occur at all scales. In this case, other methods have to be devised.

A possible way is to go back to the heterogeneity and spatial variability central to

many naturally occurring phenomena. Goodchild (1989a) recognised that, for

cartographical map compilation in general, field observations are firstly focused on

areas with relatively homogeneous characteristics, and are then extended to

heterogeneous areas using aerial photographs or remotely sensed images. Obviously,

homogeneous locations can be identified more accurately than heterogeneous,

transitional zones, suggesting the plausibility of using interpolation to generate

uncertainty surfaces, as will be described in Section 4.3. To some extent, the

derivation of fuzzy surfaces from photogrammetric data lies in the data acquisition

process itself.
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The way that each type of fuzzy surface is calculated depends on the nature of the

underlying data sources. Table 4.1 shows the two types of source data and suggests

the means for deriving fuzzy surfaces from them. Further details on the variety of

digital and graphical images available may be found in Neto (1996). As the first aim,

this chapter will define the ways in which fuzzy surfaces are derived for each of the

common data types exemplified in Table 4.1.

Table 4.1 A classification of methods for deriving fuzzy surfaces

Source data Data

format

Derivations

1. Digital images derived from: fuzzy classification:
• Landsat MSS, TM a. supervised - fuzzy membership

• SPOT HRV functions

• NOAA AVHRR raster b. unsupervised - fuzzy c-means

• RADARSAT SAR
clustering

• Space shuttle MOMS, ESC

• AMSS, ATM

• scanned aerial photographs

2. Graphical images derived from: c. proportional component land

• Space shuttle MC, LFC cover types in mapping units

• Russian MIR KAP-350 vector d. interpolation based on distances

• RESURS-F KFA-1000 e. interpolation by indicator

• Aerial photographs
kriging

Representing uncertainties by fuzzy surfaces is different from using object-based

methods, as demonstrated by Lowell (1992). As the second aim, some useful methods

for the analysis of fuzzy surfaces, following the discussion of their derivations, will be

introduced.

72



As implied in Table 4.1, fuzzy surfaces need to be understood differently, depending

on the underlying data and the ways the fuzzy surfaces are derived. Thus, the final

section of this chapter will clarify the distinction between different types of fuzzy

surfaces.

4.2 Deriving fuzzy surfaces from remotely sensed images

4.2.1 Supervised methods

As indicated in Table 4.1, fuzzy surfaces can be derived from fuzzy classifications,

which can be derived by both the supervised and the unsupervised methods. By using

a supervised method, a fuzzy membership function needs to be defined. Depending on

the specific classification techniques being used, there is a variety of ways of defining

fuzzy membership functions required to derive supervised fuzzy classifications.

The maximum likelihood classification is a widely used supervised classification

method. Assuming normality, the maximum likelihood classification is based on an

estimated probability density function, p(x/i), as expressed by equation (4-1) for each

of the reference classes under consideration:

p(x/i) = p(i)(27t)-(n/2) | Det(cov) | -1/2exp(-d2/2) (4-1)
where n is the number of bands, p(i) is the a priori probability of class i, cov is the

variance and covariance matrix of class i, Det denotes the determinant, and d2 is the

squared Mahalanobis distance from pixel x to the centre of i (Campbell 1987). The

squared Mahalanobis distance of a pixel (denoted by vector x) to the centre of a class

i (denoted by mean vector vO is calculated by:

d(x,v1)2 = (x-v1)Tcov"1(x-v1) (4-2)

where superscript 1 stands for a transpose operation, and superscript 1 denotes the

inverse of a matrix.

In the conventional maximum likelihood classification, pixels are sorted into classes
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with which they have the highest probabilities, measured by the probability density

function. In a fuzzy classification, on the other hand, the probability data computed

before the final labelling process are kept for further uses. This technique is illustrated

in Figure 4.1. Specifically, Figure 4.1(a) shows scattered data points representing the

pixels (a particular pixel is indicated by x) in a two-dimension multispectral space,

where classes 1, 2 and 3 are defined by their bounding ellipses centred at point vi, v2

and v3. Figure 4.1(b) shows the normal distribution curves along the transects passing

the pixel x and each of the centres.

Band 2

Figure 4.1 The principle of a fuzzy classification.

The probability density function values of pixel x, measured by the three normal

distribution curves as shown by Figure 4.1(b), indicate the relative strengths of

membership of pixel x belonging to class 1, 2 and 3, respectively. Thus, a suitable

fuzzy membership function can be defined as follows:
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|ii(x) = p(x/i) / Zp(x/j) (4-3)
j = i

where |i,(x) is the fuzzy membership function of pixel x belonging to class i, c is the

total number of classes, and p(i) and p(x/i) are as defined in equation (4-1). Further

detail on this fuzzy membership function is provided in Wang (1990), with application

of a supervised fuzzy classification expert system in a land cover change detection.

In essence, FMVs as calculated by equation (4-3) are probability density values

normalised by their sum across all the pre-defined classes. Thus, for each pixel x,

fuzzy membership values across all classes (i.e., (ii(x), |i2(x),..., qc(x)) can be derived

using equation (4-3). For each class i, |ii(x) values are assembled pixel by pixel, thus

forming a fuzzy surface. If there are c classes, c fuzzy surfaces can be derived, as

exemplified in Figure 3.2.

In a maximum likelihood classification, the labelling can also be done by assessing a

posteriori probability of membership on the assumption that the pixels belong to one

of the pre-defined classes. The a posteriori probability of a pixel x belonging to class

i, L(i/x), may be determined from equation (4-4) below:

C

L(i/x) = p(i) p(x/i) /1 p (j) p(x/j) (4-4)
j = i

where c is the total number of classes, p(i) and p(x/i) are as defined in equation (4-1).

These probabilistic measures are used as FMVs by Fisher and Pathirana (1989) and

Foody, Campbell, Trodd and Wood (1992).

When the Mahalanobis distance based classifier is used, probabilities of class

membership are referred from squared Mahalanobis distance (d2) to the yj distribution

with n degrees of freedom, where the value n is the number of spectral bands

comprising the reflectance data. This kind of probability is understood as the

proportion of pixels at a distance further than d2 from the centre of the class i
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belonging to the class i. Again, FMVs may be derived by normalising probability

measures, as described in equation (4-3).

Nowadays, artificial neural networks are attractive for use in the classification of

remotely sensed imagery and have gained increasing popularity in remote sensing

(Foody 1996). When a neural network is used for classification, the strength of class

membership can be measured by the activation level of the network output units.

Further detail can be found in Foody (1996). Moreover, FMVs can be derived from

the so-called nonparametric classification approach, such as that reported by

Skidmore and Turner (1988), which was found of particular usefulness in areas with

mixed spectral responses.

4.2.2 Unsupervised methods

As indicated at the beginning of this section, fuzzy classification can be performed in

both supervised and unsupervised modes. In an unsupervised mode, fuzzy surfaces

can be derived from the fuzzy c-means clustering (Bezdek, Ehrlich and Full 1984).

Fuzzy c-means clustering is a form of cluster analysis as discussed in general statistics.

Cluster analysis refers to a broad spectrum of methods which try to subdivide a data

set X into c subsets termed clusters.

Let X = {xi, x2, ..., xn} be a sample of n observations in n-dimensional Euclidean

space; c is an integer not greater than n. A fuzzy clustering is represented by a fuzzy

set Mfc with reference to n observations and c clusters, which is defined as:

MfC = {Ucxn I Pit e [0.0,1.0]} (4-5)

where U is a real cxn matrix comprised of elements denoted by |lik, and |iik is a fuzzy

membership function expressing the FMV of an observation xk to the ith cluster. The

value of FMV ranges between 0.0 and 1.0 and is positively related to the degree of

similarity or strength of membership for a specified cluster, as shown by the closed
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interval. Besides, it is required that the values of FMVs for an observation xk sum to 1

across all clusters, because FMVs can represent either probability or a certainty factor

associated with a fuzzy set.

Unlike a supervised fuzzy classification, a fuzzy omeans clustering does not work by

defining a fuzzy membership function beforehand, but rather the values of [ilk are

derived by exploring the coherent structure of a particular set of data points. In this

sense, the fuzzy c-means clustering is similar to the clustering typically used in a

conventional unsupervised classification such as the Iterative Self-Organising Data

Analysis technique (ISODATA) (Campbell 1987; Richards 1993).

There is a variety of algorithms aiming for an optimal fuzzy c-means clustering. One
method works by minimising a generalised least-squared errors function Jm:

n c

Jm = II (|iik)m(dik)2 (4-6)
k=l i=l

where m is the weighting exponent which controls the degree of fuzziness (increasing

m tends to increase fuzziness; usually, the value of m is set between 1.5 and 3.0), dik is

the distance between each observation xk and a fuzzy cluster centre (Bezdek, Ehrlich

and Full 1984) Usually, the Mahalanobis distance is used in remote sensing.

Suppose c clusters are aimed for, with a particular weighting exponent being equal to

m. To optimise the function Jm as defined in equation (4-6), an algorithm for a fuzzy

c-means clustering can be programmed as follows:

(1) Set an initial matrix U° (often randomly, i.e., each (iik is given a random value

between 0.0 and 1.0)

(2) Calculate the c fuzzy cluster centres, v,, for i=l,2,..., c:
n n

Vi= I(|l,k)mxk/I((Ilk)m (4-7)
k=l k=l

77



(3) Update U1, for k=l,2,..„ n; i=l,2,c:
C

ftik=(S(dik/djk)2/(m"1))"1 (4-8)
j=i

where dik is usually the Mahalanobis distance for remote sensing data.

(4) Compare Ul+1 to U1. If the difference between all corresponding pixels is less than

or equal to a predetermined iteration convergence criterion, denoted by e, then stop,

with U1+1 being the final fuzzy c-partition; otherwise, set U1 = Ul+1 and return to (2).

Table 4.2 and Figure 4.2 in combination provide an illustration of the process of fuzzy

c-means clustering, where three clusters are aimed for, and the value of parameter m

is 2.0, using a simple example with 18 pixels in a two-dimensional multispectral space.

Pixels are in the order from left to right and bottom to top and the values for FMV are

in percentages.

Table 4.2 Initial and final U matrix (i.e., FMVs) for the pixels as shown in Figure 4.2

Initial U matrix Final U matrix

Pixels cluster 1 cluster 2 cluster 3 cluster 1 cluster 2 cluster 3

1 87 91 85 14 14 72
2 99 85 21 23 17 60
3 11 83 89 17 32 51
4 8 43 23 9 13 78
5 99 51 82 12 9 79
6 19 16 51 17 54 29
7 27 71 39 15 58 27
8 6 78 80 23 42 35
9 68 18 35 52 20 28
10 45 3 86 74 11 15
11 98 67 45 63 16 21
12 11 68 44 13 73 14

13 93 92 44 4 93 3
14 78 47 28 34 49 17
15 26 68 7 73 16 11
16 22 15 14 76 13 11

17 74 79 9 26 58 16
18 17 47 77 41 41 18
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Figure 4.2 The process of a fuzzy 3-means clustering.

Initial fuzzy cluster centres vi\ v2' and v3' are indicated by solid squares shown in

Figure 4.2 (a), while final fuzzy cluster centres vi, v2 and v3 are indicated by solid

squares, with three clusters being formed by dashed boundaries, as shown in Figure

The initial U matrix (i.e., U°) is generated randomly. In other words, each fllk in the

fuzzy set U is given a random value in the range from 0 to 100 %, implying that

FMVs may not sum to 100 % for a pixel. In the final U matrix, however, FMVs sum

to 100 % across all clusters, as shown in Table 4.2.

Accordingly, as shown in Figure 4.2, like a conventional clustering process in a

unsupervised mode, the clusters in terms of their centres are not defined a priori, but

rather formed iteratively from the process of optimisation of (lik's in relation to the

4.2 (b).
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distance measure defined in equation (4-6).

A supervised approach may be taken if class means are known. In other words, if Vi's

are available by consulting training data, the fuzzy c-means clustering algorithm

described previously becomes simply a one step calculation, by which the FMV for

each pixel in each of the known classes can be derived from equation (4-8)

straightforwardly. Thus, fuzzy c-means clustering can be applied in both an

unsupervised and a supervised mode, making itself particularly attractive for fuzzy

classification of remote sensing images.

Key, Maslanik and Barry (1989) applied the fuzzy c-means clustering method to

Advanced Very High Resolution Radiometer (AVHRR) data for the purpose of

classifying polar clouds and surfaces. They produced fuzzy classification results with

optimal number of clusters after comparative tests. They also generated fuzzy sets

obtained from supervised approach in a polar case study. Analysis of the fuzzy sets

provides information on which spectral channels are best suited to the classification of

particular features and can help determine areas of potential misclassification.

4.3 Generating fuzzy surfaces from photogrammetric data

Following discussion of the methods for deriving fuzzy surfaces, which are relevant to

digital image processing, as outlined in Table 4.1, attention is now given to the issues

of generating fuzzy surfaces from categorical data derived from aerial photographs.

This section refers, in particular, to photogrammetric data, but does not exclude any

other types of visually interpreted categorical data such as those interpreted from

remotely sensed images and any other photographic data (Table 2.2), as discussed

further in the final section of this chapter.
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4.3.1 Resolving proportions of component land cover types in mapping units

As described in chapter 2, land cover information may be derived from

photogrammetry as well as remote sensing techniques. Often, spatial variabilities are

suppressed, and are forced into predetermined mapping categories in traditional

categorical map productions, as Campbell (1987) and Jensen (1983) described. For

example, by means of analytical plotters, land cover information extracted from

rigorously orientated stereo models reconstituted as aerial photographic pairs will end

up in discrete polygons with the boundary fuzziness and interior heterogeneity filtered

out (Kirby 1988).

The mapping accuracy is assessed by additional sampling, which is used to calculate

some commonly adopted measures of classification accuracy such as Kappa

coefficients. Such kinds of accuracy measures are often global indicators, and have

limited uses for generating fuzzy surfaces.

As indicated in the introductory section, at a lower level component class proportions

provide information on the uncertainty per polygon or any mapping unit. Figure 4.3

shows a regular polygon dominated by the class represented by rectangles (say,

occupying 85% of the polygon) with inclusion of classes as represented by circles and

triangles (say, occupying 8% and 7% of the polygon, respectively). One may use these

component classes proportions as probabilities, with which each component class is

expected to be found within the polygon (Foody 1995a).

It has been described above that a simple type of fuzzy surfaces may be derived from

photogrammetric data by resolving proportions of component land cover in individual

mapping units such as polygons. This method is based on the assumption that

component land cover types within each mapping unit can be accurately delineated.

However, it is more often the case that great fuzziness is present in the subject area,
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implying that this method is flawed and that the fuzziness is only pushed to a lower

level. Therefore, there seems to be merit in a back-to-the-reality approach, by which

spatial variations are recovered and maintained through the whole mapping process,

as developed in the next sub-section.

classes denoted by circles and triangles.

4.3.2 Interpolation approaches

As seen in the previous sub-section, the probabilistic measures obtained are still

spatially invariant within one map unit. In reality, the uncertainty should be larger if

the surrounding samples or observations all belong to different classes, while this

uncertainty would become smaller if the surrounding samples belong to the same

class. One could decrease the uncertainty in classification by placing more samples

around the location of prediction, as shown in Bierkens and Burrough (1993a and

1993b). Thus, a better method for generating fuzzy surfaces is by using interpolation.

This is a two-step process: first sampling relatively well defined points and then

inferring those unsampled and fuzzier points based on some distance functions. Figure

4.4 illustrates an interpolation process.
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p(dl/l) p(d2/2)
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Figure 4.4 The process of interpolating fuzzy surfaces

As shown in Figure 4.4(a), one can label the centres of individual polygons

representing class 1, 2 and 3, that is, CI, C2 and C3, with a probability of 100 % or

1.0 (virtually no uncertainty). At x (Figure 4.4 (a)) the probability will reflect the

component probability of each adjacent polygon (as in Figure 4.4 (b)). Probability will

decrease when moving towards the boundaries until it reaches 0 % or 0.0 in the centre

of each adjacent polygon. Polygon boundaries are seen somewhere within the

transitional zones indicated by dashed lines in Figure 4.4 (a). The changing pattern of

class probabilities along a transect may be modelled by some function. This function

may well be based on the distances between the points with known class probabilities
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and the points whose probability with respect to the candidate classes are to be

interpolated. Probability functions of finding 1 or 2 along the transect of CI to C2 are

shown in Figure 4.4(b), where p(dl/l) stands for the probability of finding class 1 at a

distance of dl away from the centre CI, while p(d2/2) stands for the probability of

finding class 2 at a distance of d2 away from the centre C2. It is worth noting that, in

the case of a relatively discrete class such as a lake, the probability function of class

membership does not vary continuously but abruptly across boundaries with adjacent

classes, and is reasonably stable within the polygon of the class (Foody 1996, pers.

comm.).

However, there are problems with such a simple interpolation approach. Firstly, it is

likely that different transects with different mixture and transition patterns may have

to be modelled by different probability functions (Edwards and Lowell 1996; Wang

and Hall 1996). This implies, in turn, that, despite its logical simplicity at first

instance, an interpolation process may be difficult if it is to be based on properly

defined and modelled probability functions. Moreover, there is lack of both theoretical

and empirical evidence that interpolation methods based solely on distances can be

suitably applied in situations where the attributes under study are of a categorical

nature in the common sense, such as soil types or forest species. More satisfactory

interpolation approaches exist within geostatistics.

Geostatistics grew from the need to interpolate certain properties (or attributes) of

interest from sparse data, which are modelled as spatially correlated random variables.

A random variable is a variable that can take a variety of outcome values according to

some probability (frequency) distribution (Deutsch and Journel 1992). Apart from

being location-dependent, a random variable is also information-dependent in the

sense that its probability distribution changes as more data become available.

Examples include atmospheric pressure and population densities.
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According to Burrough (1987), the basic model in geostatistics is:

z(x) = u(x) + 8(x) + e, (4-9)

where z(x) is the value of variable Z at point x, u(x) is a deterministic function

describing the general structural component of variation, 8(x) describes the spatially

correlated local random variation, and e is the random (or noise) term.

Kriging, as a specific geostatistical method, assumes a constant local mean and a

stationary variance of the differences between places separated by a given distance

and direction. The semi-variance of difference (usually denoted by y) is half of the

expected (E) squared difference between two values:

y(h) = E[{z(x)-z(x+h)2] / 2 (4-10)

where z(x) is the value of variable z at position x and z(x+h) is the value at position

x+h; h is a vector called the lag which describes a separation in both distance and

direction between two positions. The function that relates y to h is called the

semivariogram. The semivariogram is the function which is used to quantify the

spatial autocorrelation and to guide interpolation.

An experimental semivariogram can be estimated from sample data. The formula is:

a M(h)

y (h) = (l/2M(h)) Z{z(Xi)-z(x1+h)}2, (4-11)
i=l

where M(h) is the number of points of observations separated by lag h. By changing

h, a set of values is obtained, from which the experimental semivariogram is

constructed. The experimental semivariogram depends on the scale of survey, and

relates to the size of sampling area and the support of the sample. The precision

depends to some extent on the sample size.

An example of a semivariogram created from a data set published in Deutsch and

Journel (1992) is shown as Figure 4.5, where the scatter plot is the sample data

(representing experimental semivariogram), and the solid line is the fitted
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semivariogram. As commonly understood, the experimental semivariogram may be

subject to various errors. However, in principle, the true or theoretical semivariogram
should be continuous. Thus, the experimental semivariogram is usually fitted by a

mathematical model. In fact, Figure 4.5 shows a semivariogram model (the solid line)

fitted mathematically from the experimental semivariogram (the scatter plot), which is

expressed by a spherical model, 0.04 + 0.23 (1.5 (h/25) - 0.5 (h/25) A3) (Deutsch and

Journel 1992).
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Figure 4.5 The features of an idealised semivariogram (unit of distance: miles).

There are several features to note in the semivariogram. At relatively short lag

distances of h, the semi-variance is small but increases as the distance between the

pairs of points increases. At a distance referred to as the range, the semi-variance

reaches a relatively constant value referred to as the sill, as illustrated in Figure 4.5.

This implies that beyond this range distance, the variation in z values is no longer

spatially correlated. The experimental semivariogram often cuts the ordinate at some

positive value, termed the nugget variance, as shown in Figure 4.5. This might arise

from measurement errors, spatially dependent variation over distance much shorter

than the smallest sampling interval or from spatially uncorrected variation. One can

check the existence and magnitude of the measurement errors by carrying out

repeated measurements or sampling of the same variable at the same location. As
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usual, this is done for several locations to reduce possible bias. Measurement errors

affect the estimation of semivariograms. However, as measurement errors are

assumed to be non-correlated and should be the same for all data points, they should

not affect the overall form unless it is large relative to the total variance and the

number of sample points is limited (Burrough 1995, pers. comm.).

Kxiging is commonly used as a special kind of spatial interpolation method for

numerical variables, and is often implemented as ordinary kriging. Indicator kriging,

as a variant of kriging, estimates the conditional (,a posteriori) probability distribution

that a variable does not exceed a certain threshold (also known as a cutoff value), and

is usefully explored in environmental studies (Cressie 1993). Indicator kriging

performs the estimation of conditional probability distribution without making

assumptions about the form of the prior distribution functions. This is an attractive

feature for indicator kriging (Bierkens and Burrough 1993a). More importantly, when

a categorical variable, such as land cover or soil type, is concerned, indicator kriging

directly estimates the probabilities of finding individual classes at an unsampled

location, given a set of classified samples.

Indicator kriging is therefore seen as being superior to other methods such as the

distance-based weighting interpolation method outlined in Lowell (1994). This is

because indicator kriging, in addition to its well-grounded theory, is guided by a

semivariogram model that quantifies the spatial correlation intrinsic to the underlying

variable, while simple distance-based weighting interpolation seems to be weakly

grounded. Moreover, indicator kriging is worth exploring as an initial step in the

conditional simulation in geostatistics, which is particularly attractive to researchers

on GIS uncertainties (Englund 1993). The concluding chapter will elaborate on this.

Attention is now given to how the indicator kriging is performed. Suppose c mutually

exclusive classes can be found over a field and n observations (e.g., classified samples)
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are available, as shown in Figure 4.6, where solid rectangles represent observations.

Each observation is classified as a member of one of the possible classes {cj, ..., cc}.

For each class C; (i = 1, ..., c) under consideration, the n observations are transformed

into binary data (i.e., an observation is transferred to 1 if it is classified as class c;, 0

otherwise). These binary data are denoted as Zj(xk), k=l, 2, ..., n, for a particular class

•

Figure 4.6 The process of estimating the occurrence of classes at a point x0 in the

neighbourhood within the search radius r.

Suppose that an experimental semivariogram has been calculated by using equation

(4-11), and has been subsequently fitted by a suitable model. Indicator kriging

performs the estimation of probabilities of finding individual classes C; (i = 1, ..., c) at

a point Xo using:

a n

Zi(xo) = 2Akz,(xk), (4-12)
k=l

where Zi(xk) represents a binary variable at an observation xk (k = 1, 2, ..., n) as

described above, A,k is the weight associated with the observation xk (again, k = 1,2,

..., n). These weights (i.e., A,k s) depend on the semi-variances between pairs of

sampling points and the average semi-variances between the point Xo and a sampling

point (Bierkens and Burrough 1993a). Clearly, indicator kriging is carried out by
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using an ordinary kriging algorithm directly, when the variable under study is

transformed into binary data.

