
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

December 2021

Approachable Error Bounded Lossy Compression Approachable Error Bounded Lossy Compression

Robert Raymond Underwood
Clemson University, rr.underwood94@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Recommended Citation Recommended Citation
Underwood, Robert Raymond, "Approachable Error Bounded Lossy Compression" (2021). All
Dissertations. 2906.
https://tigerprints.clemson.edu/all_dissertations/2906

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2906?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2906&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Approachable Error Bounded Lossy Compression

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Computer Science

by
Robert Underwood

December 2021

Accepted by:
Dr. Amy Apon, Committee Chair

Dr. Jon C. Calhoun
Dr. Franck Cappello

Dr. Rong Ge
Dr. Jacob Sorber

Abstract

Compression is commonly used in HPC applications to move and store data. Traditional

lossless compression, however, does not provide adequate compression of floating point data often

found in scientific codes. Recently, researchers and scientists have turned to lossy compression

techniques that approximate the original data rather than reproduce it in order to achieve desired

levels of compression. Typical lossy compressors do not bound the errors introduced into the data,

leading to the development of error bounded lossy compressors (EBLC). These tools provide the

desired levels of compression as mathematical guarantees on the errors introduced. However, the

current state of EBLC leaves much to be desired. The existing EBLC all have different interfaces

requiring codes to be changed to adopt new techniques; EBLC have many more configuration options

than their predecessors, making them more difficult to use; and EBLC typically bound quantities

like point wise errors rather than higher level metrics such as spectra, p-values, or test statistics

that scientists typically use. My dissertation aims to provide a uniform interface to compression and

to develop tools to allow application scientists to understand and apply EBLC. This dissertation

proposal presents three groups of work: LibPressio, a standard interface for compression and analysis;

FRaZ/LibPressio-Opt frameworks for the automated configuration of compressors using LibPressio;

and work on tools for analyzing errors in particular domains.

ii

Dedication

I dedicate this work to Aspen my beloved wife who helps me be strong, to my friends and

family who supported me thus far, to my advisers who showed me the way, and to the shoulders of

the giants on which I stand.

But above all, Soli Deo Gloria.

iii

Acknowledgments

I would like to thank my advisers:

Dr. Amy Apon who encouraged me in my studies and taught me to be a scientist. Dr. Jon

Calhoun who introduced me to lossy compression and offers his frequent insights and support for

my work. Dr. Franck Cappello whose cast a vision for what my work can be.

I would like to give special thanks to Sheng Di for his help on so many projects. I would like

to give thanks to my other collaborators including Alison Baker, Amy Burton, Dorrit Hammerling,

Justin Sybrant, Justin Wozniak, Jian Tian, and Xin Liang.

I also appreciate the loving support of my wife Aspen is strong in my weaknesses. I also

thank my family who have supported me while to the point that I could even write a dissertation.

Funding Acknowledgments

This research was supported by the Exascale Computing Project (ECP),Project Number:

17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the Na-

tional Nuclear Security Administration, responsible for the planning and preparation of a capable

exascale ecosystem, including software, applications, hardware, advanced system engineering and

early testbed platforms, to support the nation’s exascale computing imperative.

The material was supported by the U.S. Department of Energy, Office of Science, under

contract DE-AC02-06CH11357, and supported by the National Science Foundation under Grant

No. 1619253 and 1910197.

We acknowledge the computing resources provided on Bebop, which is operated by the

Laboratory Computing Resource Center at Argonne National Laboratory.

This material is also based upon work supported by the U.S. Department of Energy, Office

iv

of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate

Student Research (SCGSR) program.The SCGSR program is administered by the Oak Ridge Insti-

tute for Scienceand Education (ORISE) for the DOE. ORISE is managed by ORAU undercontract

number DE-SC0014664. All opinions expressed in this paper are theauthors and do not necessarily

reflect the policies and views of DOE, ORAU, or ORISE.