When a similar process is applied to every cell on a pre-defined grid, a fuzzy surface is

generated. As there are c classes, each class should be dealt with separately. In other

words, for each class, a set of binary data is transformed from classified samples. A

suitable semivariogram model is fitted on the corresponding experimental

semivariogram, calculated using equation (4-11). In the end, c fuzzy surfaces are

generated for c classes, on each of which the value at a point represents the

probability of finding a given class at that point.

The probability scores as calculated above may not always sum to 1.0 across all

candidate classes for each point. In accordance with the definition for FMVs, the

probability scores need to be normalised by the actual sums, similar to the transform

as expressed by equation (4-3), in case of non-unit sums.

It is worth mentioning that the classified samples used in indicator kriging should aim

to be observations or interpretations without significant fuzziness. This may best be

achieved by locating samples in the centres of certain land cover patches, which will

be far away from the boundaries and so avoiding the transition or mixture zones

between homogeneous land cover patches in the spatial domain. The uncertainty may

be high near all types of boundaries, while it should be low within inner parts of

individual polygons for dominant land cover types.

4.4 Analysing fuzzy surfaces

Once fuzzy surfaces have been derived, by using the methods discussed previously, it

is possible to perform a variety of analyses to exploit the potential held by the wealth

of information maintained in these fuzzy surfaces.
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The previous two sections have described the derivation of fuzzy surfaces from

remote sensing images and photogrammetric data separately. However, it is often the

case that the two different types of fuzzy surfaces are analysed in combination, as

developed below.

Suppose that two types of fuzzy surfaces are derived for the same area, and further

assume that fuzzy surfaces generated from photogrammetric data are to be used as

reference data layers. Thus, denote vectors:

U(x) = (|!i(x), |l2(x),..., |ic(x)), and

P(x) = (p^x), p2(x), ..., pc(x)) (4-13)

where p.i(x) and p;(x) (i = 1,2,..., c) are the FMVs of a pixel x belonging to class i, as

derived by the methods described in Sections 4.2 and 4.3, respectively.

The degree of fuzziness for a particular set of fuzzy surfaces may be measured by

using entropy. Entropy is a measure of uncertainty and information formulated in

terms of probability theory (Foody 1995a). Measures of entropy express the way in

which the probability of class membership is partitioned between the classes. It is

based on the assumption that in an accurate classification each pixel will have a high

probability of membership in only one class. Specifically, entropy is maximised in the

situation when the probability of class membership is partitioned evenly between all

defined classes and minimised when it is associated entirely with one class. So large

values indicate low accuracy in classification, while small values indicate high

accuracy in classification. This can be more easily understood by referring to Table

4.2, where a list of FMVs is provided. When two or more alternative classes have

non-zero probabilities associated with them then each probability is in conflict with

the others. This is because the probabilities must sum to 1.0 or 100 %, and a gain of

probabilities for one or more classes must involve a loss of probabilities for one or

more of the other alternative classes. The expected value of conflict is given by
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entropy H measured using equation (4-14) shown below,

c

H = -Z |li(x) log2 M-i(x) (4-14)
i=l

where p,(x) is the FMV of pixel x belonging to class i, where the index i ranges from

1 to c ( the total number of classes). A measure of entropy for probabilities, that is,

Pi(x), can also be calculated.

The interpretation of measures of entropy on an individual pixel or point basis is,

however, not that straightforward. In situations where both classified data and

reference data are fuzzy, entropy measures will not be suitable. For example, when

reference data are fuzzy, any entropy could be associated with an accurate

representation; the interpretation of entropy values is therefore difficult. Foody

(1995a) suggested that cross-entropy can be used to illustrate how closely a fuzzy

classification represents the geographical reality when multiple and partial class

membership is a feature of the reference data as well as the classified data: the smaller

the measure of cross-entropy, the closer the classified data are to the reference data.

Cross-entropy Hc is measured using equation (4-15) shown below,

c c

He = -Z fii(x) log2 Pi(x) + Z p.i(x) log2 (l,(x) (4-15)
i=l i=l

where |T(x) is the FMV of a pixel x belonging to class i, and pi(x) is the probability of

finding class i at pixel x as defined on the reference data layer. The index i again

ranges from 1 to c.

For assessing the closeness of a fuzzy classification with a fuzzy reference data set,

say based on vectors U(x) and P(x), it is possible to compute the sum of all pixels

(ii(x) * pi(x) as a measure of the degree of agreement between the two uncertainty

surfaces with respect to class i, when Pi(x) and pi(x) are normalised. This could be

called a vector dot product. Based on this, one would wish to go further to calculate

the average correlation of coefficients over all pixels by dividing the vector dot

91



product by the number of pixels in a field. One could also sum |ij(x) * pi(x) over i (i =

1, c) as a measure of the agreement between the two vectors U(x) and P(x) for a

pixel x (Foody 1995b; Goodchild 1996, pers. comm.).

The correlation analysis is especially meaningful when the probability scores (i.e., the

values of P(x)) are component land cover proportions, because FMVs as relevant to

pixels can then be used to resolve the sub-pixel land cover information, if strong

correlations are found between FMVs and probability scores (Foody and Cox 1994).

Such a con-elation analysis also provides a practical interpretation for FMVs, which,

originally attached to spectral domains, would otherwise be difficult to relate to

spatial domains.

To generate a conventional maximum likelihood classification, vectors U(x) and P(x)

are subjected to a "maximisation" process, by which x and y are labelled as the classes

having the maximum values. For example, pixel x is to be classified into class j on the

condition as expressed in equation (4-16) below:

ftj(x) = maximum (|li(x), |i2(x), ..., |lc(x)),
for j = 1, 2,..., c (4-16)

where the maximum FMV, i.e. Uj, of pixel x can later be used to compose a

companion band of image to depict the spatial variability of confidence a user can

place in the classified data layer. The classified data layer consists in this case of class

labels j's satisfying equation (4-16) at pixel level.

In order to illustrate such a process, the data from Table 4.2 in Section 4.2 are used to

derive Table 4.3 below, where both labelled classes and their probabilities of being

correctly classified are listed.

As in a conventional hard classification, the maximisation will produce categorical

maps comprised of contiguous patches of labelled pixels. These categorical maps can
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be assessed with respect to their classification accuracies as measured by overall

percentages of agreement or Kappa coefficients using the procedures described in

Section 3.3. To do this requires an independent source of reference data.

Table 4.3 Labelled pixels and their probabilities (based on Table 4.2 in Section 4.2)

Pixels Labels Probabilities (%)

1 3 72
2 3 60
3 3 51
4 3 78
5 3 79
6 2 54
7 2 58
8 2 41

9 1 52
10 1 74
11 1 63
12 2 73
13 2 93
14 2 49
15 1 73
16 1 76
17 2 58
18 1 41

Table 4.4 Pure pixels selected by slicing at a threshold of 60 %

(based on Table 4.3)

Pixels Labels

1 3
2 3
4 3
5 3
10 1

11 1
12 2

13 2
15 1

16 1

Sometimes, it is necessary to assess the accuracy of a particular classification, which
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requires "pure" pixels to be identified and selected in order to provide reference

samples. This selection process can be done via a "slicing" operation, by which the

maximum FMVs (denoted by (imax and pmax) from vector F(x) and U(x) are examined

with reference to a pre-determined threshold x. Specifically, this processing is

performed such that a pixel x is selected if the value of pmax is not less than value x. As

an example, the data from Table 4.3 are sliced to produce selected pure pixels with

FMVs not less than 60% (Table 4.4).

Such processing is particularly useful in situations where the mapped phenomena are

inherently fuzzy or exist as mixtures, in particular for remote sensing data at coarse

spatial resolutions. This is because the identification of representative classes can be

performed on a quantitative basis, which would be highly subjective when no

information on class membership was available (Lowell 1994).

More importantly, a slicing operation will generate a special kind of classified map.

On this kind of map, selected pixels or pixels belong to their nominal classes with

probabilities of not less than the threshold x. Those pixels or points left unclassified

constitute uncertainty zones, which can be used to derive epsilon band widths.

To illustrate such an operation, the example based on Figure 4.4 is developed. The

transect between C1 and C2 is sliced at the threshold t, leading to an epsilon band of

width w (Figure 4.7).

As shown in Figure 4.7, the threshold can be set between the minimum probability

indicated by "min" and the maximum probability 1.0. Increasing the threshold will

widen the epsilon band width, and vice versa. Thus, a variety of epsilon band models

can be derived, based on different thresholds.
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Figure 4.7 The process of analysing fuzzy surfaces by slicing along the transect

Furthermore, U(x) and P(x) can be scrutinised by relative magnitudes of their

elements. For example, pfs (i = 1, 2,..., c) of a pixel x can be arranged in descending

order, that is, actually sorting out the most likely down to the least likely classes for

each pixel. Firstly the sorted classes are denoted by a vector o(x) = (ci, c2, ..., cc).

Similar processing can be applied to vector P(y). Then the resulting sorted sequence

for P(y) is denoted by vector O(y) = (Ci, C2, ..., Cc). A "soft" comparison is carried

out by comparing between the most likely, the second most likely, down to the least

likely classes as indicated by the vectors o and O, that is, by examining if ca = Cb, a, b
= 1,2, ..., x, where x specifies the tolerance set for a soft comparison (x <= c). The

greater the tolerance, the more likely a match is obtained, and hence the larger the

error. When x is set 1 and if Ci = Q, it is said that a perfect match is achieved because

the most likely classes are found to be the same for the test data and the ground data.

This is what happens when an agreement is reached during a hard classification. When

the tolerance is set to the second most likely class, a soft comparison is performed

based on a set of conditions such as {ci = Ci or ci = C2 or c2 = Ci or c2 = C2}.
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4.5 Discussion

Some of the methods for deriving and analysing fuzzy surfaces have now been

described, by which fuzzy surfaces, as special kinds of representation of uncertainties

in spatial databases, can be explored. This chapter looks forward to the case study,

which endeavours to demonstrate the advantages held by surface-based methods,

following a further section discussing the methods established previously in this

chapter.

Based on Table 4.1 which lists the two types of fuzzy surfaces and their derivations,

this chapter has discussed how different fuzzy surfaces are produced. It was seen that

fuzzy surfaces can be derived from remote sensing multispectral data by defining a

suitable fuzzy membership function in a supervised mode or by using the fuzzy c-

means clustering in an unsupervised mode. It was found that the fuzzy omeans

clustering is particularly versatile with both unsupervised and supervised alternated as

required, making itself an attractive technique for fuzzy classification.

For visually interpreted photogrammetric data, a few different methods for generating

fuzzy surfaces have also been discussed. Though sub-pixel component land cover

proportions may be used as probabilities to construct corresponding fuzzy surfaces in

a relatively easy way, it may not be suitable in situations where significant fuzziness

exists. Indicator kriging, on the other hand, estimates directly the a posteriori

probability of finding a category at a location, given a set of classified samples,

without making any assumptions about any probabilistic distributions. This property is

very beneficial for the mapping of fuzzy surfaces in place of otherwise categorical land

cover data.

As seen in this chapter, the process of a fuzzy classification based on remote sensing

digital images seems to be quite automated, and relatively easy to implement, because

96



the digital image data are already in grid form. On the other hand, as photogrammetric

data are often stored in polygonal formats, where no mechanism is originally provided

to maintain the spatial variations present within each polygon, the derivation of fuzzy

surfaces from the photogrammetric data tends to be more difficult than that from

remote sensing digital images.

The analysis techniques presented so far serve to demonstrate how fuller uses of the

derived fuzzy surfaces can be made. These techniques can expose the spatially varying

uncertainty levels as a final "hardened" product, identify pixels or points relatively

accurately classified, enable the generation of epsilon bands, and make comparisons

on a relaxed condition. More importantly, surface-based methods open many

possibilities to quantitative analysis of uncertainties in spatial databases. To make the

arguments more convincing, their uses will need to be demonstrated in a case study.

Differences between fuzzy and probabilistic measures used to construct fuzzy surfaces

might better be clarified at this stage. Fisher (1994) was one of the relatively few
researchers who has recognised the importance of differentiating between fuzzy and

probabilistic approaches when dealing with uncertainties in GISs, after admitting that

he himself had previously made confused use of fuzzy and probabilistic concepts.

Though both are measured in the range of 0.0 to 1.0 (or 0 to 100 percent), fuzzy and

probabilistic concepts are fundamentally different in theoretical and practical terms.

According to Fisher (1994), probabilistic approaches assume that there is a Boolean

phenomenon (existing or not), and the probability measures the accuracy with which

the Boolean event occurs. Fuzzy surfaces generated using indicator kriging contain

probabilistic measures, given a set of classified samples, as shown in Section 4.3.

Fuzzy set theory, on the other hand, has been developed mainly to deal with

imprecisely located phenomena such as land cover and soil type, and to cope with

spatial decisions based on multiple criteria such as land suitability assessment, where
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crisp set theory may not be suitable (Kaufmann 1975; Zadeh 1965). In this case, the

fuzzy concept is used to determine the degree to which an object is a member of a set

such as a class (Fisher 1994). While crisp set theory permits only a zero or a full

membership of an object belonging to a class, fuzzy set theory allows for partial and

multiple memberships of an object belonging to all the candidate classes. It can thus

be said that fuzzy set theory is the general case, whereas crisp set theory is a sub-set

of this.

Fuzzy set theory uses certainty factors (ranging from 0.0 to 1.0), which may be

probabilistic, but more often are based on educated guess, as mentioned in Chapter 3.

In other words, fuzzy measures such as FMVs are usually not probabilistic in

distribution, but convenient and continuous transforms (Heuvelink and Burrough

1993). As shown in Section 4.2, many FMVs are virtually conversions of probabilities

defined on certain probability distributions to class memberships normalised to the

range between 0.0 and 1.0, except for the a posteriori probabilities used as FMVs as

shown in equation (4-4) (Wood and Foody 1993). Similar situations occur in the

normalisation of probability scores estimated by using indicator kriging, as mentioned

in Section 4.3.

Despite its relaxed mathematical basis, fuzzy set theory allows many otherwise non-

quantifiable phenomena to be dealt with quantitatively. Useful examples can be found

in Altman (1994), Gopal and Woodcock (1994), and Robinson (1988). Besides, given

uncertainties surrounding the measures of uncertainties, it seems more sensible to use

fuzzy set theory than rigorous statistical and probabilistic methods (Drummond and

Ramlal 1992). Many people use fuzzy methods because they seem to make intuitive

sense. Therefore, "fuzzy" may be more relevant than "probabilistic" as a term to be

used in the study of uncertainties. But, in order to build anything further, it is

necessary to use the concept of probability (Goodchild 1996, pers. comm.).
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Finally, a few words on the surface-based approaches as a whole. Clearly, without

convincing examples showing the advantages or potentials held by surface-based
methods, GIS communities may hesitate to commit themselves or invest in mapping

the uncertainties of spatial data, because of their preoccupation with the spatial data
themselves. Unless it can be demonstrated that working with uncertainties of spatial

data is not a luxury but a necessity for proper and fuller applications of GISs, fuzzy
surfaces will remain something on blueprint only. This will be shown in the case study,
where the most attractive aspects of surface-based models and methods are

established as the simplified uncertainty analysis functionality they can offer, in

particular, for quantitative analysis and visualisation of spatially varying uncertainties.
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Chapter 5

Empirical study I: data and uncertainties in objects

5.1 Introduction

As suggested towards the end of the previous chapter, a case study will be helpful and

necessary to support the advocated methods. This chapter will discuss how the study

area was chosen, and then describe the data sources accessed and the techniques and

processing involved in the data acquisition. A second purpose of this chapter is to

illustrate how uncertainties are estimated and described in an object-based approach,

thus giving hints to the surface-based approach promoted in this thesis.

5.2 Study area

Because the work seeks to understand the identification and combination of

uncertainties in spatial data more fully, it is important, firstly, that the study area be

geared to providing data diversity, so that the empirical results will be as

representative as possible of data typically used in urban-orientated GISs and

specifically for land use and land cover mapping in urban areas. For this reason,

selection of test sites must consider the information richness of the phenomena under

study.

Secondly, concerning uncertainties in spatial databases, it is important to ensure that

the ground data are both adequate and readily available in order to allow for various

data validity tests. As discussed in Chapter 2, spatial data are usually not cheap in the

first place. It follows that spatial data of extra high accuracy, which are required to

derive uncertainty measures such as a RMSE for DEMs or Kappa coefficients for
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remote sensing classification data, would, therefore, not be obtained simply. Thus,

selection of test sites should take into account the availability and accessibility of data

sources and convenience of field work in addition to the data diversity as mentioned

in the previous paragraph.

Furthermore, the approach proposed is better tested empirically with diverse spatial

data of varying accuracies. A suburban area would not only be geared to enabling

cost-effective data acquisition but would also cater for the construction of test data

with different accuracies. This is because suburban area applications involve a range

of mid-scale data products, usually incorporating base map data such as buildings,

contours, street networks, land records on one hand, and environmental data such as

soil, water and noise level on the other hand (Aronoff 1989). Therefore, there is a

need in suburban applications to combine data sets with quite different positional and

attribute accuracies. It is for this outstanding reason that a suburban area was chosen.

A local area was chosen for convenience, covering about 1.5 square kilometres,

located within the city of Edinburgh, centred on Blackford Hill, where the Royal

Observatory is situated, as shown in the marked rectangle on the colour aerial

photography, reprinted as Figure 5.1.

Orientating oneself to the area within which the study takes place as shown in Figure

5.1, the north part of the photograph is the old town below Edinburgh Castle.

Immediately north of the oval-shaped Meadows park are the central buildings of The

University of Edinburgh, including the Royal Infirmary. Holyrood Park in which

Arthur's Seat is located is at the north east corner of Figure 5.1. A main road runs

NNW-SSE from the central buildings of the University to the King's Buildings, a

modern extension to the university, which is flanked by the golf-course on the lower

eastern end of Blackford Hill.
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Figure 5.1 The study area as marked by the rectangle (this reprint covers the southern

parts of the City of Edinburgh)
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Focusing on the study area, there is a variety of urban thematic and topographic

features: a wooded valley, residential, commercial and academic buildings, road

networks and footpaths, recreational areas, a small lake, agricultural fields and

worked allotments, hills and flat ground.

As seen on the aerial photography in Figure 5.1, the residential districts are set

densely together. The roads, the pavements, the roofs, the walls and the hedges exist

in complex spatial arrangements. Manual digitising on a reconstituted stereo model is

bound to be a demanding job in these kinds of areas, yet these are very typical of the

fringe of densely urbanised districts.

Some of the difficulties for the interpreter of suburban photography arise from the

indistinct nature of boundaries between land cover types. For example, on Blackford

Hill, the dispersed individual trees or groups of trees blend into adjacent land cover

types. Shrubs and trees dominate the western end of Blackford Hill, and continue

down into the valley, the Hermitage of Braid, where they mix with grazing land.

Shrubs and grassland cover the Braid Hills in the south. Urban amenity trees and large

gardens with lawns are a feature of the suburban residential districts.

In summary, the fabric of urban and suburban areas is often highly varied and

compressed, where human beings have made intensive use of every possible space.

The same circumstance was described by Campbell (1987) in the context of remote

sensing of urban land uses and land covers.

5.3 Data sources

The consideration of a varied and compressed urban fabric leads to the requirement

that spatial data in urban applications should be recorded at large scale, to permit

more accuracy. For example, land surveying based on a total station may sensibly be
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used for the recording of detail. Indeed, for well-defined features, accurate positions

are obtained by land surveying, by precisely measuring the distances and angles with

reference to certain known points. An accuracy of centimetres is usually achievable,

allowing for detail mapping at large scales, say 1:1,250 and 1:2,500 scales. Recent

developments in GPS have greatly facilitated efficient and reliable spatial data

acquisition, and are attractive for urban applications.

However, as also described in Chapter 2, using land surveying for detail mapping in

urban areas is common only for relatively small areas of say 1-2 km2. In other

words, detail mapping by land surveying becomes impractical over large areas, where

photogrammetry and remote sensing are designed to work efficiently. Moreover, as a

result of continuous and dynamic processes, urban mapping and change monitoring

necessitate currency and timeliness in data acquisition and analysis, which are best met

by established photogrammetric and remote sensing techniques.

Using photogrammetric techniques, for topographic mapping generally and for

thematic mapping of dynamic land use and land cover in urban areas, aerial

photographs at large and medium scales are normally used. For example, Lo (1971)

used aerial photographs (1:10,000 scale) for a typological classification of buildings in

the city centre of Glasgow. In his study, five discriminating variables were employed

in the cluster analysis and discriminant function analysis: building height, building

area, roof type, presence and absence of street parapet wall and degree of

excrescence. Using medium scale aerial photographs (approximately 1:25,000 scale),

Gautam (1976) undertook an urban land use mapping project based in Bikaner city,

India, where combined use of aerial photo interpretation and ground-based surveys

was necessary. In addition to low and medium altitude aerial photographs, high

altitude aerial photographs are also useful media to provide spatial data at low spatial

resolutions for urban applications, as described in Jensen (1983). As mentioned in

Chapter 2, colour infrared aerial photographs are particularly attractive for enhanced
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distinction between vegetation, water and man-made structures. Baker, DeSteiguer,

Grant and Newton (1979) employed colour infrared aerial photographs at a range of

scales (1:6,000, 1:12,000 and 1:30,000) for their project on land use and land cover

mapping. They proposed a set of useful practical procedures for land use and land

cover mapping in urban areas.

Though not as commonly used as aerial photographs, remotely sensed data acquired

on airborne (such as ATM data) and spaceborne platforms (such as satellite data

especially those with higher spatial resolutions, like SPOT HRV and Landsat TM

imagery) are increasingly utilised in urban applications to provide valuable and cheap

data with respect to the physical and cultural properties of urban areas. An example

for the use of airborne remotely sensed data is provided by Jensen, Cowen and Halls

et al. (1994), who used calibrated airborne multispectral scanner (CAMS) data with 5

by 5 metres spatial resolution to inventory and predict residential and commercial

land-use development for capital investment forecasting based in BellSouth, South

Carolina, the United States. For satellite remote sensing data, an early example by

Carter and Gardner (1977) described the extraction of urban growth information in

the UK from Landsat data for urban planners, although with unacceptably low quality

results. A recent test was carried out by Langford and Unwin (1994), who made

successful use of Landsat TM data for mapping the population density based on

identified built-up areas in England.

It is, however, part of this thesis to re-evaluate the value of photogrammetric and

remote sensing techniques. As was also explained in Chapter 2, urban phenomena

often exist in mixed associations, the individual member of which may have to rely on

extensive ground-based surveys and inventories for their accurate identification and

measurement (Jensen 1983). Thus, it is usually the combined use of land surveying,

photogrammetry and remote sensing that features in successful urban and suburban

land use and land cover mapping projects.
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As discussed in Chapter 2, depending on the requirement of a specific project,

published maps may be useful as secondary data sources (Thapa and Burtch 1991). In

general, topographic and thematic maps are particularly relevant for urban studies

such as land use planning. A more specific use of published maps is for geo-

referencing satellite images which usually cover far greater areas than aerial

photographs. The great coverages of satellite images imply that extensive land

surveying would be costly, especially when it is recognised that satellite images have

relatively coarse pixel sizes. Therefore, maps at large scales can sensibly be used to

identify and measure certain well-defined points as GCPs for georeferencing satellite

images.

For the purpose of this study, data sources including OS large scale plans, aerial

photography at large and medium scales, and remotely sensed images were acquired,

as shown in Table 5.1, while their spatial coverages in relation to the study area are

shown in Figure 5.2, where the study area is shown by the shaded area and coverages

are approximately presented.

Table 5.1 The data sources used to build the test data

Data sources Scales/resolutions Numbers Dates

OS plans 1:1,250 NT2468 - NT2773 published 1966, 1968,
1971-4, 1978, 1980-1,
1986-7, 1989

OS plans 1:2,500 NT2570 - NT2571 published 1967

Aerial 1:5,000 sortie 41 090 flown 24th July 1990
photographs print 423-8, 458-63
Aerial 1:24,000 sortie 51888016-7 flown 14-18th June

photographs print 6447-8 1988

Satellite image SPOT HRV (10 m)* no information imaged July 1985

Satellite image Landsat TM (30 m) path 204 row 21 imaged 14th May 1988

The spatial resolution of the SPOT simulation data used was enhanced using
panchromatic data, so that the resulting spatial resolution is better than 20 m, but not
necessarily as good as 10 m.
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1:5,000 scale
aerial

photographs

1:24,000 scale aerial photographs

SPOT HRV image

Landsat TM image

Figure 5.2 The spatial coverages of aerial photographs and satellite images used in the
case study (not to scale).

The OS large scale plans were published at various dates between 1960s and 1980s.

They were used to provide certain planimetric control points for geometric

rectification of satellite images incorporated in the case study.

The 1:5,000 scale aerial photographs are in natural colour and are part of an

experimental sortie of high resolution material flown for the Ordnance Survey. They

were flown in late July 1990, using a Zeiss 630 FMC camera with a focal length of

304.77 mm. Two strips of photographs, each of five stereo-models, cover the area of

interest. The aerial photographs can be used to generate reference data, against which

data extracted from 1:24,000 scale aerial photographs might be tested.

The 1:24,000 scale aerial photographs (in natural colour) were flown in mid June

1988, as a part of the Scottish national aerial photographic initiative (Kirby 1992). An
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example has been shown in Figure 5.1. As seen in Figure 5.1, individual buildings,

roads, hedges, footpaths and a small lake can be clearly identified and located.

Existence of patches of grassland, shrub and wooded land is reasonably well depicted,

though their accurate delineation is not as easy as in the case of many man-made

structures. This set of aerial photographs at medium scale was used as the basis to

carry out photogrammetric digitising, which provided reference data to check satellite

image data.

Sub-scenes of SPOT HRV and Landsat TM data were accessed from the Department

of Geography collection, and are shown as (a) and (b) of Figure 5.3, respectively.

Figure 5.3 (a) is a black-and-white copy based on SPOT F1RV XS bands 1,2 and 3,

while Figure 5.3 (b) is a black-and-white copy based on Landsat TM bands 3, 4 and 5.

The SPOT F1RV image appears reasonably clear for its spatial resolution of 10

metres: contrast between vegetation, water and built-up areas is outstanding;

differentiation between residential and non-residential districts is possible, as shown

in (a) of Figure 5.3. For the Landsat TM image, as shown in (b) of Figure 5.3, on the

other hand, distinction among land cover types become blurred, implying a

classification based on such a coarse resolution image tends to be more difficult than

that based on the SPOT HRV image.

Because the 1:24,000 scale aerial photographs and the Landsat TM data were

acquired at about the same time in May/June 1988, it can be assumed that there are no

significant differences between them in the representations of either permanent

artifacts or vegetational changes. The SPOT HRV image was acquired in July 1985.

Field checking re-confirmed that there had been no changes in the land use and land

cover in the study area between 1985 and 1990 except for a few newly completed

structures. These agreements in dates and field checks suggest that both SPOT HRV

and Landsat TM data can be checked by referring to the 1:24,000 scale aerial

photographs.
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(b)

Figure 5.3 Sub-scenes of remotely sensed images used in this case study (scale

1:20,000 approximately): (a) SPOT HRV data, and (b) Landsat TM data.

The same location is shown but with different boundaries.
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5.4 Methods used to acquire test data in required form

By incorporating data sources of different origins, scales and resolutions, it became

possible to build a hierarchy of test data with a corresponding hierarchy of accuracies,

as shown in Table 5.2. The table is followed by paragraphs explaining how the

hierarchy was developed.

Table 5.2 The hierarchy of test data

Hierarchy of test data Specifications

1. ground control points a. photocontrol data combining National Grid

(GCPs) points and field surveyed control points

b. check data comprising GCPs extended by using

photogrammetric block adjustment based on the

1:5,000 scale aerial photographs

c. planimetric control points digitised from OS

large scale plans

2. photogrammetric data d. based on the photocontrol data and checked

digitised from the against the check data above

1:24,000 scale aerial

photographs

3. classified SPOT HRV e. rectified on the planimetric control points

and Landsat TM data digitised from OS large scale plans and checked

against the photogrammetric data.

As is well known, apart from the most rudimentary or reconnaissance surveys, the

starting point for a land cover mapping project is usually the collection of adequate

ground control points (GCPs) and ground truth data, which may be supplied by land

surveying and visits. Land cover mapping is much more useful and valuable in a LIS if

it is geo-referenced, when it can be one of many layers in an urban-orientated GIS.
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For cadastral purposes, for ownership, and for taxation, a high precision is often

required, and this is enabled by properly setting up ground control data combining

GCPs and ground truth data.

The global reference systems can be the geographical coordinate system (as latitude

and longitude (p, X) or in accordance with map grid systems (as Easting and Northing

E, N). In the UK, the Ordnance Survey National Grid is the standard coordinate

system used by most LIS and urban GIS projects and is the easiest for data

conversion.

Clearly, the set of ground control data shown in Table 5.2 is a prerequisite not only

for statistically based analysis of uncertainties, but also for routine photocontrol

(aerial photography) and is needed to create geometrically corrected land cover maps

from remote sensing images. In other words, ground control data serve two purposes:

(1) experimental need for higher-order checking, and (2) routine use for photocontrol
and geometric corrections.

The National Grid coordinates of two second-order pillar triangulation stations were

supplied free by OS. These two locations, at Arthur's Seat and Blackford Hill,

provide the basis for the land surveying, which in turn generated ground control data:

one set for the photogrammetric block adjustment based on the 1:5,000 scale aerial

photographs and the other set for photogrammetric digitising based on the 1:24,000

scale aerial photographs, as will be described below.

Because of the cost and time that would have been necessary to obtain a dense

ground control network of higher order by ground surveying alone, cost-effective

photogrammetric block adjustment was used to densify the control network. For this

purpose, aerial photographs at the scale of 1:5,000 were used, as described in the

previous section. The densified control data were then used to check the
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photogrammetric processing of aerial photographs at 1:24,000 scale, and are included

as check data shown in Table 5.2.

Photogrammetric digitising was carried out on the 1:24,000 scale aerial photographs,

which were absolutely orientated by part of the ground surveyed control data, and

checked by the densified control data mentioned above. As this study was set in the

context of suburban land cover mapping, which was based on photogrammetric and

remote sensing techniques, it is necessary to introduce a land cover classification

system appropriate for photogrammetric and remote sensing data. Considering the

compatibility of photogrammetric and remote sensing data, the USGS land use and

land cover classification system for use with remote sensing data (Campbell 1987)

was used with the following classes appropriate to the scene:

(1) grass (park and grassland),

(2) built (built-up and barren land),

(3) wood (woodland, no distinction made between deciduous and coniferous

woodland),

(4) shrub (shrubland, including open wooded land), and

(5) water (water bodies such as lakes; (Scottish lochs).).

The five classes are all of areal coverage; there are no classes of linear features such as

hedges and small roads. Major roads are included in the built-up classes.

Because each remote sensing image has far greater spatial coverage than the 1:24,000

scale aerial photographs, SPOT HRV and Landsat TM images required extra

planimetric points to control the additional ground area. These points were digitised

from OS large scale plans. Similar circumstances may also be found described by

Janssen and van der Wei (1994). Subsequently, the 1:24,000 scale aerial photographs

can be used as reference data in the evaluation of the classification of remote sensing

images.

112



In overview, the scheme for constructing test data is illustrated in Figure 5.4. The

next sub-sections will describe in more detail the test data acquired and the techniques

applied to derive these data. The techniques include land surveying, control

densification by using photogrammetric block adjustment, map digitising,

photogrammetric digitising and classification of remote sensing images.

Figure 5.4 The scheme to build test data for the case study

The equipment utilised in the case study included the Summagraphics tablet for map

digiting, the API90 analytical plotter for photogrammetric digitising based on aerial

photographs, and the ERDAS (Earth Resources Data Analysis System) software for

remotely sensed digital image processing, as shown in Table 5.3. This set of

equipment was available in house at the University of Edinburgh.
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Table 5.3 The equipment for test data automation

Data sources Equipment
OS plans Summagraphics tablet

Aerial photographs AP190 plotter

Satellite images ERDAS workstation

5.4.1 Land surveying

As mentioned previously in this section, land surveying was carried out to provide

adequate GCPs as photocontrol for photogrammetric block adjustment based on the

1:5,000 scale aerial photographs and for photogrammetric digitising based on the

1:24,000 scale aerial photographs. Some of these GCPs were for height only, while

others were for planimetric only.

Height control points were established by levelling, based on third order bench marks

(Newlyn Datum). The bench mark heights for the central part of the study area were

obtained directly from Ordnance Survey bench mark lists, while those for peripheral

locations were read from OS 1:2,500 scale plans. A total of 46 bench marks were

utilised, as shown located in Figure 5.5. The levelling procedure was stricdy followed,

with closing errors less than 1 cm. The resulting levelled height points are shown in

Figure 5.5. The relatively denser distribution of height points along roads was mainly

due to the convenience of levelling in these areas.

Planimetric control points were derived based on the observation of angles and

distances made by theodolite (Wild T2) and EDM (Wild Distomat), respectively. The

locational control network was tied to OS National Grid coordinates provided for
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Arthur's Seat and Blackford Hill. In the light of the requirements of photocontrol and

the special "setting" of the study area, a point on the roof of the 10-storey Darwin
Building on the King's Buildings site was established, based on the known stations on

Arthur's Seat and Blackford Hill with redundant observations, as shown in Figure 5.5.

/\ = Planimetric and height point
A = Planimetric point

^ = Bench mark

• = Height point

Figure 5.5 The distribution of control points produced from land surveying in the
local Edinburgh area (points are only approximately located).
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The known stations on Arthur's Seat and Blackford Hill and the established point on

the Darwin Building were then used as the three major reference points to measure

distances and azimuths to another 9 points. During the field work, repeated

measurements were taken, together with careful booking and sketching on site; these

are extremely important in order to eliminate the risk of gross errors and to ensure

awareness of sufficient accuracy.

Adjustment computation was accomplished for levelled points and planimetric points

with redundant measurements using the condition equation method, while other points

without additional distance or angular constraints were calculated directly using

trigonometry. Wolf (1987) provided practical reference to surveying adjustment. It

was found that adjustment by "condition equation" is much easier than by

"observation equation" method. The surveyed planimetric points have accuracies

ranging from 8 to 18 centimetres. These ground control points are sufficiently

accurate for the block adjustment, photogrammetric orientation and digitising, given

the limitations imposed by surveying instruments, time and manpower costs.

In summary, this field work to provide photocontrol for photogrammetric block

adjustment produced coordinates for 10 planimetric points and 58 height points, as

shown in Figure 5.5. Their coordinates are listed in Appendix 1.

5.4.2 Control densification using block adjustment based on 1:5,000 scale aerial

photographs

The number of field surveyed control points was hardly sufficient for individual

photogrammetric stereo models to be rigorously checked, although height control was

relatively strong. Given the requirement for this test, extensified control was obtained

by photogrammetric block adjustment, as described below.
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To perform block adjustment, an analytical plotter API90 produced by Cartographic

Engineering A/C was used. This instrument is characterised by modular design, and

menu driven interactiveness. Table 5.4 summarises the characteristic features of the

API90. An interesting feature of the API90 is that data collection from aerial

photographs by means of pre-orientated models is nearly as straightforward as

digitising from maps. The orientated aerial photographic pairs provide a precise three

dimensional model from which X, Y, Z coordinates of any visible feature can be

measured. The API90 can also store, display, edit and manage digitised data with a

high degree of operator-instrument interaction.

A commercial photogrammetric block adjustment package BLOKK based on

independent model approach is installed on the API90, and was utilised to densify the

locational control network, thus allowing for photogrammetric digitising.

Table 5.4 The main features of the analytical plotter AP190

Mirror stereoscope - 4X or 6X or 8X magnification
- 50 micron measurement light dot

Photo-carrier - 5 micron resolution linear encoder

- all format photos (35 mm to 230 mm)

Parallax adjustment - stepper drive (2.5 micron resolution)

Controls - rotary encoder
- record button

- function keys

Interface - Z-80 microprocessor with RS232 port

First, pass points and tie points should be carefully located in order to achieve strong

controls for all stereo models within the block. Using the definition of Wolf (1988),

pass points are points of extended horizontal control, used for controlling subsequent

photogrammetric procedures such as planimetric mapping or mosaic construction.
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They are also necessary to continue the triangulation through one strip. They must be

located in desirable positions on three successive overlapping photographs, ideally,

opposite to the principal points and conjugate principal points. Pass points common to

two strips should be chosen in the centre of the side lap area. These special pass

points are often known as tie points (i.e., to tie strips together). Pass or tie points may

be natural well-defined objects or artificially marked points. A total number of 25 pass

points (including 9 tie points) were planned as in Figure 5.6.

In accordance with BLOKK procedures provided, all the control points, pass points

and tie points as shown in Figure 5.6 were measured from 10 stereo models on the

API90 analytical plotter. Before measurements were taken, the models were

accurately set in relative and absolute orientations.

/4k = Ground control point with known X, Y, Z
Zk = Ground control point with known X, Y
• = Ground control point with known Z
o = Tie point
• = Pass point

Figure 5.6 Block configuration, Blackford Hill, Edinburgh.

Measurements for each model were recorded in its relevant job file. It is worth noting

that relative orientation is usually performed in an iterative way, with each iteration
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indicating the points with big residuals, thus guiding the operator to do re-

measurements as necessary. It is recommended that relative orientations of all the

stereo models be completed with overall standard deviation below 20 microns.

Prior to adjustment computation, model coordinates for control and pass points were

derived from corresponding job files. With ground control point data established and

proper parameters set as required, BLOKK was performed to do the block adjustment
until the adjustment converges to a satisfactory result. In order to ensure the reliability

of the adjustment, certain check points were set aside to assess the adjustment. In

order to ensure the reliability of this block adjustment, two tests were carried out. The

two tests used the same model coordinate measurements but slightly different setting

of controls in the interior of the block. The adjustment results are tabulated in Table

5.5.

Table 5.5 Photogrammetric block adjustment results (unit: metres)

Test I II

Results XY Z XY Z

RMS residual in

photogrammetric

measurements

0.233 0.289 0.163 0.282

RMS residual in

check points 0.350 0.456 0.294 0.419

So 0.262 0.429 0.181 0.427

As shown in Table 5.5, the results conform to the prediction by Andersen (1993, pers.

comm.) that standard deviation (S0 ) in Z will be 2 to 3 time that in XY. Specifically,

the adjusted Z outputs from both tests are not significantly different, while

consistently better results in XY are achieved from test I. The ratio of S0 in Z against

that in XY is about 1.6 (less than 2) for test I, while the ratio for test II is
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approximately 2.4 (between 2 and 3). Better accuracy was achieved from test II, and

the results from test II were those actually used in subsequent processing, as listed in

Appendix 2.

5.4.3 Map digitising to supply control points for remote sensing data

As mentioned previously, due to the larger spatial extent of SPOT HRV and Landsat

TM images beyond the aerial photographic block configuration, and in order to

ensure data independence between photogrammetric data and satellite data, control

points different from field surveyed and densified GCPs had to be provided. These

control points were digitised from OS large scale plans, i.e., 1:1,250 and 1:2,500 scale

plans for areas covering sub-scenes of SPOT HRV and Landsat TM images, as shown

previously in Figure 5.2.

It has been discussed previously that there are a number of factors contributing to the

uncertainties encountered in paper map digitising. For instance, machine imprecisions

and operator biases introduce a variety of uncertainties during the digitising process.

Moreover, maps are usually produced via some map generalisations, which are

abstractive, selective and approximate in nature. Depending on specific purposes and

applications, different maps may have undergone different generalisation processes

with different effects. Therefore, there are complex uncertainties associated with maps

themselves and map digitisations. Because of that, some special techniques are

required to figure out various uncertainties occurring in map digitising as a

compounded result of map generalisations, machine and operator limitations.

Given the condition that only well-defined points (e.g., pillar stations, buildings and

other identifiable or ground surveyable man-made structures) will be considered, it is

therefore assumed that there is no uncertainty "locked in" during map generalisation

and only those uncertainties imposed by operator and machine limitations will be
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relevant in the case of OS larger scale plans. Some tests may then be carried out to

find out the uncertainties during digitisation of well-defined points on maps. However,

adequate and accurate samples of field surveyed points are needed in this case, and,

when it is difficult to get sufficient field surveyed points due to timing or economic

constraints, the accuracy of the digitised coordinates can be alternatively evaluated by

using the OS National Grid grid intersections on the OS plans, which are of known

coordinates by definition.

Following this idea, a test has been performed to derive some empirical estimates

about the accuracy obtainable from OS plans at larger scales. The results are tabulated

in Table 5.6, using equations (3-1), (3-2) and (3-3), where sdx and sdy stand for the

standard deviations in X and Y respectively.

Table 5.6 Test results of manual digitising on OS plans (unit: metres)

Tests Results

map sheet scale number of

points
sdx sdy

1 1:1,250 21 0.130 0.093

2 1:2,500 56 0.186 0.229

Unsurprisingly, accuracy tends to decrease as map scale becomes smaller. It is

interesting to note that the accuracy in x, measured by the standard deviation sdx, is

only slighted degraded when map scale becomes smaller (from 1:1,250 to 1:2,500),

while the accuracy in y, measured by the standard deviation sdy, is more than halved

when map scale is reduced by half.
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5.4.4 Photogrammetric digitising of aerial photographs at 1:24,000 scale

As sufficient control and check points had been obtained jointly by the land surveying

and the control densification, photogrammetric digitising was then performed for

aerial photographs at 1:24,000 scale, based on properly mounted and orientated

stereo models on the API90 photogrammetric plotter.

Photogrammetric digitising was performed in accordance with the classification

system set previously. For built-up land cover, most of the building blocks can be

clearly identified, and their outlines can be precisely followed and digitised. As an

example, a map of land cover digitised from 1:24,000 scale aerial photographs is

shown in Figure 5.7. The boundary of the lake (Blackford Pond) can also be

accurately tracked. However, for other objects such as boundaries separating a patch

of trees from bordering grass, the positioning of boundaries clearly involves great

subjectivity. Similar fuzziness is also encountered when delineating a patch of shrub

land.

Clearly, different operators would produce different land cover maps, even from the

same data sources and using the same techniques. By the same token, it would be

impossible for the same operator to generate exactly the same land cover maps even

using the same data sources and the same techniques at different times. For this

reason, an evaluation of the accuracy of digitising is very important.

As mentioned previously in this section, data digitised from the 1:24,000 scale aerial

photographs were used as reference data, against which classified data based on the

SPOT HRV and the Landsat TM images were tested. For this reason, the land cover

data derived by interpreting the 1:24,000 scale aerial photographs are assumed to be

accurate, that is, 100 % correct, in terms of attribute accuracy (classification), and

only positional accuracy is relevant for this case study.
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Figure 5.7 Land cover map derived from the 1:24,000 scale aerial photographs
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Thus, in order to provide initial estimation of the positional accuracy of

photogrammetric digitising, tests have been carried out, in which a few measured

three-dimensional coordinates of well-defined objects such as outstanding landmarks,

bounding corners, centres of manholes and road junctions are checked against the

block densified data. The checking points must be withheld from use in controlling the

stereo model, so that independence in checking is not violated. Results are listed in

Table 5.7, again, using equations (3-1), (3-2) and (3-3), but with standard deviations

of both planimetric (X, Y) and height (Z) data.

Table 5.7 Photogrammetric point digitising accuracy estimate (unit: metres)

Test Results

model scale number of

points
sdx sdy sdz

1:24,000 15 0.595 0.569 0.616

As shown in Table 5.7, there is sub-metre accuracy when digitising from medium

scale aerial photographs. In particular, the planimetric (X, Y) accuracy is just slightly

higher than the accuracy in height (Z). This confirms the values of large and medium
scale aerial photographs in providing accurate three-dimensional measurements for

urban applications, where accuracy is an important consideration for land use planning

and management.

The task of evaluating accuracy becomes less straightforward when dealing with lines

and polygons. A usual way of doing this is by overlaying the test data set with an

assumed reference data set so that an estimate of digitising accuracy (the epsilon error

band width) can be obtained (Chrisman 1991; Edwards and Lowell 1996). For

example, the land cover map digitised from the 1:24,000 scale aerial photographs

might be overlaid onto a map digitised from the 1:5,000 scale aerial photographs.

Such a test was not carried out in this research for the reasons developed below.
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The epsilon band width mentioned previously would stand as a global estimate of the

accuracy obtainable in digitising linear objects. However, it is very likely that different

types of objects will have different epsilon band widths. For example, the boundaries

of building blocks can be more accurately identified and delineated than boundaries

separating continuous cover types such as grassland, shrub and woodland around

Blackford Hill, as shown in Figure 5.7.

More seriously, even though the measure of epsilon band width is unique for

individual lines, it would still not possible to provide any indication about the spatially

varying nature of attribute accuracy beyond simply global indicators such as the

correctly classified percentage of land cover types (Goodchild, Lin and Leung 1994).

For example, suppose an epsilon band width were estimated for each arc shown in

Figure 5.7. One would only be able to know how accurately each arc were digitised.

But, it would not be possible to know how far homogeneity is applicable within each

polygon. The reason is as follows.

Referring back to the aerial photograph shown in Figure 5.1, it is common to find two

patches of grass, which may exist in different stages of growth, with different

underlying soil types, and with different inclusions of other land cover types such as

bare ground and shrub, but it may not be possible to depict each patch appropriately

using polygon models as employed in the production of land cover maps such as that

shown in Figure 5.7, unless sub-division of classes is adopted. Even if classes were

subdivided, there would still be a problem of spatial variations within each subdivided

classes. In other words, the uncertainties present in the interpretation of land cover

types have not been deleted, but only pushed into a lower level. Similar problems

were discussed by Wang (1990). Therefore, the epsilon band model would not be

adequate to describe the heterogeneities so evident in the mapping of urban and

suburban land cover.
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Indeed, this issue of spatial heterogeneities is completely different from the problem of

positional accuracy in discrete objects, which is relatively well researched, and spatial

heterogeneity may not be effectively handled by an object-based perspective of

geographical reality (Burrough 1994). A sensible way to address the issue of spatial

heterogeneities encountered in aerial photo interpretation would be by using field-

based models where fuzziness can be accommodated. This is what the surface-based

approach pursued in this thesis is designed for.

5.4.5 Remote sensing image classification

As described hi Section 2.3.3 and Section 5.3, an important function of remote

sensing processing is classification, which provides efficient and current information

for a variety of purposes such as urban and suburban land cover mapping. For the

purpose of this research, remote sensing images were also incorporated in the test

data hierarchy, as mentioned in Section 5.3. This sub-section will describe how land

cover data were derived from classification of remote sensing images, followed by an

assessment of the classification accuracy.