Publication Acknowledgments

I acknowledge that part of this thesis was previously published in the following venues:

• Portions of Chapter 3 are in submission [1] to IEEE Transactions on Parallel and Distributed

Systems

• Portions of Chapter 4 were previously published [2] in the International Parallel and Dis-

tributed Processing Symposium 2020 under the title: FRaZ: A Generic High-Fidelity Fixed-

Ratio Lossy Compression Framework for Scientific Floating-point Data

• Portions of Chapter 5 are in submission [3] to IEEE Transactions on Parallel and Distributed

Systems

• Portions of Chapter 6 are in preparation [4] the International Parallel and Distributed Pro-

cessing Symposium.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1

2 Background . 4
2.1 Data Reduction Techniques . 4
2.2 Big Data Applications and Use Cases . 6
2.3 Error-Bounded Lossy Compression . 9

3 Productive, Performant, and Parallel Generic Lossy Data Compression with
LibPressio . 13
3.1 Introduction . 14
3.2 Background . 16
3.3 Related Work . 17
3.4 Design Overview . 21
3.5 Example Applications and Effectiveness . 27
3.6 Quantifying Overhead . 32
3.7 Performance Portability . 33
3.8 Conclusions and Future Work . 40

4 FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for
Scientific Floating-point Data . 42
4.1 Introduction . 43
4.2 Background . 45
4.3 Related Work . 47
4.4 Problem Formulation . 49
4.5 Design and Optimization . 50
4.6 Performance and Quality Evaluation . 59
4.7 Conclusions and Future Work . 65

5 OptZConfig: Fast Parallel Optimization of Lossy Compression Configuration . . 68
5.1 Introduction . 69

vi

5.2 Research Background and Related Work . 70
5.3 Problem Formulation . 75
5.4 Overall System Design . 78
5.5 Computing Metrics . 79
5.6 Optimizating FMFS and OptZConfig . 82
5.7 Experimental Evaluation . 84
5.8 Conclusions . 98

6 Understanding The Effectiveness of Applying Lossy Compression in Machine/Deep
Learning Applications . 99
6.1 Introduction . 99
6.2 Data Reduction Techniques Studied . 102
6.3 Experimental Overview . 106
6.4 Problem Formalization and Methodology . 107
6.5 Experimental Results . 112
6.6 Related Work . 118
6.7 Conclusions and Future Work . 120

7 Conclusions .123

Appendices .125

A LibPressio Usage Example .126

B Glossary .129

Bibliography .134

vii

List of Tables

2.1 Reported System Storage on Major HPC Clusters 6

3.1 Feature Comparison Table . 18
3.2 Lines of Client Code for Various Usages, † indicates no native multi-compressor im-

plementation exists . 30
3.3 Minimum Changes to switch from SZ → ZFP in C 32
3.4 Hardware and Software Details . 32
3.5 Comparison of Parallel Implementations . 34
3.6 Compression Ratio of different parallel implementations, error bound=1e-6, 7 chunks,

SCALE-LETKF V dataset, chunksize=49 not supported for MGARD due to mini-
mum data size requirements in MGARD . 36

4.1 Table of Key Notation . 50
4.2 Hardware and Software Versions Used . 59
4.3 Dataset Descriptions . 60

5.1 Summary of Important Lossy Compression User Analysis Metrics 71
5.2 Key Notations . 76
5.3 Hardware and Software Details . 85
5.4 Datasets . 86
5.5 Improvement in performance by 2.03× on average when going from 1 to 4 search

threads. Higher levels of threading have limited effect. This represents a speedup
over the FRaZ algorithm. 90

5.6 Runtime for systematic sampling vs OptZConfig . 96

6.1 Summary of Data Reduction Methods . 107
6.2 Hardware and Software Details . 107
6.3 Key Notations . 108
6.4 Overview of the Applications . 121
6.5 Cores for a parallel speedup with SZ-REL: Candle NT-3 121
6.6 Cores for a parallel speedup with SZ-REL: Ptychonn 122

viii

List of Figures

1.1 Dissertation Topics . 3

2.1 Comparison of a Lossless and lossy Compressed Images. The figure in the middle is
10x smaller, The figure on the right is 17x smaller. Error bounded lossy compression
offers a midpoint between these options . 5