Because the test data need to be derived from remote sensing images for the purpose

of comparison testing of data accuracies, remotely sensed data must be properly

classified and geometrically rectified to the same coordinate system as in

photogrammetric digitising.

Unsupervised classification methods such as clustering were found to be unsuitable

for both SPOT HRV and Landsat TM data in this research. For both images, large

number of clustering classes were shown overlapping in spectral feature space and

could not easily discriminated. Moreover, classes found by unsupervised classification

methods could not be related easily to any particular land cover types recognisable on

the ground, as also described in Chapter 2.
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This conclusion did not come as a surprise, because urban and suburban phenomena

tend to be characterised by much complexity within small areas, resulting in highly

variable reflectance values over short distances, which may not be detected by the

fairly broad spectral bands, on which SPOT HRV and Landsat TM sensors are

designed to work. This situation gives rise to a common problem in urban applications

of remote sensing data: mixed pixels, as discussed in Chapter 2. Forster (1983) met

similar problem in his study in a municipal area based in Sydney, Australia.

Because of these problems with unsupervised classification methods, a supervised

classification, specifically the Maximum Likelihood Classification (MLC), was

performed. It was necessary to use knowledge of the study area and to inspect the

satellite image on display using visual interpretation skills. Since the study area was

within relatively easy access, several field visits were made for this purpose, with

sketches or pictures created as necessary. Then, it was possible to proceed to classify

certain areas (training areas) of the image as being characteristic of a certain land

cover type. Following the selection of training areas, it is possible to generate spectral

signatures based on the pixels of the image falling within each designated training

area.

An iterative approach is usually necessary to generate the most suitable signature files

for MLC supervised classification. For example, it is important, especially when

dealing with urban areas, to revise training areas perhaps to remove individual or

groups of unrepresentative pixels. As a single class of objects may not be represented

by a single spectral class, a number of spectral classes are often created, and then are

merged into object classes. For example, both a vegetation-dominated garden and a

soil-dominated worked allotment may belong to a grassland cover type. However, it

was rare to find both sub-classes exhibit identical or even similar spectral signatures.

Thus, two different spectral classes were formed, and needed to be merged into the
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grassland cover type in the end. For the SPOT HRV image, probably due to its finer

spatial resolution than that of Landsat TM data, built-up areas had to be subdivided

into residential (i.e., detached or terraced houses) and non-residential areas such as

commercial, institutional complexes (including roads and bare grounds) for

satisfactory classification.

In addition to the creation of appropriate signature files, it was also necessary to

select the optimal band combination. That was done by running an ERDAS module

named Diverge. This module provides a mechanism to select those combinations of

bands with largest measures of divergence among target classes in order to increase

the classification accuracy (Campbell 1987). Such a process led to the selection of

bands 1, 2 and 3 for the SPOT HRV image, and bands 3, 4 and 5 for the Landsat TM

data. The SPOT HRV and Landsat TM images were then classified using the MLC

algorithm in the ERDAS software system.

Following the process of image classification, geometric rectification was performed

using ground control points obtained from map digitising. The first order

transformation was found sufficient to gain sub-pixel accuracies for both SPOT HRV

and Landsat TM images. Resampling was performed using a nearest neighbour

resampling scheme, based on classified images in order to maintain (rather than

"spoil") the original image's integrity. The processes of classification and geometric

rectification are tabulated in Table 5.8. The classified SPOT HRV and Landsat TM

images are shown in Figure 5.8 and Figure 5.9, respectively.

Attention is now given to the assessment of classification accuracies for both SPOT

HRV and Landsat TM data. The classification accuracy was tested firstly by simple

random sampling throughout the image and secondly by superimposed comparison

(i.e., exhaustive pixel-by-pixel comparison) made between classified SPOT HRV or

Landsat TM data and reference photogrammetric data.
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Figure 5.8 Land cover classification derived from the SPOT HRV image
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Figure 5.9 Land cover classification derived from the Landsat TM image
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Table 5.8 A summary of remote sensing data processing

Type of processing SPOT image TM image

Classification

Classifier

No. of spectral classes

No. of object classes

Selection of bands

Rectification

No. of GCPs used

Order of transformation

RMS of x, y

Resampling

MLC

7

5

bands 1, 2 and 3

28

1

0.95 pixel

MLC

6

5

bands 3, 4 and 5

27

1

0.89 pixel

nearest neighbour nearest neighbour

The simple random sampling was facilitated by a built-in module named Randcat in

the ERDAS software system, which produced 379 and 196 random samples for

SPOT HRV and Landsat TM image, respectively. This module prompted the analyst

for the ground land cover types at the randomly chosen sample pixels. Land cover

types for each sample pixel were supplied from consulting the classified land cover

map shown in Figure 5.7. This land cover map was the assumed reference data,

though with uncertainties present as discussed in the previous sub-section. The results

were corresponding misclassification matrixes, from which various statistics could be

calculated by another module named Claserr in the ERDAS software system. Results

are shown in Tables 5.9 and 5.10 for SPOT HRV and Landsat TM data respectively.

The derivations of overall agreement, chance agreement and kappa coefficient are

explained in Chapter 3.
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Table 5.9 Error matrix for SPOT HRV data obtained by simple random sampling

Reference data

grass built wood shrub water row

total
row

marginal
grass 49 2 0 3 0 54 0.14

Classified built 3 182 4 3 0 192 0.51

data wood 1 0 12 4 0 17 0.04

shrub 18 18 28 51 0 115 0.30

water 0 0 0 0 1 1 0.00

column
total
column

marginal

71

0.19

202

0.53

44

0.12

61

0.16

1

0.00

379

Overall agreement = 78%, chance agreement = 35%, Kappa = 66%

Table 5.10 Error matrix for Landsat TM data obtained by simple random sampling

Reference data

grass built wood shrub water row

total
row

marginal
grass 48 18 1 5 0 72 0.37

Classified built 8 51 2 14 0 75 0.38

data wood 0 1 5 6 0 12 0.06

shrub 6 1 0 30 0 37 0.19

water 0 0 0 0 0 0 0.00

column
total
column

marginal

62

0.32

71

0.36

55

0.28

8

0.04

0

0.00

196

Overall agreement = 68%, chance agreement = 28%, Kappa = 55%
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As indicated in Table 5.9, significant number of pixels of the SPOT HRV image were

classified as "shrub" when they were "wood", "grass" or "built" on the reference data.

This is probably because firstly "shrub" is the least well-defined type as to the SPOT

HRV sensor and secondly "shrub" is heavily blended with bordering grass, wood and

built land cover types, as evident from the aerial photograph shown in Figure 5.1.

Moreover, it must be admitted that the assumed "ground truth", i.e., the

photogrammetric data, is by no means perfecdy "accurate", as discussed in the

previous sub-section. Therefore, disagreements between classified remote sensing

data and photogrammetric data are inevitable.

For Landsat TM data, on the other hand, the pattern of misclassification was notably

different. As shown in Table 5.10, "built" land cover was quite often classified as

"grass". Misclassification of "shrub" as "built" was also obvious. In addition to the

reasons mentioned above in the case of SPOT HRV data, another reason may be that

decreased spatial resolution tends to "secure" more mixed pixels, leading to more

misclassification. More outstanding is the confusion of "wood" with "shrub", as more

pixels with "shrub" land cover type were classified as "wood" than "wood" pixels

themselves on the reference data, conforming to the poorest discrimination between

"wood" and "shrub" as seen in Table 5.10.

In general, SPOT HRV data were more accurately classified than Landsat TM data,

as evident from their respective overall classification accuracies and Kappa

coefficients. Moreover, it becomes clear from Tables 5.9 and 5.10 that it is very

important to use Kappa coefficients to give a fair assessment of the accuracies in

classified remote sensing images. This is because classification accuracies, without

chance agreement being taken into account, might be significantly inflated: 78%

opposed to 66% for the SPOT HRV image, and 68% opposed to 55% for the

Landsat TM image, as shown in Tables 5.9 and 5.10. Similar observations were made

recently by Veregin (1995).
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Attention is now given to the superimposed comparison method, because it is believed

that a superimposed comparison can facilitate the examination of the pattern and

hence the revelation of the sources of misclassification. Chrisman (1991)

recommended the superimposed comparison method as the most reliable and

comprehensive evaluation of classification accuracy relevant to categorical maps as a

whole.

To facilitate the superimposed comparisons, photogrammetric data in vector format

needed to be transformed into raster data with pixel sizes equal to that of SPOT HRV

(10 m) and Landsat TM (30 m) respectively. Each pixel on the resulting raster data

sets was assigned a single class. The superimposed comparisons were made by using a

Matrix module in the ERDAS software system, which generated the 25 different

combinations of classified and reference land cover types. It is worth noting that the

test data and reference data must be co-registered before superimposing comparisons.

The statistics for combined classes were then used to form misclassification matrices

(Campbell 1987; Congalton 1991). Results are shown in Tables 5.11 and 5.12 for

SPOT HRV and Landsat TM data respectively.

Examination of Table 5.11 indicates that significant number of "grass" pixels were

misclassified as "built", "wood" and "shrub" land cover types. As the majority of the

study area is occupied by the "grass" type, which is not "pure", "grass" type is at fault

for much of the misclassification. Secondly, "wood" type was also seriously confused

with "shrub". Reasons as discussed in the case of simple random sampling may also

apply in this situation.

134



Table 5.11 Error matrix for SPOT HRV data obtained by superimposed comparison

Reference data

grass built wood shrub water row

total
row

marginal
grass 749 85 48 5 0 887 0.12

Classified built 1382 1137 124 3 23 2669 0.38

data wood 357 37 597 125 22 1138 0.16

shrub 1171 137 743 323 5 2379 0.33

water 1 0 0 0 39 40 0.01

column
total
column

marginal

3660

0.51

1396

0.20

1512

0.21

456

0.06

89

0.01

7113

Overall agreement = 40%, chance agreement = 19%, Kappa = 26%

Table 5.12 Error matrix for Landsat TM data obtained by superimposed comparison

Reference data

grass built wood shrub water row

total
row

marginal
grass 138 19 34 14 0 205 0.26

Classified built 125 71 22 0 0 218 0.28

data wood 97 18 86 25 7 233 0.30

shrub 60 16 22 18 1 117 0.15

water 1 0 0 0 3 4 0.01

column
total
column

marginal

421

0.54

124

0.16

164

0.21

57

0.07

11

0.01

777

Overall agreement = 41 %, chance agreement = 26%, Kappa = 20%
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For Landsat TM data, the confusions of "grass" with "built", "wood" and "shrub",

and between "wood" and "shrub", as found with SPOT HRV data, were further

emphasised, as shown in Table 5.12. In terms of the corresponding Kappa coefficients

rather than simply the overall classification accuracies, the Landsat TM image was

less accurately classified than the SPOT HRV image.

So far in this sub-section, two different methods of evaluating classification accuracy

have been discussed. The results are summarised in Table 5.13 to see if there are any

reasons for the different levels of accuracy indicators obtained there, such as Kappa

coefficients, to assist interpretation.

Table 5.13 The summary result of evaluation of classification accuracies

Classification accuracy SPOT HRV image Landsat TM image

Overall accuracy, Kappa
- by simple random sampling 78%, 66% 68%, 55%

(sample size) (379) (196)

- by superimposed comparison 40%, 26% 41%, 20%

(sample size) (7113) (777)

As can be seen from Table 5.13, the superimposed comparison results in significantly

lower accuracy than simple random sampling (in particular, less than half of the Kappa

coefficients than by simple random sampling), although both methods are assessing

the same classified images. The first reason that simple random sampling tends to

overestimate the classification accuracy may be the effects of sampling size. Another

reason is probably because the simple random sampling by human visual interpretation

may somehow compensate the disagreements caused by geometric distortion present

even in rectified remote sensed image, while machine-forced comparison forces all

discrepancies to be labelled as misclassification.
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5.4.6 Discussion of the results

So far in this section, a hierarchy of test data has been acquired in the required form

as set in Table 5.2. It was seen, firstly, that spatial data acquisition is a demanding job:

it requires trained and versatile personnel, who can carry out field work, and use

computers and specialised field and laboratory equipment; the data are obtained only

through time-consuming processes. Under normal procedures, choices between using

aerial photographs or satellite imagery are made based on criteria such as cost, time,

availability and accuracy. Secondly, because one of the aims of this research is to

highlight the uncertainties in spatial data, a detailed description about the data sources

used and the data acquisition techniques employed has been made in order to identify

the error sources, measure their magnitudes and assess the accuracy level attainable in

various data products. It is useful here to provide a summary of the varying accuracies

of the hierarchy of test data. This is presented as Table 5.14, where classification

accuracies derived by superimposed comparisons are reported.

Firstly, the accuracies of GCPs are very high (in centimetres). For planimetric

accuracies, the field surveyed GCPs have the highest accuracies, the GCPs digitised

from OS 1:1,250 scale plans have the second highest accuracies, densified GCPs from

the 1:5,000 scale aerial photographs have the third highest accuracies, and GCPs

digitised from 1:2,500 scale OS plans have the lowest accuracies. For accuracies in

height, field surveyed height points are far more accurate than those densified points

using the 1:5,000 scale aerial photographs.

Secondly, lower accuracies are obtained by photogrammetric digitising based on the

1:24,000 scale aerial photographs. The positional accuracy of photogrammetric data

digitised from 1:24,000 scale aerial photographs was evaluated by measuring a few

well-defined objects, and then checking with reference data (i.e., densified control

points based on 1:5,000 scale aerial photographs). Such a method produced an
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average estimate, which was merely some aspatial uncertainty measure assumed

applicable homogeneously over the mapped area.

Table 5.14 The hierarchies of test data and their accuracies

Hierarchy of accuracies

Positional (metre) Attribute (%)

Hierarchy of test data Planimetric

(X,Y)
Height
(Z)

Overall
classification
accuracies

Kappa
coefficients

1. GCPSs:

• Field surveyed 0.08 -0.18 0.01 N/A

• Densified (1:5,000
scale aerial

photographs)
• Digitised

0.18 0.43 N/A

1:1,250 scale plans 0.13, 0.09 N/A

1:2,500 scale plans 0.19, 0.23 N/A

2. photogrammetric data
(1:24,000 scale aerial
photographs)

3. Remote sensing data:

0.60, 0.57 0.62 N/A

• SPOT HRV data 9.50 40 26

• Landsat TM data 25.70 41 20

However, as described in Sub-section 5.4.4, some well-defined objects such as

identifiable pillar points established by the Ordnance Survey, road junctions, walls and

fences, building corners and other landmarks can be precisely positioned and

repeatedly measured, and so more accurately measured, while others objects such as

boundaries separating wooded land and grassland are fuzzy and are difficult to model.

Furthermore, attribute accuracy was not addressed in any depth, but assumed to be

"absolutely accurate" for the purpose of checking remote sensing data. It is likely that

attribute accuracy of photogrammetric data will be far more complicated than the
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positional accuracy would suggest, and an object-based epsilon band model would not

provide any information on the spatial heterogeneities characteristic of categorical

land cover maps such as that shown in Figure 5.7.

Finally, for classified remote sensing data, the positional accuracies were implied by

the RMSE measures, which indicated sub-pixel accuracies for both SPOT F1RV and

Landsat TM data. The attribute or classification accuracies, on the other hand, were

evaluated by constructing appropriate error matrices, from which overall classification

accuracies and Kappa coefficients were calculated and interpreted. It is seen that the

SPOT F1RV data are more accurately classified than the Landsat TM data, as

measured by the Kappa coefficients, because the pixel size of SPOT HRV image is

finer that that of Landsat TM image. However, these measures can provide

information on accuracy obtained just at individual classes level rather than at pixel

level.

In general, although the accuracy may be improved by increasing the measurement

resolution and precision, reinforcing rigorous data acquisition standards, and refining

the measuring procedures, spatial data acquisition is bound to be limited by the human

subjectivity and machine imprecision unavoidable in any classification. Besides, there
are always some compromises between the accuracy of the data and the cost incurred

for better accuracy. An example would be to use one stereo model of 1:24,000 scale

aerial photographs, rather than many models at 1:5,000 scale.

To assist the user or project planner, it is important that the data suppliers should

provide to the users the accuracy levels expected in the data as integral components of

the data themselves. As will be discussed in the next chapter, such a strategy

facilitates the provision of data quality, which can in turn be argued, will ultimately

benefit users as they are able to assess and understand both the opportunities and

limitations of different products. The strategy also enhances the opportunity for the
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acceptance of new mapping procedures exploring the intrinsic uncertainty in the GIS

data and analysis by the research and application communities. This acceptance may

only be won by the demonstrated advantages held by the new techniques through

effective and flexible error handling in GIS functionality.

5.5 Discussion

A co-registered data base of spatial information on suburban land cover has been

generated using typical methods of photogrammetric digitising and supervised

classification of SPOT HRV and Landsat TM images. It has been seen that a

hierarchy of accuracies exists, which is critical when one data source is used as the

positional or attribute control for other data sources.

The results confirm that, by using an object-based method, measures of positional

accuracy are only average estimates, and applicable only for well-defined objects;

while attribute accuracies are relevant, at best, to individual classes. Results also

shows that much of the uncertainty in classified remote sensing data is due to the

subjectivity in allocating discrete classes to continuously varying land cover types,

which may be compounded by the fuzziness conspicuous even in photogrammetric

data.

To address the issues of fuzziness, a new approach is needed, which should adapt to

the spatially varying nature of the underlying phenomenon - land cover. This is what

the surface-based approach will help with, as established in the next chapter.
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Chapter 6

Empirical study II: the surface approach to uncertainties

6.1 Introduction

Chapter 5 provided the means for evaluating the relative uncertainty that is found in

common types of data derived from photogrammetry and remote sensing for urban

and suburban land cover mapping. Results from the classification of the satellite data

and validation against aerial photographs at 1:24,000 scale show that one of the main

sources of uncertainties in all the methods assessed was attributable to the

requirement to identify and delineate a single class attribute at each location. This

requirement, which is enforced by many classification schemes, assumes a level of

discreteness and homogeneity not usually held true in reality.

Given that the problem lies at least partly in an enforced conversion from continuous

to discrete space, implicit in photogrammetric digitising as well as in maximum

likelihood classification of remotely sensed images, there would seem to be merit in

exploring methods which seek to maintain continuous data, whilst providing tools to

analyse these data without necessarily having to pre-classifying them first.

This is the central argument of the remainder of this thesis and it will be explained in

this chapter by a study of how two particular methods, fuzzy classification and

indicator kriging, may be utilised to overcome the problem described previously for

urban land cover mapping. These two methods will be demonstrated, by applying the

fuzzy classification to both the SPOT HRV and the Landsat TM data, and by applying

indicator kriging to the photogrammetrically derived vector map. It will be shown

that, in both cases, the continuous surface representation provides a more accurate
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and realistic portrayal of the underlying data, and these surfaces can be created

without major difficulties.

While these methods in themselves have been researched elsewhere, it is believed that

this is one of the first attempts to evaluate both methods in the framework of a

controlled experiment, where data of higher accuracy are available for checking.

Furthermore, as most of the previous work on continuous spatial data has been in

environmental research, this is a novel use of these methods in an urban and suburban

land cover mapping context where objects are usually assumed to be "well-defined"

and highly accurate. In fact, urban and suburban land cover exists as a continuum

between two extremes: continuous fields and discrete objects.

After fuzzy surfaces have been derived, the analyses discussed in Chapter 4 are

performed. Entropy measures are calculated for individual sets of fuzzy surfaces, so
that the degree of fuzziness is evaluated. This is followed by the calculation of

closeness (or agreement) measures based on cross-entropy and correlation

coefficients.

As well as creating these surface representations, it is important to show that these

can be translated into conventional map products, which are presently produced, such

as the maps shown in Figures 5.7, 5.8 and 5.9. This can be done by using a

"maximising" operation, by which categorical maps are produced via a process similar

to the maximum likelihood classification, while information on the

certainty/uncertainty of classification is supplied as a by-product. Thus, visualisation

of uncertainty is enhanced by draping the derived categorical maps onto the certainty

surfaces, which proves to be very impressive.

This chapter also shows that the conversion from surfaces to common categorical

maps can be achieved by applying a thresholding or "slicing" operator. This
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conversion from surfaces to categorical maps will be shown to be a more conceptually

sound, flexible and data-driven method than previous representations of uncertainties

in categorical maps using a virtually constant epsilon band width (Chrisman 1989;

Pullar and Beard 1989).

Finally, categorical maps are evaluated with respect to their accuracies. While

evaluation based on "sliced" categorical maps can greatly reduce the effect of mixels

on the calculation of accuracies, comparisons on a relaxed condition, i.e., by

comparing both the most likely and second most likely classes for each pixel,

substantially increase the agreements between remotely sensed data and

photogrammetric data. This is seen as particular useful when fuzzy membership values

(FMVs) for the most likely and second most likely classes are approximately equal.

6.2 Generation of fuzzy surfaces

6.2.1 Fuzzy surfaces built on remotely sensed data

As shown in Chapter 5, though the overall classification accuracy and the Kappa

coefficients provide useful information about the reliability of classified remote

sensing data, they contain no clue to the spatial variation of the classification accuracy

at pixel level. In order to show the spatial variability of classified data, an approach

based on fuzzy surfaces was adopted.

As discussed in Section 4.2, a fuzzy classification can be performed in either a

supervised or an unsupervised mode. A supervised fuzzy classification is usually

adopted to "soften" an otherwise "hard" supervised classification, by assuming a

particular distribution and hence by requiring class statistics, that is, class means and

variance-covariance matrices, to be defined a priori. An unsupervised fuzzy

classification, on the other hand, seems to work well in situations where an
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unsupervised conventional classification would be superior over a supervised

alternative.

In a supervised fuzzy classification, FMVs are derived from intermediate outputs

indicating relative strengths of class memberships of a pixel belonging to all the

candidate classes, depending on a specific classifier that would be used in a hard

classification. The ERDAS software can generate a probability data layer as a by¬

product to assist users in evaluating the classified remote sensing data. However, such

a by-product is of limited use, because only the probability of a pixel belonging to the

named class on the classified data is provided, leaving out the FMVs relevant to all

the rest of the candidate classes. Therefore, a fuzzy classification needs to be carried

out to derive FMVs relevant to all classes for individual pixels. This kind of fuzzy

classification may have to rely on extra programming work rather than simply using

existing systems such as the ERDAS software.

For an unsupervised fuzzy classification, the fuzzy c-means clustering is widely used.

Unlike a supervised method that relies on a suitable distribution assumption and pre¬

defined class statistics, the fuzzy c-means clustering seeks to explore the coherence in

the underlying data. In this sense, a fuzzy c-means clustering is similar to a

conventional clustering process adopted in an unsupervised classification such as

ISODATA as provided in the ERDAS software (see also Richards 1993). Moreover,

as also seen in Section 4.2, the fuzzy c-means clustering is somehow versatile in the

sense that a supervised method is "switched on" when class statistics are supplied,

making it an attractive technique.

In this research, a fuzzy c-means clustering algorithm was programmed in FORTRAN

77 on VAX/VMS, whose code is provided in Appendix 4. This program was written

in accordance with the algorithm described in Section 4.2. It is important to mention

that this program requires large amount of space (384 k and 43 k bytes for the SPOT
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HRV data and the Landsat TM data respectively) to store the ASCII data files loaded

from LAN data files, since the existing remote sensing image processing software

does not provide such a functionality.

The supervised fuzzy clustering was actually applied due to the unsatisfactory results

from the unsupervised classification, as described in the previous chapter. In this case,

the fuzzy c-means clustering program was used to calculate simply the membership

values for each pixel in each of the five known classes (i.e., grassland, built-up land,

wooded land, shrub land and water bodies).

An improvement on the algorithm as published in Bezdek, Ehrlich and Full (1984)

was made in this fuzzy c-means clustering program when the supervised mode is

switched on. This was actually to supply not only class centres as in the usual way,

but also the class covariance matrix, thus tightening the control over the evaluation of

FMVs and hence the result of classification. This original improvement was based on

the reasoning that specifying a per-class covariance matrix rather than a single

covariance matrix for the whole image data set would be more sensible in order to

produce a fuzzy classification closer to expectations implied in the class statistics on a

per-class basis.

To verify such a method, the data set shown in Table 4.2 and Figure 4.2 has been

tested. Suppose there are three classes, into which the whole data set will be

classified, as indicated by the three ellipses shown in Figure 6.1. In Figure 6.1, dots

represent the individual pixels, while centres of classes are represented by small

squares. Firstly, a global covariance matrix relevant to the whole data set is used, as in

the unsupervised mode, where the global covariance matrix was supplied to calculate

FMVs. As expected, the classified result is identical to that indicated in Table 4.2,

though there are slight differences in the final U matrix, i.e., FMVs, because the final

class centres formed in Figure 4.2 were slightly different in location from the three
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class centres indicated by the small squares shown in Figure 6.1.

Band 2
A

cluster 2
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Figure 6.1 The improved algorithm on the supervised fuzzy c-means clustering, using

the same data set as in Figure 4.2.

Then, the three classes are assumed to be defined by the three ellipses shown in Figure

6.1, where centres and covariance matrices can be calculated for each individual class.

By such a per-class control over the calculation of FMVs, the classified result is

exactly the same as defined by the three ellipses.

In addition to the fact that the improved method of fuzzy c-means clustering, in a

supervised mode, helps to produce a classification with classes more tightly controlled

by the class statistics, the sets of fuzzy surfaces generated will have lower degrees of

fuzziness (thus higher accuracies) than those generated by usual implementations of

fuzzy c-means clustering. This can be verified by calculating measures of entropy as

described in Chapter 4 for the example in Figure 6.1. When a global covariance matrix

is used, the resulting FMVs have an average measure of entropy of 0.86, while a

lower measure of entropy of 0.69 is produced when using per-class statistics.

Therefore, the improved method of the fuzzy c-means clustering will reduce the

degree of fuzziness in the resulting set of fuzzy surfaces, thus making it more

compatible with those fuzzy surfaces derived from photogrammetric data, which often

possess lower degrees of fuzziness. This will become apparent later in this sub-section

and in the next sub-section, where fuzzy surfaces built from remote sensing images
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and those based on photogrammetric data are generated and subsequently analysed by

calculating measures of entropy.

Based on this improved version of the supervised fuzzy c-means clustering algorithm,

the class statistics (including class means and covariance matrices) were read out from

signature data compiled from training samples, as described in Section 5.4.5. The

training samples were then used as guides for the supervised fuzzy clustering. For

both the SPOT HRV data and the Landsat TM data, the land cover type involving

grass was divided into two subclasses, respectively relevant to worked allotment and

grass/park land. The class statistics are tabulated in Appendix 4.

The fuzzy c-means clustering program was run in the supervised mode with class

statistics supplied for both the SPOT HRV data and the Landsat TM data. The

resulting U matrices consisted of the FMVs of each pixel belonging to the pre-defined

classes, in which FMVs for the two subclasses of grassland cover needed to be

merged. The FMVs for each class were transformed into standard ASCII file format

suitable for generating an ERDAS image of single band. This image was transformed

further to ARC/INFO GRID data, to allow three dimensional visualization of fuzzy

surfaces. Fuzzy surfaces built from the SPOT HRV data and the Landsat TM data are

illustrated in Figure 6.2 and 6.3 respectively.

The evaluation of how FMVs are partitioned among candidate classes is based, again,

on the entropy measure described in Section 4.4. An entropy measure is minimised

when a pixel has a full membership value (i.e., FMV = 100 %) in one class, and zero

membership values (i.e, FMV = 0 %) in the remaining classes. In such a situation, the

fuzzy classification is said to be of the highest accuracy (Foody 1995a). On the other

hand, when FMVs are evenly distributed among all candidate classes, the entropy

measure will be maximised at log2c, where c is number of classes (c = 5 in this

research).
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Figure 6.2 Perspective views of fuzzy surfaces of land cover derived from the SPOT

HRV data: (a) grass, (b) built, (c) wood, (d) shrub, and (e) water. The peaks on

diagrams indicate higher certainty, i.e., increasing likelihood of presence.
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Figure 6.3 Perspective views of fuzzy surfaces of land cover derived from the

Landsat TM data: (a) grass, (b) built, (c) wood, (d) shrub, and (e) water.

The peaks on diagrams indicate higher certainty, i.e., increasing likelihood of

presence.
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The derived fuzzy surfaces were evaluated with respect to their entropy measures.

This led to the histograms shown in Figure 6.4, where (a) and (b) represent

distributions of entropy measures relevant to fuzzy surfaces derived from the SPOT

HRV and the Landsat TM data respectively.
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Figure 6.4 Histograms of entropy measures of fuzzy classification based on:

(a) the SPOT HRV data; and (b) the Landsat TM data.

As shown in Figure 6.4, both histograms are negatively skewed towards higher

entropy measures. This is particularly evident in Figure 6.4 (a). The means of entropy

measures are 1.56 and 1.64 for fuzzy surfaces based on the SPOT HRV and the

Landsat TM data respectively. Both values are quite high, indicating significant

fuzziness in the fuzzy surfaces. This degree of fuzziness is clearly depicted on the
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perspective views of fuzzy surfaces, where FMVs are shown as highly varied and

rugged over short distances.

Comparatively, consistently larger proportions of pixels in the Landsat TM data

register higher entropy measures, though there is a concentration of high entropy

measures around the range between 1.70 and 1.90 on the SPOT HRV data, as shown

in Figure 6.4. The result confirms that fuzzy classification based on the SPOT HRV

data is slightly better than that based on the Landsat TM data. This is because remote

sensing images of a higher spatial resolution should be able to capture finer detail on

the ground than those with a lower spatial resolution, thus leading to less mixed

pixels.

6.2.2 Fuzzy surfaces generated from photogrammetric data

It was reviewed earlier that aerial photography has been used traditionally to derive

useful information about land cover, natural resources and the environment. The

information is usually presented on analogue maps or in digital forms, where the

former can be easily derived from the latter. These kinds of maps typically portray the

geographical reality as certain collections of discrete objects abstracted through the

process of photo-interpretation and scribed onto maps as points, lines and polygons

(see Figure 5.7).

As seen in Section 5.4, digitising from a reconstituted stereo model was of limited

accuracy in terms of positions of objects, and suffered uncertainties due to

assumptions of homogeneity which were usually unattainable in the case of urban and

suburban land cover mapping. The uncertainties contained in a photogrammetrically

digitised land cover map were compounded when such a map was used to check a

classified remote sensing data product. This led to decreased agreements between the

classified data and the photogrammetric data (the "alleged" ground truth data), and
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hence low overall classification accuracies, as seen in Section 5.4.5.

Clearly, the information on the uncertainties involved in photo-interpretations and

classifications was thrown away unwisely, and should have been retained if possible.

As discussed in Section 4.3.1, sub-pixel component land cover proportions may be

used to replace the heterogeneities typically suppressed during photo-interpretation,

and thus form a simple type of fuzzy surfaces. Towards this end, photogrammetric

data were rasterised at fine cell size (1 metre) via a built-in module in the ERDAS

software. Data for the proportions of different sub-pixel components were then

calculated by a small original FORTRAN 77 program (Appendix 5). This program

performed the summation on a pixel by pixel basis (in accordance with the SPOT

HRV and the Landsat TM pixel sizes respectively) with respect to the five land cover

classes shown in Figure 5.7. The resulting sub-pixel component proportion data were

stored as ARC/INFO GRID data files, and were later compared with the results

derived from using indicator kriging, as described below.

As described in Section 4.3.2, indicator kriging is usually performed to update local

information with neighbouring information to produce continuous surfaces of a

posteriori probabilities of certain categories prevailing at a location. In terms of

implementation, it has to be decided which geostatistical package to use. The author

has accessed geostatistical packages including Geostatistical Software Library

(GSLIB) (Deutsch and Journel 1992), GEOPACK (Yates 1995, pers. comm.) and

simple kriging in the ARC/INFO package.

While the availability of kriging functionality in ARC/INFO is attractive for its

convenience, several workers including Dungan (1995. pers. comm.) and Oliver and

Webster (1990) found that simple kriging in ARC/INFO is limited to single spherical

model for semivariograms, and its source code is poorly documented. Under such

pre-imposed conditions, the users will not know exactly how the software is handling
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complex data, what inner procedures the software is following, and with what criteria.

Though GEOPACK is considered user-friendly with a menu-driven graphical

interface, users are still kept away from more technical aspects such as semivariogram

calculation and model fitting. GEOPACK was also found by the author to be

incapable of performing kriging interpolation for large data sets. The remaining

package GSLIB was therefore used in this empirical study.

GSLIB is a collection of geostatistical routines existing in source code that serves as a

starting point for custom programs and application research. The source code

provided adheres as closely as possible to the ANSI standard FORTRAN 77

programming language. However, GSLIB is by no means user-friendly, in particular

due to the lack of a graphical, interactive semivariogram modelling program. GSLIB

requires users to have a substantial understanding of the fundamental geostatistical

principles and reasonable computer programming knowledge. Nevertheless, given the

fact that flexibility rather than comfort is sometimes more important in the pursuit of

research, GSLIB was used in combination with other general purpose statistical

packages to perform interactive semivariogram model fitting.

After the selection of a suitable geostatistical package, attention is now given to

collecting a set of classified samples or observations from aerial photographs as the

first step of indicator kriging. As described in Section 4.3.2, these classified samples

are usually taken from locations where the variable under study such as land cover can

be considered "pure", or representative of the named classes, similar to the process of

locating training sample in remote sensing classification. Thus, it is assumed that a

pure sample (that is, the class found at a point) should belong 100 percent to the

named class, thus meaning 0 percent for all other classes. Often, the centres of land

cover patches may be taken as pure samples of the corresponding land cover types.

This has its supportive reasons in the epsilon band model, which assumes that the

further a point is away from the boundary, and thus closer to the centre of a polygon,
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the more likely it is to belong to the class of the polygon (Chrisman 1989).

Following this method of identifying pure samples, sets of classified pure samples

were identified on the photogrammetric data as shown in Figure 5.7 (234 samples of

grassland, 291 samples of built-up areas, 203 samples of wooded land, 76 samples of

shrubland, and 11 samples of water bodies). These samples were re-confirmed by

referring to the original aerial photographs and, if necessary, checking with the

1:5,000 scale aerial photographs. The resulting pure samples (2.5 x 2.5 square

metres) are shown in Figure 6.5. They were then transformed to a grid coordinate

system as required in GSLIB with grid cell size equal to 2.5 x 2.5 square metres.

The data files to be used in GSLIB routines need to be in a format specified in the

GSLIB user's guide. Actually, the files can be formatted by referring to the example

below (a program is provided in Appendix 6):

(1) 1st line explaining the data;

(2) 2nd line specifying the number of fields or columns C in the data (including

x, y coordinates);

(3) 3rd line ~ C+2 th line specifying the names of individual fields (such as x,

y, variable a, b, c and so on);

(4) C+3 th line onwards, each line written as a record of C fields with spaces

separating them.

The experimental semivariograms were calculated by using the gamv2 subroutine

provided in GSLIB. As a rule, the parameter file needs to be properly specified. It

may be a good practice to follow the example parameter files listed in the GSLEB

user's guide. It is important to calculate the experimental semivariograms for at least

three directions to detect any significant anisotropy: omnidirection, north-south, east-

west.
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Figure 6.5 Classified pure point samples from the photogrammetric data:

(a) grass, (b) built, (c) wood, (d) shrub, and (e) water.
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The outputs were then loaded into SPSS PC software available from the Computing
Service at the University of Edinburgh to perform semivariogram model fittings. Prior

to the model fitting, the scatter plots of the experimental semivariograms were

examined visually in order to identify their upper bounds (known as sills), the ranges

(as shown in Figure 4.5) and above all their general structures and forms. The SPSS

PC software provides user-friendly, graphical and interactive interfaces to facilitate

the lineai- or non-linear regression analysis in addition to a suite of general statistical

functions and modules.

It is known that a spherical or exponential model semivariogram will reach an upper

bound known as the sill. Thus, both spherical and exponential models were fitted to

experimental semivariograms output from the gamv2 subroutine. The results are

summarised in Table 6.1 below.

Table 6.1 The correlation coefficients (r) resulting from semivariogram model fitting

(omnidirection semivariograms unless otherwise specified, sample size = 24)

Models exponential spherical

grass 0.93 0.95

built 0.92 0.92

wood north-south direction 0.69 0.70

east-west direction 0.72 0.74

shrub 0.89 0.90

water north-south direction 0.66 0.67

east-west direction 0.57 0.58

As indicated in Table 6.1, in general, the spherical model produced a better fit than

the exponential model. Thus, the spherical model was used in this study. Figure 6.6

shows both the experimental semivariograms and fitted spherical model

semivariograms. In Figure 6.6, scatter points represent the experimental
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semivariograms, while solid lines are the fitted spherical model semivariograms:

r(h)=c*(1.5*(h/a)-0.5*(h/a)A3) for h<a; r(h)=c otherwise. The spherical model

parameters are listed for different classes in Table 6.2.
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Figure 6.6 Semivariograms (Y-axis is semi-variance; X-axis is distance, in units of 2.5

metres): (a) grass, (b) built, (c)wood in north-south direction,

(d) wood in east-west direction, (e) shrub, (f) water in north-south direction,

and (g) water in east-west direction.
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Table 6.2 The spherical model semivariogram parameters

(omnidirection semivariograms unless otherwise specified, 1 unit = 2.5 metres)

Classes Parameter a Parameter c

grass 20.52 0.211

built 21.03 0.204

wood north-south direction 22.34 0.155

east-west direction 26.42 0.155

shrub 40.00 0.051

water north-south direction 40.00 0.021

east-west direction 57.70 0.021

It can be seen from Figure 6.6 that "grass" and "built" are best defined on their

semivariogram, and thus have the highest correlation coefficients as indicated in Table

6.1. "Shrub" is also well defined semivariogram, while "wood" has rather dispersed

semivariograms. "Water" is the least well defined by semivariograms, with the lowest

correlation coefficients (0.67 and 0.58). While the results are quite reasonable (since

all the correlation coefficients are significant at a confidence level of 95 %), there

seems to be room for improving the model fitting in order to gain more advantages of

using indicator kriging as opposed to other methods such as using sub-pixel

component proportions.

Although refined model fitting is not the main concern of this thesis, a comparison of

using indicator kriging against using sub-pixel component proportion data to

construct fuzzy surfaces from photogrammetric data will be established in the next

section.

Prior to running a kriging procedure, an evaluation of semivariogram models needs to

be done by a cross-validation procedure. This helps to ensure the reliability of the
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results from a kriging implementation and possibly optimise the implementation. The

kriging procedure okb2d was then run with cell sizes of the output grids equal to the

SPOT HRV and the Landsat TM pixel sizes, that is 10 m and 30 m respectively. The

total numbers of grid cells were 7113 for the SPOT HRV data and 777 for the

Landsat TM data. The kriging outputs were checked to ensure that FMVs sum to 1.0

(100 %) across all the classes for each cell, as described in Section 4.3. The

standardised data were transformed to ASCII format files via a written FORTRAN

program (in Appendix 7), which were further transferred to ARC/INFO GRID data

files in order to make use of the three dimensional display and other surface modelling

and analysing functions. The perspective views of fuzzy surfaces based on

photogrammetric data for each of the five classes are shown in Figure 6.7, with grid

cell size equal to that of the SPOT HRV data (10 m).

As in the case of fuzzy surfaces based on remote sensing data, the fuzzy surfaces as

shown in Figure 6.7 can also be interpreted with respect to their fuzziness, or how

FMVs are partitioned among all the candidate classes. This was done by using

entropy, leading to the histogram shown in Figure 6.8.

As shown in Figure 6.8, the entropy measures turn out to be much smaller than those

seen in Figure 6.4. The mean entropy value is 0.68, which is less than half the mean

observed in Figure 6.4. The low entropy measures can be visually appreciated from

Figure 6.7, where FMVs appear to be rather localised, hence less fuzzy than those

observed in Figure 6.4. The results confirm that it is very sensible indeed to employ

methods for fuzzy classifications of remotely sensed images such as that shown in the

previous section, where an improved algorithm for the supervised fuzzy c-means

clustering was described and tested with more control over the target classes and thus

a reduced degree of fuzziness. Such a strategy helps to make fuzzy classified remotely

sensed data more compatible with fuzzy classified photogrammetric data.
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Figure 6.7 Perspective views of fuzzy surfaces of land cover derived from the

photogrammetric data: (a) grass, (b) built, (c) wood, (d) shrub, and (e) water.

The peaks on diagrams indicate higher certainty, i.e., increasing likelihood of

presence.
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Figure 6.8 Histogram of entropy measures for fuzzy surfaces generated via indicator

kriging

6.3 Analysing fuzzy surfaces

As established in the previous section, fuzzy surfaces have been derived from remote

sensing by using fuzzy classification, and from photogrammetric data by using

indicator kriging. For photogrammetric data, fuzzy surfaces were also derived from

sub-pixel component land cover proportions. In some sense, these fuzzy surfaces

stand as different classification products as opposed to conventional categorical maps

containing a single class at any location. As in the case of comparing and analysing

conventional categorical maps, fuzzy surfaces may also be compared and analysed,

but using different methods. This procedure is developed below.

As shown in the previous section, the fuzziness versus discreteness of underlying

fuzzy surfaces was evaluated by using entropy measures. The higher the entropy

measure, the more "fuzzy" the specific set of fuzzy surfaces, and vice versa.

According to entropy measures, fuzzy surfaces based on remote sensing data were

seen to be highly varied, while those based on photogrammetric data were less varied.
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As discussed in Section 4.4, entropy is a measure of the partition of fuzzy or

probabilistic values among candidate classes. The high entropy measures for fuzzy

surfaces based on remote sensing data imply that pixels are significantly mixed. Thus,

it is difficult to interpret the accuracy of a fuzzy classification based on entropy

measures. This is because pixels with a low or high entropy measure may still be

accurately representing the ground situation.

Cross-entropy, on the other hand, allows the closeness of a fuzzy classification to a

fuzzy reference data set to be measured (Foody 1995a). For the purpose of this study,

suppose fuzzy surfaces generated from photogrammetric data are to be used as fuzzy

reference data for fuzzy classified remote sensing data. As mentioned previously,

fuzzy reference data were derived using two different methods: (1) sub-pixel

component land cover proportions, and (2) indicator kriging. Thus, the cross-entropy

measures were calculated (1) between fuzzy classified remote sensing data and fuzzy

reference data by using sub-pixel component land cover proportions, and (2) between

fuzzy classified remote sensing data and fuzzy reference data derived using indicator

kriging. The results are presented as Figure 6.9 and 6.10, respectively.

As shown in Figure 6.9, when using sub-pixel component proportions as fuzzy

reference data, the means of cross-entropy measures for the SPOT HRV and the

Landsat TM data are 3.67 and 2.49 respectively. Means of cross-entropy measures

are reduced to 2.67 for the SPOT HRV data and 1.89 for the Landsat TM data when

the fuzzy reference data are derived from indicator kriging, as shown in Figure 6.10.
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Figure 6.9 Histograms for cross-entropy measures between fuzzy classified remote

sensing data and fuzzy reference data derived by using sub-pixel component

proportions:

(a) the SPOT HRV data, and

(b) the Landsat TM data.
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Figure 6.10 Histograms for cross-entropy measures between fuzzy classified remote

sensing data and fuzzy reference data derived using indicator kriging:

(a) the SPOT HRV data, and (b) the Landsat TM data.

Clearly, reduced cross-entropy measures for both the SPOT HRV and the Landsat

TM data, as shown in Figure 6.10, suggest that fuzzy reference data derived by using

indicator kriging lead to better closeness with fuzzy classified remote sensing data. In

other words, results confirm that indicator kriging is more suitable as a means to

generate fuzzy reference data from photogrammetric data than simply using sub-pixel

component land cover proportion data as fuzzy reference data. One of the reasons

why using sub-pixel component land cover proportions is less suitable is that the sub-

pixel component proportions data are used on the assumption that the component
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land covers can be accurately represented as mixtures of discrete polygons. This

assumption is unlikely to be true of areas with significant fuzziness.

An additional line of evidence for checking the superiority of using indicator kriging

over simply using sub-pixel component land cover proportions to construct fuzzy

reference data is established below by calculating con-elation coefficients between the

fuzzy classified remote sensing data and the two different fuzzy reference data sets. A

merit of calculating correlation coefficients is that correlation coefficients for

individual classes can be calculated. Thus, a calculation of correlation coefficients may

provide extra insights into the relative suitability of using sub-pixel component

proportion data versus using indicator kriging to generate fuzzy reference data at the

level of individual classes.

The correlation coefficients were calculated for each class using, firstly, fuzzy

classified remote sensing data with fuzzy reference data derived by using sub-pixel

component land cover proportions and, secondly, fuzzy classified remote sensing data

with fuzzy reference data generated from indicator kriging. Results from correlation

analyses are tabulated in Table 6.3, where fuzzy reference data are derived by: (I) sub-

pixel component cover proportions, and (II) indicator kriging.

In terms of results, apart from "grass" for the Landsat TM data, all the correlation

coefficients, as listed in Table 6.3, are significant at a confidence level of 5%. Also, as

shown in Table 6.3, except for "water" in the case of the SPOT HRV data,

consistently higher correlation coefficients were obtained when indicator kriging was

used to derive fuzzy reference data for both the SPOT HRV and the Landsat TM

data, although the magnitudes of gains are not quite the same.
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Table 6.3 Correlation coefficient (r) values between fuzzy classified data and their

fuzzy reference data.

SPOT HRV data Landsat TM data

7113 pixels 777 pixels

Classes I II I II

grass 0.43 0.49 -0.04 0.06

built 0.58 0.70 0.43 0.68

wood 0.52 0.52 0.28 0.48

shrub 0.25 0.30 0.28 0.34

water 0.72 0.68 0.10 0.45

The results reconfirm that, in general, using indicator kriging is more suitable than

using sub-pixel component land cover proportions to derive fuzzy reference data, at

least for similar purposes to those as in this study. In particular, the negative

correlation coefficient obtained with the Landsat TM data when using sub-pixel

component land cover proportions as fuzzy reference data highlights the potentially

meaningless aspects of using this method. The only "abnormal" result for "water" had

its root in the relatively poorly defined semivariogram as shown in Figure 6.6.

6.4 Deriving categorical maps from fuzzy surfaces

As has been seen in Section 6.2, fuzzy surfaces were generated from remote sensing

by a supervised fuzzy c-means clustering, and from photogrammetric data by using

indicator kriging. These fuzzy surfaces are multidimensional and continuous, and so

can be reduced down to simpler, discrete classifications to produce categorical maps

as shown below.

As described in Section 4.4, categorical maps may be produced from fuzzy surfaces

by using two interconnected operations: "maximising" and "slicing". For the
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classification of remote sensing images, several techniques are available, of which

maximum likelihood classification is one of the most widely used. By using a

maximum likelihood classification, pixels are assigned to classes, to which they have

the maximum probability or likelihood of belonging, measured by specific class

membership functions.

When the probabilities of a pixel or grid cell belonging to the set of candidate classes

are known as in the case of fuzzy surface representations, the maximum likelihood

classification becomes simply a maximising operation applied to the complete set of

fuzzy surfaces built per category or class. The output will consist of the pixels or cells

labelled as classes with maximum FMVs, which are accordingly assembled to form a

corresponding map depicting the certainty levels for the named class at the level of

individual pixels. This process is, to some extent, similar to the practice in a

conventional classification of remote sensing images, where a classified data set is

accompanied by a probability data layer, so that end users can place a specific

confidence for each classified pixel.

The processing as outlined above was programmed into AML procedures within

ARC/INFO GRID and ARCPLOT modules. The "hardened" categorical land cover

maps were produced from the fuzzy surfaces generated in Section 6.2 (i.e. those

shown in Figures 6.2, 6.3 and 6.7). Meanwhile, the maximum FMVs or probabilities

constitute the by-products recording the underlying certainty levels for the output

categorical maps. The resulting categorical maps are shown in Figure 6.11 ((a) for the

SPOT HRV data, (b) for the Landsat TM data, and (c) for the photogrammetric

data), where the categorical maps are draped onto the underlying certainty surfaces

depicting the spatially varying certainty levels (FMVs or probabilities) with which a

location belongs to its labelled class.

167



I grass
M built
] wood
| shrub

1 water
] unclassified

pq boundary

Certainty
A.

Figure 6.11 Categorical maps derived from the maximisation operation and draped

onto their underlying certainty surfaces: (a) SPOT HRV data, (b) Landsat TM

data, and (c) photogrammetric data.
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The higher parts on these certainty surfaces indicate better accuracies, with which the

categorical maps are associated, or vice versa. There are two main advantages held by

such a surface-based approach to uncertainties. Firsdy, the categorical maps presented

in this way convey a strong sense of spatial variations of uncertainties inherent to

spatial data. Secondly, spatially varying accuracies are readily available from

consulting the underlying certainty surfaces (shown in Figure 6.11). This is seen to be

lacking in traditional categorical maps, which are produced in the form of discrete

polygons, each assigned a single class, with a spatially invariant level of accuracy

applicable to, at best, individual classes.

Furthermore, based on the categorical maps presented in Figure 6.11, it is possible to

perform slicing to derived another set of categorical maps, as described in Section 4.4.

As an example, the certainty surface as shown in (c) of Figure 6.11 was sliced at a

succession of thresholds: 40%, 55%, 70% and 85%, which led to categorical maps

shown in (a), (b), (c) and (d) of Figure 6.12 below, respectively. The areas labelled as

"unclassified" are those parts of the polygons where the FMVs for the classes with

maximum FMVs (i.e., dominant classes) fall below the specified thresholds, while the

shaded areas are where the FMVs for the classes with maximum FMVs are not less

than the chosen thresholds.

As shown in Figure 6.12, when higher thresholds were applied, less pixels were

classified, but these classified pixels were identified with greater certainty as belonging

to their named classes. The change of spatial pattern observed when increasing or

decreasing thresholds can be visualised in a sequence of categorical maps as those

shown in Figure 6.12, serving to help users to chosen a suitable threshold. In practical

terms, the set of categorical maps shown in Figure 6.12 can be considered as

produced with: (a) relatively poor, (b) moderate, (c) good, and (d) outstanding levels

of accuracy.
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Figure 6.12 Categorical maps derived from the slicing operation based on the map

shown in Figure 6.11 (c) at a succession of thresholds:

(a) 40 %, (b) 55 %, (c) 70 %, and (d) 85 %.
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The unclassified areas shown in Figure 6.12 are where relatively larger uncertainties

exist, because their FMVs of belonging to the labelled classes fall below the

prescribed threshold. Though irregular in shaped, these uncertainty zones can actually

be viewed as some variants of the epsilon error band models, which may further be

generalised to render the usual smooth-looking epsilon error band models. This

confirms that uncertainties are better approached from fields rather than objects. An

epsilon band model, as discussed in Chapter 3, is often used in an object-based model

as a simplified representation of the otherwise complex pattern of uncertainty

occurring in line objects (Pullar and Beard 1989). When the underlying phenomena

are themselves complex, such as land cover and soil types, the derivations of epsilon

band models would be difficult as no "ground truth" exists to be used as reference

(Edwards and Lowell 1996). Now with a field-based method, it is possible to derive

epsilon band models to represent the uncertainties relevant to polygon boundaries

without major difficulties, as shown in Figure 6.12.

In summary, it has been seen so far that a variety of categorical maps might be

produced by using maximising and slicing operators. A maximising operation

generates a categorical map, in which each pixel is assigned a single and dominant

class label, while its underlying certainty surface provides useful information on the

spatially varying levels of accuracies for individual pixels. A slicing operation

produces a categorical map, from which an epsilon band model might further be
derived.

For the types of categorical maps derived from the maximising operation, effective

visualisation of the uncertainties associated with the categorical maps was obtained by

referring the categorical maps to the underlying certainty surface. On the other hand,

for the types of categorical maps derived by the slicing operation, the changing

pattern of the accuracies versus uncertainties was visualised by a sequence of

categorical maps with increasing accuracies in the classified areas, but with widening
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uncertainty zones represented by the unclassified areas. The results confirm that

modelling uncertainties from fields rather than objects is theoretically sound and

practically feasible.

6.5 Evaluating the accuracies of fuzzy classified remote sensing data

As a variety of categorical maps was produced from fuzzy surfaces by using the

maximising and slicing operations, it is possible to consider the ways by which the

accuracies of these different categorical maps may be assessed. Chapter 4 has

described both hard comparisons and soft comprisons that are useful for analysing

fuzzy classified data. Thus, this section will show the comparisons between:

(1) the categorical data derived by using the maximising operation (hard),

(2) the categorical data derived by using the slicing operation (hard), and

(3) the fuzzy classified data (soft).

For the purpose of this thesis, the categorical maps derived by using the maximising

operator, as shown in Figure 6.11, are termed "hardened" versions of fuzzy classified

data. Therefore, a comparison may be made between a hardened fuzzy classified

remote sensing image and a hardened fuzzy reference data set (i.e., fuzzy classified

photogrammetric data). As fuzzy reference data were derived by using: (1) sub-pixel

component land cover proportion data, and (2) indicator kriging, it is possible to carry

out the comparison mentioned above by checking the hardened fuzzy classified SPOT

HRV and Landsat TM data against the two different sets of hardened fuzzy reference

data. Because the hardened reference data used in the former kind of comparisons are,

in fact, the original hard photogrammetric data shown in Figure 5.7, these two kinds

of comparisons provide extra evidence that fuzzy reference data derived from

indicator kriging are the more suitable for assessing the hardened fuzzy classified

remote sensing images. Results are shown in Tables 6.4 and 6.5 for the former kind of

comparisons, and in Tables 6.6 and 6.7 for the latter kind of comparisons.
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Table 6.4 Error matrix of hardened fuzzy classified SPOT HRV data, using the

original hard photogrammetric data as reference data

Reference data

grass built wood shrub water row

total
row

marginal
grass 890 118 36 17 0 1061 0.15

Classified built 1357 1097 165 6 48 2673 0.38

data wood 253 26 631 139 14 1063 0.15

shrub 1160 155 680 294 3 2292 0.32

water 0 0 0 0 24 24 0.00

column
total
column

marginal

3660

0.51

1396

0.20

1512

0.21

456

0.06

89

0.01

7113

Overall agreement = 41%, chance agreement = 20%, Kappa = 26%

Table 6.5 Error matrix of hardened fuzzy classified Landsat TM data, using the

original hard photogrammetric data as reference data

Reference data

grass built wood shrub water row

total
row

marginal
grass 73 14 30 8 1 126 0.16

Classified built 195 87 42 4 0 328 0.42

data wood 117 20 82 29 10 258 0.33

shrub 35 3 10 16 0 64 0.08

water 1 0 0 0 0 1 0.00

column
total
column

marginal

421

0.54

124

0.16

164

0.21

57

0.07

11

0.01

777

Overall agreement = 33%, chance agreement = 23%, Kappa =13%
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Table 6.6 Error matrix of hardened fuzzy classified SPOT HRV data, using the

hardened fuzzy reference data derived from indicator kriging as the reference data

grass

Reference data

built wood shrub water row

total
row

marginal
grass 760 219 58 24 0 1061 0.15

Classified built 663 1721 230 16 43 2673 0.38

data wood 170 62 662 146 23 1063 0.15

shrub 885 224 794 384 5 2292 0.32

water 0 0 0 0 24 24 0.00

column
total
column

marginal

2478

0.35

2226

0.31

1744

0.25

570

0.08

95

0.01

7113

Overall agreement = 50%, chance agreement = 23%, Kappa = 35%

Table 6.7 Error matrix of hardened fuzzy classified Landsat TM data, using the

hardened fuzzy reference data derived from indicator kriging as the reference data

Reference data

grass built wood shrub water row

total
row

marginal
grass 65 25 27 7 2 126 0.16

Classified built 96 195 34 3 0 328 0.42

data wood 85 17 110 36 10 258 0.33

shrub 22 2 21 19 0 64 0.08

water 0 0 0 0 1 1 0.00

column
total
column

marginal

268

0.34

239

0.31

192

0.25

65

0.08

13

0.02

777

Overall agreement = 50%, chance agreement = 18%, Kappa = 39%
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For the SPOT HRV data, as shown in Table 6.4, there are serious confusions between

"grass" and "built", between "grass" and "shrub", and between "wood" and "shrub".

For the Landsat TM data, as shown in Table 6.5, the confusions observed in the

SPOT HRV data are reinforced. Besides, "grass" is seriously confused with "wood"

for the Landsat TM data. Similar confusions were found in Section 5.4.5, where both

the SPOT HRV and the Landsat TM images were classified by using conventional

maximum likelihood classification.

Those confusions observed in Tables 6.4 and 6.5 are greatly reduced when the

hardened fuzzy reference data derived from indicator kriging were used as the

reference data, as shown in Tables 6.6 and 6.7. In this case, consistently better

classification accuracies are obtained for both the SPOT HRV data and the Landsat

TM data when using the original hard photogrammetric data as the reference data.

This is particularly significant for the Landsat TM data, whose Kappa coefficient is

increased two-fold. This is because the Landsat TM data, with a relatively coarse

spatial resolution, will increase the number of mixed pixels, as verified by Figure 6.4,

where the Landsat TM data are seen to be less accurately classified (with a higher

measure of entropy) than the SPOT HRV data. This increased number of mixed pixels

will, in turn, require the assumed reference data to be able to adapt to the significant

fuzziness present. Therefore, it is further confirmed that indicator kriging is more

suitable than using sub-pixel component land cover proportion data, especially in

situations where fuzziness is a feature of not only remotely sensed images but also the

adopted reference data.

As described in Section 6.3, categorical maps might also be derived from the slicing

operation. This process works by selecting, on a quantitative basis, "pure" pixels

according to a chosen threshold. As only those pixels considered pure are classified,

increased agreements should be obtained by comparing pure pixels with their

reference data.
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Towards this end, fuzzy classified remote sensing images and fuzzy reference data

derived by using indicator kriging are sliced, using the procedure described previously

in Section 6.3. Specifically, the SPOT HRV and the Landsat TM data are sliced at

thresholds of 54% and 41%, respectively, while their corresponding fuzzy reference

data are sliced at thresholds of 77% and 72%. The "sliced" data are then used to

construct error matrices, as shown as Tables 6.8 and 6.9 below.

As expected, in general, misclassifications observed in Tables 6.6 and 6.7 are further

reduced, as shown in Tables 6.8 and 6.9. Overall classification accuracies and Kappa

coefficients of agreement are increased by nearly half for both the SPOT HRV data

and the Landsat TM data. In particular, only confusions between "grass" and "shrub",

and between "wood" and "shrub" remain based on comparisons between sliced fuzzy

classified remote sensing images and sliced fuzzy reference data.

Table 6.8 Error matrix of sliced fuzzy classified SPOT HRV data, using sliced fuzzy

reference data as the reference data

Reference data

grass built wood shrub water row

total
row

marginal
grass 222 13 3 0 0 238 0.13

Classified built 129 886 8 0 0 1023 0.56

data wood 42 0 173 19 0 234 0.13

shrub 107 7 136 81 0 331 0.18

water 0 0 0 0 11 11 0.01

column
total
column

marginal

500

0.27

906

0.49

320

0.17

100

0.05

11

0.01

1837

Overall agreement = 75%, chance agreement = 34%, Kappa = 62%
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Table 6.9 Error matrix of sliced fuzzy classified Landsat TM data, using sliced fuzzy
reference data as the reference data

Reference data

grass built wood shrub water row

total
row

marginal
grass 20 9 5 3 1 38 0.18

Classified built 9 89 1 0 0 99 0.46

data wood 7 0 43 12 1 63 0.30

shrub 3 0 7 3 0 13 0.06

water 0 0 0 0 0 0 0.00

column
total
column

marginal

39

0.18

98

0.46

56

0.26

18

0.08

2

0.01

213

Overall agreement = 73%, chance agreement = 33%, Kappa = 59%

Clearly, the classified accuracies will be increased further by setting higher thresholds

for slicing. This is not going to be elaborated in this section. Attention is given to the

"soft" comparison described in Section 4.4, in which not only the most likely classes

but also the second likely classes are compared between a fuzzy classified remote

sensing image and a fuzzy reference data set.

By a soft comparison, a pixel is considered to be correctly classified if the most likely

class or the second most likely class agrees with the most likely class or the second

most likely class labelled on its reference data. Soft comparisons accommodate the

fuzziness by taking account of both the most likely and the second most likely classes.

A soft comparison is deemed to be useful in situations where pixels are highly mixed.

Therefore, both the most likely classes and second most likely classes are important.

Results are next presented of the soft comparisons between fuzzy classified remote

sensing images and fuzzy reference data derived by using indicator kriging, applying

the condition described in Section 4.4, as shown in Tables 6.10 and 6.11.
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Table 6.10 Error matrix based on the soft comparison between fuzzy classified SPOT

HRV data and fuzzy reference data derived from indicator kriging

Reference data

grass built wood shrub water row

total
row

marginal
grass 1635 10 14 0 0 1659 0.23

Classified built 53 2577 40 1 14 2685 0.38

data wood 66 21 1652 2 6 1747 0.24

shrub 162 58 64 702 0 986 0.14

water 0 0 0 0 36 36 0.01

column 1916 2666 1770 705 56 7113
total
column

marginal
0.27 0.37 0.25 0.10 0.01

Overall agreement = 93%, chance agreement = 28%, Kappa = 90%

Table 6.11 Error matrix based on the soft comparison between fuzzy classified

Landsat TM data and fuzzy reference data derived from indicator kriging

grass

Reference data

built wood shrub water row

total
row

marginal
grass 131 3 1 2 0 137 0.18

Classified built 0 311 1 1 0 313 0.40

data wood 23 6 232 6 3 270 0.35

shrub 5 2 0 48 0 55 0.07

water 0 0 0 0 2 2 0.00

column
total
column

marginal

159

0.20

322

0.41

234

0.30

57

0.07 o o

111

Overall agreement = 93%, chance agreement = 31%, Kappa = 90%
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Significant increases in overall classification accuracies and kappa coefficients of

agreement are observed in Tables 6.10 and 6.11. Classes are largely correctly

classified. The great gains in the agreements explain, in another perspective, that a

considerable amount of "misclassification" occurs due to the fuzziness and complexity

existing in the real world. Thus, the second most likely classes count so much as not

to be ignored, especially in situations where pixels are heavily mixed and fuzziness is

intrinsic to both the remotely sensed data and the reference data, which is traditionally

assumed to be absolutely discrete.

In summary, when fuzzy classified data are hardened, it is possible to assess their

classification accuracies by using standard error matrix methods. While hardened

fuzzy classified data are assessed in a way similar to that used for conventional

categorical maps, fuzzy classified data can be compared with fuzzy reference data by

either referring to those pixels considered pure in terms of fuzzy and probabilistic

measures or applying soft methods, in which both the most likely classes and the

second most likely classes are checked.

In order to aid the understanding of the results presented so far, a summary is given of

the overall classification accuracies and the Kappa coefficients of agreement relevant

to the different methods of assessing classification accuracies, as shown in Table 6.12.

Increasing classification accuracies are obtained from using hardened fuzzy classified

data and fuzzy reference data, through sliced fuzzy classified data and fuzzy reference

data, to the soft comparisons of fuzzy classified data with fuzzy reference data. For

the hardened fuzzy classified data, the hardened fuzzy reference data derived from

indicator kriging were found more suitable to be used as the reference data than using

hard photogrammetric data as the reference data.
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Table 6.12 Summary results of the classification accuracies for the categorical maps

derived in Section 6.4 using different methods of comparisons

Types of comparisons Numbers Overall Kappa

of pixels classification

accuracies

coefficients

1. hardened fuzzy classified remote sensing

data

a. using hard photogrammetric data as

the reference data

• SPOT HRV data 7113 41% 26%

• Landsat TM data 777 33% 13%

b. using hardened fuzzy reference data

derived from indicator kriging as the

reference data

• SPOT HRV data 7113 50% 35%

• Landsat TM data 777 50% 39%

2. sliced fuzzy classified remote sensing data

using sliced fuzzy reference data derived

from indicator kriging as the reference data

• SPOT HRV data 1837 75% 62%

• Landsat TM data 213 73% 59%

3. soft comparisons between fuzzy classified

remote sensing data and fuzzy reference data

derived from indicator kriging

• SPOT HRV data 7113 93% 90%

• Landsat TM data 777 93% 90%
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This fact confirms that a substantial amount of misclassification is due to much

fuzziness (hence many mixed pixels) inherent in both the remotely sensed data and the

reference data, which used to be assumed to have absolute accuracy. Therefore,

methods which can adapt to this fuzziness will achieve better agreements between

remotely sensed data and the reference data. In other words, fuzziness maintained by

the fuzzy surface approach promoted in this thesis can be used to advantage in

situations where the underlying phenomenon is essentially fuzzy.

6.6 Discussion

This chapter began with the generation of fuzzy surfaces from remotely sensed images

by using an improved version of the fuzzy c-means clustering algorithm in a

supervised mode, from photogrammetric data by using indicator kriging and, for

comparisons, by using sub-pixel component land cover proportion data. While fuzzy

surfaces were obtained from remotely sensed images by using a relatively

straightforward program, fuzzy surfaces were derived from photogrammetric data via

a somehow painstaking process. In this latter process, indicator kriging was eventually

run but only after visually identifying a set of classified samples, transforming data

formats and calculating semivariograms and fitting models. This very time-consuming

and computing-intensive process was made more complicated by the need for off-line

work from one system to another.

In addition to the relative degrees of difficulties, fuzzy surfaces derived from remotely

sensed images were seen to be highly varied, while those derived from

photogrammetric data were rather localised and less "fuzzy". This difference in the

degrees of fuzziness is probably because remotely sensed images existing in the form

of multispectral reflectance data are intrinsically varied and complex, implying that

large number of pixels will be mixed, in particularly for remotely sensed images with
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coarse spatial resolutions, such as Landsat TM images. On the contrary, for

photogrammetric data, fuzzy surfaces are derived by firstly identifying a set of pure

samples, then interpolating the probabilities of finding a certain class at any location

by using a suitable semivariogram model. It is important to note that these pure

samples are, by nature, highly subjective and generalised, meaning that the complexity

and fuzziness in the underlying phenomenon are hardly captured in full detail by the

finite number of pure samples.

As described previously in this chapter, for the purpose of further discussion in the

context of combined use of different types of fuzzy surfaces, the fuzzy surfaces

derived from remotely sensed images were referred to as fuzzy classified data, while

the fuzzy surfaces derived from photogrammetric data are termed fuzzy reference

data. It was then seen that fuzzy reference data derived from indicator kriging are

closer to the fuzzy classified data than those based on sub-pixel component land cover

proportion data, because lower cross-entropy measures were obtained from the

former than the latter. Extra evidence was obtained by calculating correlation

coefficients, reinforcing the fact that indicator kriging is more suitable for generating

fuzzy reference data than simply taking sub-pixel component land cover proportions

as surrogate fuzzy reference data.

Furthermore, a variety of categorical maps was derived from fuzzy surfaces by using

the maximising and slicing operators. The way that these categorical maps were

visualised was very convincing and conveyed a strong impression of the spatial

variabilities in the uncertainties of mapped data. Moreover, epsilon band models

would be easily derived from the unclassified areas representing uncertainty zones of

different patterns and widths. This fact confirms that uncertainties are better modelled

from continuous fields than from discrete objects.
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The effects of maintaining fuzziness in the mapped data on the accuracy assessment

were then considered by using error matrices, which were derived from different

methods of comparisons. Once again, it was confirmed that increased agreements can

be obtained if the fuzziness is accommodated not only in the remotely sensed data, but

also in the assumed reference data, if pure pixels are discriminated from mixed pixels

on a quantitative basis, and if the full spectrum from the most likely classes to the least

likely classes is explored.

In overview, the surface-based approach presented in this chapter has shown, firstly,

that fuzzy surfaces, as opposed to conventional categorical maps consisting of

discrete objects, can be derived from common types of data involved in land cover

mapping without major difficulties. The derivation of fuzzy surfaces from remote

sensing data is, in essence, a process of fuzzy classification by allowing partial and

multiple memberships at each pixel, while the derivation of fuzzy surfaces from

photogrammetric data is accomplished by sampling pure points representative of

corresponding classes and then inferring fuzzy membership values at unsampled points

through spatial interpolation.

Secondly, it has been shown that there is a variety of methods for analysing fuzzy

surfaces and these methods are effective and flexible. This is because conventional

categorical maps can be easily produced from the fuzzy surfaces, and the categorical

maps produced also provide means to communicate uncertainties concerned in an

informative way. One of the most impressive functions of fuzzy surfaces is that

epsilon error band models can be generated from fuzzy surfaces, which would

otherwise be difficult to map at the level of individual lines. Moreover, fuzziness

retained by fuzzy surfaces can be usefully explored. This has been demonstrated

through accommodating for fuzziness in processes such as selecting pure pixels and

performing soft comparisons.
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Comparing the object-based approach presented in Chapter 5 with the field-based

approach presented in this chapter confirms that objects are not able to capture the

fuzziness intrinsic to land cover mapping, and hence are not adequate by themselves

for explicitly representing the spatially-varying nature of uncertainties, while fields

permit an integral mechanism to maintain spatial variations and heterogeneities during

spatial data acquisition, which are central to the construction and utilisation of fuzzy

surfaces. In other words, the empirical study presented in Chapters 5 and 6 has

established that land cover, as the phenomenon of specific interests to this thesis, is

better mapped from fields than from objects.
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Chapter 7

Conclusions

As a concluding chapter, this chapter gives a concise summary of the work

accomplished in earlier chapters. Such a summary is followed by an outlook for

further work along the direction established in this thesis.

7.1 Handling uncertainties in spatial databases

This thesis has pursued the issue of uncertainties by following a systematic treatment

of uncertainties in spatial databases. It was firstly discussed that uncertainties arise in

GISs due to compounded effects of geographical abstraction, spatial data acquisition

and geo-processing. Secondly, it was shown that uncertainties might be approached

either as fields or as objects, the two fundamentally distinctive perspectives of

geographical abstraction. However, the issue of uncertainties, in particularly those

uncertainties involved in land cover mapping, is better addressed from fields rather

than from objects. Thirdly, in pragmatic terms, it was described that uncertainties in

categorical land cover data are best represented as sets of fuzzy surfaces. Under such

a strategy, spatial variabilities and heterogeneities are maintained and may be usefully

explored. Finally, results from an empirical study confirmed that field-based methods

are better suited for effective handling of uncertainties in a variety of digital land

cover data than their object-based counterparts. These points are reiterated below.

As detailed in Chapter 2, there are two fundamentally distinctive perspectives of

spatial data modelling: discrete objects versus continuous fields, depending on

whether the real world is viewed as populated by a collection of points, lines and

areas or conceived as a set of single-valued functions defined everywhere. While

object-based models are particularly effective for representing well-defined spatial

185



entities, fuzzy phenomena are better represented by field-based models which maintain

the spatial variabilities and heterogeneities deemed important in geographical studies.

The choice of spatial data models depends on the nature of the phenomenon under

study, and is often related to the specific methods of data acquisition and database

implementations. Such a choice will affect the extent to which uncertainties may be

handled. Clearly, spatial data modelling is the most central issue in conducting

research on uncertainties in spatial databases.

Land cover mapping typically uses land surveying, photogrammetric and remote

sensing techniques as primary data acquisition methods, and uses map digitising as its

main secondary data acquisition method. Errors have been found to occur in each of

these methods: in land surveying, errors in coordinate positions and heights occur

because of instrument design or miscalibration or in computational algorithm. Such

errors may be systematic or random, but are generally small in amount. In

photogrammetry, errors are associated with inadequate stereo-orientation, inadequate

ground control or poor operator practice in line following or heighting. Errors in

remote sensing can occur from incomplete radiometric and geometric correction,

while the process of band selection and classification can produce results of greater or

lesser completeness. Errors in map digitising result from the original map scale and

hence degree of generalisation of the map detail, and from poor operator practice.

Uncertainties also occur during spatial data acquisition due to the complex interaction

of human and machine factors. Moreover, uncertainties inherent in diverse data layers

will be propagated in geo-processing, such as in a map overlay. It is clear from the

account above that research on GIS uncertainties must start from the fundamental

issue of how the real world is perceived and measured in the first place, because this

starting point underlies any systematic approach to the handling of GIS uncertainties.

In data acquisition methods, the attributes may be considered from the perspective of

objects or of fields, and similarly uncertainties may be approached from the same two
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perspectives, as has been seen comparatively in Chapter 3. In the object domain,

objects are described by positions and attributes. Thus, there is a tradition in object-

based models to address positional and attribute uncertainties separately, which may

be incorporated in an extended geo-relational spatial database. Assuming that ground

truth exists for discrete objects, it is possible to test the positional and attribute

accuracies of objects by means of check surveys.

In the field domain, on the other hand, there is only one kind of uncertainty: the

deviation of the value of a variable from its true value or the value assumed to be true.

It is possible to use probability theory to describe uncertainties in fields, so that

appropriate confidence levels can be placed for values of variables to be within certain

intervals. It is, however, meaningless to talk about positional accuracies, unless

discrete objects are referred to. This is because the objects employed to represent

fields do not generally exist in the real world, but are results of the process of

geographical abstraction. Also relevant is the fact that it is impossible to use the

method of "testing against ground truth" for assessing the accuracies of fields, except

for the case of the real, visible and stable topographical variables such as elevation. As

the focus of this thesis, categorical variables such as land cover have, in many

situations, to rely on fuzzy concepts and methods for proper representation and

interpretation. It is thus necessary to use fuzzy surfaces to represent explicitly the

uncertainties in categorical fields via the mechanism of partial and multiple

memberships at any location.

While Chapter 3 has provided an outline for representing uncertainties in categorical

fields by means of fuzzy surface, Chapter 4 has considered the possible ways by which

two types of fuzzy surface are derived, from digital image processing (typically using

remotely sensed data) and from visual interpretation of photogrammetric data. While

there exist both supervised and unsupervised methods for fuzzy classifications based

on remote sensing data, interpolating fuzzy surfaces from photogrammetric data uses
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different types of functions, especially functions relating fuzzy membership values

(FMVs) with distances, or geostatistical approaches. It has been argued that fuzzy c-

means clustering and indicator kriging are the most suitable for deriving fuzzy

surfaces from remote sensing data and photogrammetric data, respectively. A suite of

methods for the analysis of fuzzy surfaces has been described, which serves to

demonstrate how fuzzy surfaces, in contrast to traditional categorical maps, may be

assessed and compared, and how the latter may be derived from the former. In a

sense, Chapter 4 has confirmed that a sensible way for deriving measures of

uncertainty lies in the data acquisition process itself, and uncertainties in fields are

better considered as inherent components of the underlying phenomena, thus lending

themselves to efficient exploration.

Chapters 5 and 6 have presented a case study in which both object-based and field-

based approaches were implemented and compared in an urban-orientated spatial

database where different types of digital land cover data with different formats and

accuracies were combined. In Chapter 5, a co-registered hierarchy of data layers was

collected via field surveying, photogrammetry (aerial photographs at 1:5,000 and

1:24,000 scales) and remote sensing (SPOT HRV and Landsat TM images) with a

corresponding hierarchy of accuracies, so that each of the data layers has an

independent data layer of higher accuracy to check against. It was then seen that

object-based methods do not provide spatially varying information on the

uncertainties in the underlying data and are thus inappropriate to model the

complexity of uncertainties involved in digital land cover mapping, in particular when

data with different levels of uncertainties are combined.

In order to overcome some of the shortcomings of object-based models for the

handling of uncertainties, Chapter 6 has presented empirical results from using the

surface-based approach. Fuzzy surfaces were derived from remote sensing images by

using the fuzzy c-means clustering, and from photogrammetric data by using, firstly,
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proportions of component land cover types in individual grid cells and, secondly,

indicator kriging. Categorical maps were generated from fuzzy surfaces by using the

"maximising" and "slicing" operations. The spatial variabilities of uncertainties in the

underlying data were visualised by, firstly, draping the classified data onto the spatially

varying surfaces of certainties, with which each location is correctly labelled, and,

secondly, producing a series of categorical maps with increasing thresholds, above

which each location is classified, so that locations classified have increasing accuracies

while locations unclassified might be generalised to form suitable epsilon band models.

Comparisons were made by using hardened fuzzy classified data and sliced fuzzy

classified data, in order to assess the different levels of accuracies obtainable when

using fuzzy classified data. These comparisons were followed by so-called "soft"

comparisons, in which both the most likely and the second most likely classes were

scrutinised.

It has been found that fuzzy surfaces based on remote sensing images are more varied

than those based on photogrammetric data, as explained by the measures of entropy.

For the latter types of fuzzy surfaces, indicator kriging has been found to be more

suitable as a constructor of fuzzy surfaces than resolving proportions of component

land cover types in individual grid cells, because closer associations between fuzzy

classified remote sensing data and photogrammetric data were obtained from using

the former technique, indicator kriging. It was then found that a variety of categorical

maps can be derived from fuzzy surfaces produced in a straightforward manner. The

categorical maps presented have greatly enhanced the visualisation of uncertainties

inherent in common types of digital land cover data. Moreover, the categorical maps

produced by using the slicing operation provided basic and valuable information, from

which an object-based presentation of uncertainties in categorical maps, i.e., epsilon

band models, could be easily derived. Comparisons of fuzzy classified data confirm

that fuzzy methods are superior to conventional hard methods, especially in situations
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where fuzziness is intrinsic to both remote sensing images and photogrammetric data,

the supposed reference data.

At this stage, it is useful to restate the main points covered in earlier chapters and

reviewed previously in this section. A summary is shown in Table 7.1, conforming to

the work presented in this thesis in following the fundamental distinction between

discrete objects and continuous fields. Table 7.1 may be seen as an update and

extension of Table 1.1 where past work on GIS uncertainties was briefly documented.

Table 7.1 Object-based versus field-based approaches to GIS uncertainties

Object-based Field-based

Suitability for phenomena better
viewed as well-defined
entities having positions and
attributes, such as roads and
land parcels

for phenomena, mainly fuzzy,
better conceived as a set of single-
valued functions defined

everywhere, such as land cover
and soil type

Emphasis discretisation, so highly
abstract

spatial variability and
heterogeneity, so very close to the
reality

Description definable and separable
positional and attribute
uncertainties

only in the values of variables
concerned such as land cover

types, both probabilistic and fuzzy
measures are useful

Assessment through independent sources
of higher accuracies: a
hierarchy of digital land
cover data with a

corresponding hierarchy of
accuracies, experimental in
nature

as an integral component of data
acquisition: classification is fuzzy
but objective, visual interpretation
is assumed hard but implies
fuzziness

Representation extended geo-relational
databases: attached to

groups of objects and
attributes

surfaces, in the case of categorical
variables, using fuzzy surfaces

Analysis complex effective and efficient
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As shown in Table 7.1, while both object-based and field-based approaches are useful

in their respective contexts, the latter is seen to be better than the former, in particular

in the case of land cover mapping. More importantly, field-based approaches are

worth further investigation because analysis via continuous fields is seen to be more

effective and efficient than that via discrete objects, which, in turn, enhances the

opportunity for field-based approaches to be more adaptable to modelling

uncertainties than object-based approaches, as developed in Section 7.2.

Fuzzy concepts and methods, as the main foundation of this thesis, were synthesised

and incorporated as one of the few novel uses in the context of urban and suburban

land cover mapping, where data of varying accuracies are frequently merged. The

claim for novelty is that spatial data involved in such an environment as urban and

suburban land cover mapping he in a position somewhere between discrete objects

and continuous fields. Results have verified that fuzzy surface-based methods are

useful to represent and handle, in particular, the uncertainties present in common

types of digital land cover data in urban and suburban areas. By using fuzzy surface-

based methods, complex spatial variations of spatial data and their uncertainties are

visualised, interpreted and analysed on a quantitative basis. Such a strategy holds

considerable potentials for routine GIS applications. It has then been argued that the

fuzzy surface-based approach presented in this thesis provides a good starting point

for comprehensive research into the spatial variability of diverse spatial data and their

uncertainties.

In addition to the novel aspects mentioned above, there are other characteristics that

make this thesis a valuable asset to the continuing and growing debate on GIS

uncertainty issues. Firstly, fuzzy and probabilistic concepts have been clarified with

special reference to common types of digital land cover data involved in urban and

suburban areas. This clarification helps to organize the arguments presented in later

chapters on the case study and may be used to guide further work on GIS
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uncertainties. Secondly, an improvement has been made to the fuzzy omeans

clustering algorithm, which uses per-class statistics, as opposed to the global statistics

used in conventional algorithms, to strengthen class statistics in the resulting fuzzy

classified data (thus reducing their degree of fuzziness) and make fuzzy classified

remote sensing data more compatible with fuzzy classified photogrammetric data.

Thirdly, geostatistics has been successfully applied in the construction of fuzzy

surfaces from photogrammetric land cover data, which, as a collection of discrete

polygons, are traditionally assumed to be of absolute accuracy, both positional and

attribute. This may lead to improved recognition of photogrammetry as the means of

acquiring spatial data for relevant applications, and thus may greatly help to expand its

scope as a traditional discipline. GIS communities will benefit more from aerial

photography and photogrammetric techniques if they share the same insights and

understanding.

In overview, the fuzzy surface-based approach pursued in this thesis reinforces the

value of a "fuzzy" view in the handling of uncertainties. Such a fuzzy view will help to

enhance human perception about the nature of the spatial data and the underlying

geographical phenomena. It is further considered that the research presented in this

thesis stands as an interesting and viable topic for the future. This is especially

important when it is recognised that natural links exist between fuzzy surfaces and

geostatistics, as will be elaborated in the next section.

7. 2 Prospects for the surface-based approach to uncertainties in GISs

As summarised in the previous section, the fuzzy surface-based approach is more

suitable for representing and handling uncertainties in spatial data than the object-

based alternative. This is especially true in the context of urban and suburban land

cover mapping where real geographical phenomena cannot be represented perfectly

by either discrete objects associated with exactly valued attributes or continuous
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fields. Land cover in such areas, as a specific phenomenon, displays much complexity,

which must be properly mapped. Fuzzy surfaces provide a mechanism suitable for

depicting such complexity.

It has to be realised that using fuzzy surfaces to represent spatial data, irrespective of

their underlying data formats, may need expanded storage and involve complicated

computational implementations. This should be well justified by the increasing need

for information on spatial data quality and decreasing costs of hardware and software

overheads. Nevertheless, it is highly desirable to incorporate error-handling functions

into widely used GIS packages, so that more users can easily handle the spatial data

and their uncertainties in a straightforward manner.

The question arises, however, as to how uncertainties are predicted for data products

derived from certain GIS operations such as map overlay, when the fuzzy surfaces

recording spatially varying uncertainties are generated by using methods similar to

those presented in earlier chapters of this thesis. It may not be possible to predict the

uncertainties in overlaid maps straightforwardly, even if all individual maps contain

information on uncertainty at each location. This is because the uncertainty obtainable

in an overlaid map relies on both the uncertainties existing in individual map layers

and the spatial correlation of different uncertainties, as described in Chapter 3. The

spatial correlation between uncertainties in different map layers needs to be quantified

in order to produce an uncertainty map for an overlaid map. Similar problems exist in

the outputs of derivative data products. For example, slope data are often calculated

from DEMs. One may wish to find out the uncertainty in slope data. Suppose

uncertainty for elevation data is available. The uncertainty in slope data will depend

on the uncertainty in elevation data, and the spatial correlation of the uncertainty in

neighbouring points, which is not available from the uncertainty of elevation. In other

words, uncertainty in elevation alone is not sufficient to estimate the uncertainty in

slope data, unless the amount of spatial correlation in uncertainty is known
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(Goodchild 1994, pers. comm.).

As developed in earlier chapters, geostatistical approaches are designed to work on

spatially correlated and inter-correlated random variables representing many

geographical phenomena. They use semivariograms to quantify the amount of spatial

dependence present, which is deemed crucial to the studies on error propagation. It

was seen previously in this thesis that kriging, as a branch of the geostatistical

approach, has been developed to deal with categorical variables as well as continuous

variables. For continuous variables, kriging is preferably used as a special kind of

spatial interpolation method, through its capability of accounting for spatial

dependence intrinsic to many mapped phenomena. For categorical variables, indicator

kriging may be used. Indicator kriging estimates the conditional (posterior) probability

distribution without making assumptions about the form of the prior distribution

functions. This feature makes geostatistics particularly attractive for its application in

deriving fuzzy maps directly from a set of classified samples, as shown in Chapters 4

and 6.

There is another branch of geostatistical approaches: stochastic simulation. Stochastic

simulation is the process of building alternative, equally probable, high resolution

models of the spatial distribution of a variable in a field. The simulation is said to be

conditional if the resulting realisations honour the hard data values at their locations.

While most interpolation methods based on geostatistics seek to provide a best local

estimated value for each unsampled point without specific regard to the resulting

spatial statistics of the estimates, a stochastic simulation is more concerned with

retaining spatial variability than spatial smoothing. In a recent paper, Journel (1996)

predicted that stochastic simulation with its underlying principle of spatial dependence

will play an important role for research on GIS uncertainties and the spatial data

themselves.
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There are two related objectives for stochastic simulation. The first is to create

realisations that honour, subject to statistical fluctuations, the histogram,

semivariogram and the conditioning data. These realisations avoid the smoothing

effect of kriging if used as estimated maps. The second objective is to model

uncertainty through multiple realisations, which would otherwise be difficult to derive

for GIS operations incorporating several map layers. This is of particular value to

those seeking to understand how uncertainties are propagated during geo-processing,

thus allowing for their prediction. A sequential Gaussian method can be used to

simulate additional realisations to reproduce the spatial variability, which is useful in

determining the spatial uncertainties of maps, such as those produced by intersection

of map layers of interest. In terms of stochastic simulation, of particular interest to

research in GIS uncertainties is error simulation method based on geostatistics.

It becomes apparent that geostatistics, in particular stochastic simulation, offers

theoretically sound and practically effective functions to research on modelling

uncertainties in GISs. When spatial data are represented as fuzzy surfaces consisting

of fuzzy or probabilistic measures, the links between surface data and geostatistics

appear straightforward, and thus geostatistics for modelling uncertainties in overlaid

fuzzy maps becomes a natural choice.

GISs have been developed to facilitate the complex spatial decisions that occur in the

environment of spatial databases. GISs have also increased the need for better and

more comprehensive error-handling functionality in the computerised spatial data

processing environment, because the reliability of decision makings based on GISs

becomes extremely important and complicated when the amount of spatial data is

growing rapidly and steadily, and when uncertainties are propagated pervasively.

Therefore, it is anticipated that geostatistics will have an increasingly important role to

play in fostering new generations of GISs that are equipped with functionalities for

handling uncertainties.
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Appendix 1. The list of ground control points by land surveying

ID X Y Z Type
(National Grid coordinates) (above sea level O.D.)

1 63.03 Z

2 67.96 Z

3 69.02 z

4 70.11 z

5 81.95 z

6 82.03 z

7 78.50 z

8 72.70 z

9 326774.66 670954.20 73.52 XYZ

10 64.27 Z

11 60.90 Z

12 326650.02 671369.59 59.27 XYZ

13 65.65 Z

14 57.71 Z

15 57.76 Z

16 58.87 Z

17 61.58 z

18 62.79 z

19 72.81 z

20 77.39 z

21 70.70 z

22 69.67 z

23 75.55 z

24 76.73 z

25 69.78 z

26 67.30 z

27 75.35 z

28 78.17 z

29 87.19 z

30 106.48 z

31 96.58 z

32 88.40 z

33 82.15 z

34 75.77 z

35 80.30 z

36 79.99 z

37 324820.02 671308.53 81.92 XYZ

38 98.28 z

39 94.45 z

40 68.15 z

/cont.
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ID X Y Z Type
(National Grid coordinates) (above sea level O.D.)

41 58.19 Z
42 57.53 Z
43 58.95 z
44 73.06 z
45 70.31 z
46 327359.87 669707.36 94.81 XYZ
47 91.64 Z
48 98.33 Z
49 105.77 Z
50 106.95 Z
51 107.91 Z
52 326449.05 669576.67 121.73 XYZ
53 115.61 Z
54 127.10 Z
55 127.35 Z
56 325280.12 670053.00 129.69 XYZ
57 136.54 Z
58 135.47 Z
59 326911.42 670444.41 XY
60 325906.33 671107.08 XY
61 327321.52 671113.93 XY
62 327356.87 669694.63 XY
63 326541.28 669555.84 XY
64 326031.50 669860.13 XY
65 327249.78 671084.66 XY
66 326413.63 669604.50 XY
67 326019.57 669849.50 XY



Appendix 2. The list of densified control points by photogrammetric
block adjustment

ID X (m) Y(m) Z (m)
(National Grid coordinates) (above sea level O.D.)

Model 1.
101 324795.16 670343.50 104.85
109 324981.72 670358.19 105.66
30 325019.53 670417.76 106.48
105 325355.50 670485.91 104.40
27 325275.99 670975.11 75.35
28 325098.76 670923.05 78.17
29 325135.50 670774.06 87.19
32 324870.17 670724.18 88.40
31 324848.84 670605.78 96.58
33 324858.08 670840.87 82.15
34 324865.24 671015.56 75.77
36 324993.58 671253.66 79.99
37 324820.02 671308.53 81.92
108 325164.05 671349.56 79.92
91 325395.95 671121.36 77.47
35 324838.91 671226.84 80.30
24 325444.66 671261.37 76.73

Model 2.
23 325527.07 671269.49 75.55
171 325512.65 670590.13 148.37
69 325439.30 670643.93 164.76
110 325809.88 670584.44 130.45
120 325804.71 670917.95 90.02
26 325638.35 670988.98 67.30
25 325444.86 670984.11 69.78
21 325837.67 671298.82 70.70
114 325767.37 671413.69 73.69
132 326266.91 671350.27 61.62

Model 3.
2 326243.44 671136.03 67.96
166 325876.35 670531.88 121.86
111 325848.39 670397.00 119.31
61 325906.34 671107.080 67.92
22 325883.19 671182.97 69.67
38 326071.70 670771.54 98.28
39 325972.18 670843.01 94.45
5 326291.46 670851.02 81.95

/cont.
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ID X (m) Y(m) Z (m)
(National Grid coordinates) (above sea level O.D.)

123
4

3
1

326198.39
326036.49
326028.76
326419.40

670600.05
671001.92
671033.89
671250.43

102.24
70.11
69.02
63.03

Model 4.
11 326661.65 671303.20 60.90

144 326408.23 670479.22 82.55
143 326674.09 670409.04 74.39
12 326650.02 671369.59 59.27
6 326474.45 670803.82 82.03
7 326665.54 670787.33 78.50
10 326706.19 671146.14 64.27
66 327249.78 671084.66 55.83

Model 5.
42 327004.49 671345.35 57.53
60 326911.42 670444.41 115.21
13 326994.34 670530.46 65.65
14 327129.65 670317.53 57.71

152 327247.86 670566.99 52.20
43 327180.74 671024.70 58.95
41 327116.63 671141.28 58.19
40 326904.04 671023.62 68.15
9 326774.66 670954.20 73.52
8 326789.47 670879.27 72.70

78 327089.07 671391.57 56.49

Model 6.
182 325138.32 669754.34 160.45
190 325004.75 670095.59 124.70
56 325280.13 670053.00 129.69

57 325495.93 669981.07 136.54
174 325615.57 669686.52 145.52
169 326016.39 669609.44 148.36

Model 7.
170 325655.44 670281.73 71.96
58 325747.96 669923.78 135.47
172 325874.41 669634.35 144.56
168 325901.73 670548.26 120.25

167 325945.11 670278.06 109.17
81 326089.28 670192.22 63.58

/cont.
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ID X (m) Y(m) Z (m)
(National Grid coordinates) (above sea level O.D.)

54 326089.37
55 326018.39
68 326019.57
18 326186.21

669841.99 127.10
669845.83 127.35
669849.50 128.22
670168.89 62.79

Model 8.
17 326272.34 670163.15 61.58
52 326449.05 669576.67 121.73
16 326565.88 670178.67 58.87
67 326413.63 669604.50 125.25
50 326979.30 669628.81 106.95

Model 9.
15 326809.32 670194.17 57.76

159 326981.06 669928.17 80.23
53 326690.38 669499.28 115.61
51 326949.28 669566.78 107.91
20 327122.26 669934.54 77.39

Model 10.
45 327283.72 670080.50 70.31
154 327533.56 670444.61 56.36
49 327074.03 669536.03 105.77
48 327092.18 669704.49 98.33
47 327213.68 669763.18 91.64
46 327359.87 669707.36 94.81
44 327336.93 669970.18 73.06
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Appendix 3. The class statistics used in the supervised fuzzy
classification described in section 6.2.1

1. SPOT HRV image

Classes band 1 band 2 band 3

mean vector 154.19 178.64 72.12

variance and band 1 109.88 71.68 105.34

grass-I covariance band 2 71.68 53.32 66.50

matrix band 3 105.34 66.50 154.06

mean vector 145.82 166.86 141.54

variance and band 1 18.39 11.12 -1.63

grass-II covariance band 2 11.12 16.34 3.06

matrix band 3 -1.63 3.06 30.92

mean vector 188.98 196.51 227.89

variance and band 1 1424.34 1364.28 581.80

built covariance band 2 1364.28 1398.07 651.28

matrix band 3 581.80 651.28 457.57

mean vector 106.63 113.58 69.27

variance and band 1 95.10 73.25 -101.26

wood covariance band 2 73.25 76.81 -104.90

matrix band 3 -101.26 -104.90 262.53

mean vector 122.04 124.41 96.32

variance and band 1 124.27 101.57 15.67

shrub covariance band 2 101.57 117.06 16.36

matrix band 3 15.67 16.36 92.94

mean vector 40.50 38.40 146.60

variance and band 1 12.90 11.08 28.14

water covariance band 2 11.08 29.39 24.73

matrix band 3 28.14 24.73 80.63
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2. Landsat TM image

Classes band 3 band 4 band 5

mean vector 26.55 105.07 26.15

variance and band 3 4.89 -7.76 7.46

grass-I covariance band 4 -7.76 67.30 -4.79

matrix band 5 7.46 -4.79 15.21

mean vector 30.33 68.44 28.33

variance and band 3 2.18 -2.91 0.74

grass-H covariance band 4 -2.91 7.16 -0.67

matrix band 5 0.74 -0.67 0.67

mean vector 42.38 49.75 37.72

variance and band 3 26.86 -2.16 18.59

built covariance band 4 -2.16 23.29 -3.71

matrix band 5 18.59 -3.71 16.53

mean vector 23.60 65.54 18.11

variance and band 3 3.48 4.38 1.41

wood covariance band 4 4.38 79.72 14.00

matrix band 5 1.41 14.00 5.19

mean vector 26.15 71.44 18.51

variance and band 3 4.08 -3.94 -0.65

shrub covariance band 4 -3.94 54.44 13.78

matrix band 5 -0.65 13.78 4.51

mean vector 22.77 22.92 11.38

variance and band 3 2.52 1.94 0.59

water covariance band 4 1.94 5.37 0.32

matrix band 5 0.59 0.32 2.66
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Appendix 4. The FORTRAN 77 program for the fuzzy c-means
clustering

c -

c This program was written and tested by J Zhang in November 1994. It is based
c on a program by J Bezdek et al. (1984), designed for fuzzy c-means clustering.
c

c description of variables and arrays:
c nn - total numer of pixels
c nO - actual number of pixels (within bounds)
c nb - number of spectral bands (attributes)
c nc - number of clusters desired
c mc - the maximum number of clusters (classes)
c mb - the maximum number of spectral dimensions
c iu - integer variable for choice of initial u-matrix
c d - distance array (squared)
c y - image array
c temp - for character string processing flexibility
c tmp - temporary control character
c ul,u2,v - arrays named in accordance with the fcm algorithm
c tf - logical variable for choosing Zhang/Bezdek's programme
c

parameter (nn=25*41 ,mb=7,mc=15,nb=2)
character fcmfn*12,tmp,temp*47
integer y(nn,mb)
real d(nn,mc),ul (nn,mc),u2(nn,mc),v(mc,mb),

+ cov(mb,mb,mc),incov(mb,mb,mc),
+ mat 1 (nb ,nb) ,mat2(nb,nb) ,mat3 (mb)
logical tf

1 write(*,'(/lx,a30)')
+ ' 1 - switch on supervised mode'
write(*,'(lx,a34)')

+ ' 2 - set initial u matrix randomly'
write(*,'(lx,a34)')

+ ' 3 - set random non-fuzzy u matrix'
write(*,'(lx,a46)')

+ ' 4 - set an almost uniform u matrix as a start'

read(*,'(il)') iu
if(iu.lt.l .or. iu.gt.4) goto 1
tf=.false,
if (iu.eq.l) then
write(*,'(lx,a39)')

+ 'use per-category v,u calculation (y/n)?'
read(*,'(a)') tmp
if (tmp.eq.'y' .or. tmp.eq.'y') tf=.true.

end if

write(*,'(lx,a34)')'please enter the class numer - nc:'
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read(*,'(i2)') nc
rm=2.5

pp=1.0/(rm-1.0)
thrshd=0.001
lmax=1000

c — —

c read image data
c

i=l

open(l, file='clstr.dat', status='old')
5 read(l, '(i2,lx,i2)', end= 10) y(i,l),y(i,2)

i=i+l

goto 5
10 n0=i-1

close(l)
if (nO.eq. 18) then
write (*,'(lx,a22)') 'data points confirmed!'

endif
do 65 i=l, nO
if (iu.eq. 3) then
x=6.

c because there are 6 classes —

call random(ix,x,i)
write(*,'(lx,i5)') ix
endif
do 60 j=l,nc
if (iu.eq.3) then
ul(i,j)=0.0
u2(i,j)=0.0
if (j.eq.ix) then
ul(i,j)=1.0
u2(i,j)=1.0

end if
else if (iu.eq.2) then
x=16384.

itp=i*3+j
call random(ix,x,itp)
e=real(ix)/16384.0
write(*,'(lx,f9.2)') e
ul(i,j)=e
u2(i,j)=e

else if (iu.eq.4) then
x=16384.

itp=i*3+j
call random(ix,x,itp)
e=real(ix)/1638400.0
u 1 (i,j)=l .0/real(nc)-e
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u2(i,j)=1.0/real(nc)-e
write(*,'(lx,f9.2)') e

end if
60 continue
65 continue
c -

c read covariance matrix per category
c -

if (tf .eq. .true.) then
open(l, file='sign.dat', status='old')
do 125 i=l,nc
read( 1,'(1 x,2f9.2)') (v(i,il),i 1=1,2)
write(*,'(lx,2f9.2)') (v(i,il),il=l,2)
read( 1 ,'(lx,2f9.2)') ((cov(i 1 ,i2,i),i2=l ,2),il=l,2)
write(*,'(lx,2f9.2)') ((cov(i 1 ,i24)42=1,2),i1=1,2)
write(*,'(lx,a35)')'

c read(*,'(a)') tmp
125 continue

close(l)

c calculation of cov matrix

else

write(*,'(lx,a21)')'for the whole sample:'
write(*,'(lx,a38)')'calculating variance-covariance matrix'
do 13 j=l,nb
mat3(j)=0.0
do 12 i=l,nO
mat3(j)=mat3(j)+y(i,j)

12 continue
13 mat3(i)=mat3(i)/n0

do 15 i=l,nb
do 15 j=l,nb
cov(i,j,l)=0.0
do 16 k=l,n0

16 cov(i,j,l)=cov(i,j,l)+(y(k,i)-mat3(i))*(y(k,j)-mat3(j))
15 cov(i,i,l)=cov(i,j,l)/nO

write(*,'(lx,2f9.2)') (mat3(j),j=l,2)
write(*,'(lx,2f9.2)') ((cov(i,j,l),j=l,2),i=l,2)

end if
c— —

c calculating the inverse of covariance
c—

write(*,'(lx,a33)')'calculating inverse of cov matrix'
if (tf.eq..true.) then
itp=nc

else
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itp=l
end if
do 126 1=1,itp
do 127 i=l,nb
do 127 j=l,nb
matl (i,j)=cov(i,j ,1)

127 continue
call inverse(nb,matl,mat2)
do 128 i=l,nb
do 128 j=l,nb
incov(i,j,l)=mat2(i,j)

128 continue

write(*,'(lx,2f9.2)') ((incov(i,i,l),i=l,2),i=l,2)
do 129 i=l,nb
do 529 j=l,nb
tl=0.0
do 121 k=l,nb

121 tl=tl+cov(i,k,l)*incov(k,j ,1)
matl(i,j)=tl

529 continue
129 continue

write(*,'(lx,al9)'),check for identity:'
do 530 i=l,nb
do 530 j=l,nb
mat2(i,j)=0.0
if (j.eq.i) mat2(i,j)=1.0
if (abs(matl(i,j)-mat2(i,j)) .gt. 0.001) then
write(*,'(lx,a37)')

+ 'matrix inversion calculation failure!'
end if

530 continue

write(*,'(lx,2f9.2)') ((matl(i,i),j=l,2),i=l,2)
write(*,'(lx,al0)')' '

c read(*,'(a)') tmp
126 continue
c —

c fuzzy c-means clustering algorithm beginning
c

it=0
105 continue

if (iu.eq.l) goto 399
it=it+1
if (it.gt.lmax) goto 1000
write(*,'(//lx,a20,i5/)')' iteration ',it
write(*,'(lx,al6)')'— v matrix —'
do 120 il = l,nc
do 115 i0=l,nb
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tp0=0.0
tp 1=0.0
tp2=0.0
do 110 i2=l,n0
tp0=ul(i2,il)**(rm)
tpl=tpl+tpO
tp2=tp2+y(i2,i0)*tp0

110 continue
if (tpl.eq. 0.) then
write(*,'(lx,a34)') 'divered by zero, v - matrix error
stop

else

v(il,i0)=tp2/tpl
end if

115 continue

write(*,'(lx,i5,3f9.2)') il,(v(il,j),j=l,nb)
c write(*,'(lx,al0)')' 1
c read(*,'(a)') tmp
120 continue
c

c calculating squared mahalanobis distance d-metrix
c

399 do 131 j=l,nc
itp=j
if(tf .eq. .false.) itp=l
do 136 i=l,n0
do 132 k=l,nb
tl=0.
do 133 1=1,nb
tap=y(i,l)-v(j,l)
tl=tl+tap*incov(l,k,itp)

133 continue

mat3(k)=tl
132 continue

tt=0.
do 134 k=l,nb
tap=y(i,k)-v(j,k)
tt=tt+tap*mat3 (k)

134 continue

d(i,j)=tt+0.000001
136 continue
c write(*,'(lx,i5,6f9.2)')i,(d(i,j),j=l,nc)
131 continue

write(*,'(lx,a28)')'end of d-matrix calculation.'
c

c modified u matrix
c



do 130 il=l, nO
do 130 i2=l,nc
tp0=0
tpl=(1.0/d(il,i2))**(pp)
do 135 i3=l,nc
tpO=tpO+( 1.0/d(i 1 ,i3))**(pp)

135 continue

u2(i 1 ,i2)=tp 1/tpO
130 continue
140 continue

exp=0.0
do 340 i=l,n0
do 340 j=l,nc
tap=abs(u2(i,j)-u 1 (i,j))
if(tap.gt.exp) exp=tap

340 continue
h=0.0
f=0.0
do 500 i=l,nc
do 500 k=l,nO
h=h+u2(k,i)*alog(u2(k,i)+0.000001)

500 f=f+u2(k,i)*u2(k,i)
f=f/real(nO)
h=-h/real(nO)
rjm=0.0
do 510 i=l,nc
do 510 k=l,nO
rjm=ijm+d(k,i)*(u2(k,i)**(rm))

510 continue

write(*,'(/lx,al5,f9.3)')
+ 'minimising jm :',ijm
write(*,'(lx,a22,2f9.3/)')

+ 'validity fuctions f,h:',f,h
if (iu.eq.l) goto 1000
if (exp .gt.thrshd .or. it.eq.l) then
do 150 il=l,n0
do 150 i2=l,nc
ul(il,i2)=u2(il,i2)

150 continue

goto 105
end if

goto 1000
999 write(*,'(lx,al9)'),error in file i/o !'
1000 continue
c

c write out the clustering output
c



write(*,'(lx,a42)') 'please enter the file name to store output'
read(*,'(al2)') fcmfn
open( 1 ,file=fcmfn,status='new')
write(l,'(lx,al9,lx,i2)')'spectral dimension:',nb
write(l,'(lx,al9,lx,i2)') 'number of clusters:',nc
write(l,'(lx,a29,il)')'u matrix initialised by mode:',iu
write(l,'(lx,a7,lx,3fl0.2)') 'jm,f,h:',rjm,f,h
do 210 i=l,nc
write(l,'(lx,2f9.2)') (v(i,j),j=l,nb)
write(*,'(lx,2f9.2)') (v(i,j),j=l,nb)

210 continue
do 200 il = l,n0
write(1,'(lx,3f7.1) ',err=999)

+ (int(1000*u2(il,i2))/10.0,i2=l,nc)
write(*,'(lx,3f7.1)') (int(1000*u2(il,i2))/10.0,i2=l,nc)

200 continue

close(l)
end

c

subroutine inverse(m,a,b)
c

dimension a(m,m),b(m,m)
do 5 i=l,m
do 5 j=l,m
b(i,j)=0
ifCi-eq.i) b(ij)=l.

5 continue
do 100 loop=l,m
ab=abs(a(loop,loop))
id=loop
do 10i=loop,m
if(abs(a(i,loop)).gt. ab) then
ab=abs(a(i,loop))
id=i

end if
10 continue

if (ab.lt. 0.0000001) then
write(*,'(lx,a28)') 'singular matrix encountered!'
stop

end if
if (id.eq.loop) goto 35
do 30 j=l,m
tb=b(loop,j)
ta=a(loop,j)
b(loop,j)=b(id,j)
a(loop,j)=a(id,j)
b(id,j)=tb
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a(id,j)=ta
30 continue
35 continue

tap=a(loop,loop)
do 40 j=l,m
b(loop,j)=b(loop,j)/tap
a(loop,j)=a(loop,j)/tap

40 continue
do 50 i=loop+l,m
tap=a(i,loop)
do 50 j=l,m
b(i,j)=b(i,j)-tap*b(loop,j)
a(i,j)=a(i,j)-tap*a(loop,j)

50 continue
100 continue

do 300 loop=m-1,1,-1
do 200 i=loop,l,-l
tap=a(i,loop+l)
do 200 j=l,m
b(i,j)=b(i,j)-tap*b(loop+l,j)
a(i,j)=a(i,j)-tap*a(loop+l,j)

200 continue
300 continue

return

end
c

subroutine matmpl(m,n,l,a,b,c)
c

dimension a(m,n),b(n,l),c(m,l)
do 10 i=l,m
do 10 j=l,l
tl=0.
do 20 k=l,n

20 tl=tl+a(i,k)*b(k,j)
c(i,j)=tl

10 continue
return

end
c— —

subroutine random(ix,y,n)
c

ibig=16384
iseed= 15625
new=iseed
do 10 i=l,n
new=new*iseed

new=mod(new,ibig)
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if (new.lt.O) new=ibig+new
continue

ix=new*y/real(ibig)+1
if (ix.lt. 1 .or. ix ,gt.y) then
print *, 'random number generator fault!'
stop

else

print *, 'next number',irnd
end if
end



Appendix 5. The FORTRAN 77 program for deriving proportions of
sub-pixel component land cover types

c —

c This program was designed for deriving ground truth data from fine
c resolution grid file PHGREF.GIS
c written and tested by J Zhang in November 1994.
c GIS - GIS array
c TEMP - For character string processing flexibility
c TMP - Temporary contrl character
c

parameter (nc=5)
character gisnam* 12,output* 12,tmp,temp*47,yn 1 * 12,yn2* 12
integer gis(0:nc),gis0(0:nc)
n0=25*41

write(*,'(lx,a36)')'please enter file name for gis data:'
read(*,'(al2)') gisnam
write(*,'(lx,a30)')'please enter output file name:'
read(*,'(al2)') output
write(*,'(lx,a31)')'please specify the window size:'
read(*,'(i5)') ips

c

c read image/gis data out
c

c inquire(file=gisnam,sequential=ynl ,formatted=yn2,recl=iyn3)
c write(*,'(lx,al2,al2,i5)') ynl,yn2,iyn3
c stop

open(l,file=output,access='direct',recl=12,status='new')
open(2,file=gisnam,status='old')

31 format(al7)
41 format(2i5,i6)

read(2,fmt=31 ,err=999,end= 100) temp(1:17)
read(2,'(a)',err=999,end=100) tmp
read(2,fmt=31 ,err=999,end= 100) temp( 1:17)
read(2,fmt=31 ,err=999,end= 100) temp( 1:17)
write(*,'(lx,a32)')'gis file headers read out.'
nr0=0
line=l

21 do 55 1=1,ips
np=l

20 do 30 i=0,nc
gis(i)=0

30 continue
do 45 i=l,ips
read(2,fmt=41,end=100) ix,iy,ic
if (i.eq.l) then
ix()=ix
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iyO=iy
else
if (iy.ne.iyO) then
backspace(2)
icon=l

goto 50
end if

end if

gis(ic)=gis(ic)+l
45 continue

icon=0
50 read(l,rec=nr0+np,err=56) (gisO(j),.1=0,5)
c if (nrO+np.eq.l) then
c write(*,'(7i5)') nr0+np,(gis0(j),j=0,5)
c end if

do 57 j=0,5
gis(i)=gis(i)+gisO(i)

57 continue
56 write( 1 ,rec=nrO+np) (gis(j),j=0,5)
c if (nrO+np.eq.l) then
c if (l.eq.ips) then
c write(*,'(lx,7i5)') nr0+np,(gis(j),j=0,5)
c end if

if (l.eq.ips) then
dd=0.0
do 70 j=0,5

70 dd=dd+gis(j)
if (dd.eq.ips*ips) write(*,'(lx,all,2i5)')

+ 'full pixel:',np,line
end if
if (icon.eq.O) then
np=np+l
goto 20

end if
55 continue

nrO=nrO+np
write(*,'(lx,a28,2i5)')

+ 'one window line (no.,recno.)',line,nrO
line=line+l

goto 21
999 write(*,'(lx,a9)') 'i/o error'

goto 101
100 write(*,'(lx,al5)')'end of gis file'
101 close(l)

close(2)
end

224



Appendix 6. The FORTRAN 77 program for transforming point
sample data to GSLIB data format

c - -

c This program was designed as a transformation procedure to generate
c GSLIB data file from ERDAS DIGSCRN point sampling data files,
c The input data are binary data (corresponding to classes 1,2,3,4 and 5,
c stored in files pointl/2/3/4/5.dat), the output data file will be in the
c format illustrated below:
c Title
c 7
c xlocation
c ylocation
c grass
c built
c wood
c shrub
c water

c x y varl var2 var3 var4 var5
c

c Written and tested by J Zhang in June 1995.

* Version 23rd June 1995
character* 12 fromdf, todf
character tmp*3
character PAUSE,STR*25,CHI *40
dimension node(5)
write(*,'(lx,a35)') 'Please enter the to_data file name:'
read(*,'(al2)') todf
open(2,file=todf,status='new')
write(*,'(lx,a34)') 'Please specify the No. of classes:'
read(*,'(i2)') iclass
write(*,'(lx,a40)') 'Please enter the grid cell size (dx,dy):'
read(*,*) dx
read(*,*) dy
write(2,'(lx,a43)')

+ 'GSLIB data file relevant to land cover data'

write(2,'(lx,i2)') iclass+2
write(2,'(lx,a9)') 'xlocation'
write(2,'(lx,a9)') 'ylocation'
do 5 i=l,iclass
write(2,'(lx,a6,i2)') 'class_',i

5 continue

write(*,'(lx,a37)') 'Please enter the from_data file name:'
read(*,'(al2)') fromdf
open( 1 ,file=fromdf,status='old')

225



13 format(5I5)
14 format(F12.2JF12.2,Al)
15 format(4I5,4X,A1)
21 read(l,fmt=13,err=999)npt,igis,itmp,mod,npts

read( 1 ,fmt= 14,err=999) xmin,ymin,ch
write(*,'(lx,2fl4.6)') xmin,ymin
read( 1 ,fmt=14,err=999) xmin,ymax,ch
write(*,'(lx,2fl4.6)') xmin.ymax
read( 1 ,fmt= 14,err=999) xmax,ymax,ch
write(*,'(lx,2fl4.6)') xmax,ymax
read(l,fmt=14,err=999) xmax,ymin,ch
write(*,'(lx,2fl4.6)') xmax,ymin
write(*,'(al4)') 'end of header!'
write (*,'(lx,38a)') 'please specify xmin, ymin as required:'
read(*,*) xmin
read(*,*) ymin

30 read(l,fmt=15,err=999,end=35) npt,igis,itmp,mod,ch
do 31 j=l,5
node(j)=0
if (i.eq.igis) node(j)=l

31 continue
do 40 i=l,npt
read(l,fmt=14,err=999) x,y,ch
nc= 1+ifix((x-xmin)/dx)
nr= 1+ifix((y-ymin)/dy)
write(2,'(2x,i3,lx,i3,5i2)') nc,nr,(node(j),j=l,5)

40 continue

goto 30
35 write(*,'(lx,a22)') 'end of from_file read!'

close(l)
close(2)
write(*,'(lx,a26)')' end of data file transfer!'
goto 1000

999 write(*,'(lx,al5)') 'file i/o error!'
1000 continue

end
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Appendix 7. The FORTRAN 77 program for transferring kriging
outputs to ASCII format suitable for ERDAS LAN data files

c —

c This program works to transfer the outputs from indicator kriging procedures
c in GSLIB to ASCII format suitable for ERDAS LAN data files, which can then
c be read into ARC/INFO GRID and ARCPLOT modules to facilitate surface data
c manipulation and visualisation,
c Witten and tested by J Zhang July 1995
c -

parameter (nx 1 =75,ny 1 = 122,nx2=25,ny2=41 ,nc=5)
character ksurlan* 12,krigfn*12,tmp,temp*66
dimension ksurdat(nxl,nyl,nc)

write(*,'(lx,a52)')
+ 'please remember resultant lan-ascii data file name:'
read(*,'(al2)')ksurlan
write(*,'(lx,a)')

+ 'is the kriging output for tm or spot (t/s) ?'
read(*,'(al)') tmp
nx=nxl

ny=nyl
if (tmp.eq. 't' .or. tmp.eq.'t') then
nx=nx2

ny=ny2
end if
do 100 i=l,nc
write(*,'(lx,a40)')

+ 'please enter file name for kriging data:'
write(*,'(lx,a7,i3)') 'class -',i
read(*,'(al2)') krigfn
open( 1 ,file=krigfn,status='old')
read(l,'(a66)') temp
read(l,'(al)') tmp
read(l,'(a8)') temp(l:8)
read(l,'(a20)')temp(l:20)
ipt=0
ix=l

iy=ny
110 ksurdat(ix,iy,i)=-9
115 read(l,'(f8.3,lx,f8.3)',err=999,end=120) est,var

write(*,'(lx,2f9.3)') est,var
if (est.eq. -999.0) est=-9
if (est.gt.1.0) est=1.0
if (est.lt.0.0 .and. est.gt. -9) est=0.0
if (est.ne. -9) then
ksurdat(ix,iy,i)=ifix(100.0*est+0.5)
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end if

write(*,'(lx,3i5)') ix,iy,ksurdat(ix,iy,i)
ipt=ipt+l
ix=ix+l
if (ipt.eq.nx) then
iy=iy-l
ix=l

ipt=0
end if
if (iy.lt. 1) goto 115
goto 110

120 continue

write(*,'(lx,a32,i5)')
+ 'end of kriging datafile reading ',iy

close(l)
100 continue
c—

30 format(lx,a41)
31 format(al7)
41 format(2i5,5i6)

open( 1 ,file=ksurlan,status='new')
write(l,'(lx,a5,al2)',err=999) 'f1 : ',ksurlan
write(l,'(lx,a)',err=999)''
write( 1 ,fmt=31 ,err=999)' fl*
write( 1 ,fmt=30,err=999)

+ ' x y bl b2 b3 b4 b5'
do 121 i=l,ny
do 121 j=l,nx
irec=(i-l)*nx+j
write( 1 ,fmt=41 ,err=999) jd,(ksurdat(j,i,k),k=l,nc)

121 continue

write(*,'(lx,a36)') 'end of lan-ascii data file writing!'

goto 1000
999 write(*,'(lx,al5)') 'file i/o error!'

goto 1000
1000 continue

close(l)
end
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