2.2 SZ Compression Principles . 9
2.3 ZFP Compression Principles . 11
2.4 MGARD Compression Principles . 12

3.1 Major Components of LibPressio and how they interact with plugins and client code 23
3.2 List of Plugins, Applications and Language Bindings using LibPressio. Descriptions

can be found in the Glossary. A up to date list and description can be found at
https://github.com/robertu94/libpressio . 28

3.3 McCabe Cyclomatic Complexity for the Command Line Interfaces; MGARD has fewer
robustness checks and can crash if used incorrectly 31

3.4 Compression Overhead for SZ/ZFP using LibPressio 33
3.5 Compression Speedup for SZ/ZFP using LibPressio 38
3.6 Decompression Speedup for SZ/ZFP using LibPressio 39

4.1 Data distortion of ZFP in fixed-accuracy mode and fixed-rate mode (Hurricane TCf
field) with CR=50:1 . 48

4.2 Design overview and summary of our contributions 51
4.3 Example based on the hurricane simulation dataset (field: QCLOUDf.log10) show-

ing that the relationship between error bounds and compression ratios is not always
monotonic . 53

4.4 Illustration of autotuning optimization function: On the left is a hypothetical rela-
tionship between an error-bound level and compression ratio for some compressor
and dataset. The target compression ratio is marked as a red line, and the acceptable
region is colored green. On the right is the corresponding loss function using our
method. The green area above the target compression ratio refers to the acceptable
region. In this case, where there are blue points in the acceptable region, we call the
result feasible. If the acceptable region was below the blue points, we would call it
infeasible. 54

4.5 Illustration of error bound ranges. We divide the range from lower bound to upper
bound into K slightly overlapping regions (E1, E2, . . . EK). The overlap is a small
fixed percentage of the width of the regions (i.e., 10%). Each region (E1, E2, . . . ,
EK) is then passed from the parallel orchestrator to the autotuning optimizer. Note
that the ends E1 and EK are slightly smaller to preserve the error bound range. . . 56

4.6 Demonstration of two types of convergence cases (Hurricane-CLOUD) 61
4.7 Sensitivity of FRaZ to the choice of ρt(Df,t): This is because not all values of ρt(Df,t)

are elements of the co-domain of the function that relates ρ and e. 62

ix

https://github.com/robertu94/libpressio

4.8 Scalability: our solution reaches the optimal performance at 180–216 cores, in that
the total time is equal to the longest task’s wallclock time at this scale. 63

4.9 Rate distortion of lossy compression (MGARD is missing in (d) and (e) because it
does not support 1D dataset) . 64

4.10 Visualization of NYX (temperature:slice 256) with CR ≈ 85:1 67

5.1 LibPressio [76] ecosystem with OptZConfig’s metacompressor plugin (OPT), search
interface (pressio search plugin), and several default search modules including FMFS,
FRaZ algorithm [2], and binary search. 79

5.2 Components in metric adapter and launch handler. 80
5.3 Distribution of Compressor Errors of SZ and ZFP for Miranda:pressure with different

data distortion levels . 87
5.4 Various methods attempting to maximize the compression ratio while maintaining a

specified PSNR tolerance. We achieve up to 3.2 × improvement in compression ratio
for the same target . 88

5.5 Improved search time by 2.07× on average (a speedup over the FRaZ algorithm) when
using 12 threads within ZFP . 90

5.6 Inter-iteration early termination speedup over FRaZ algorithm on a search for a de-
sired PSNR. 91

5.7 OptZConfig vs MGARD-QOI for weighted mean: OptZConfig is 83% faster 75% of
the time without tuning OptZConfig; with tuning OptZConfig+SZ is over 1000×
faster in all cases. 95

5.8 Evaluation metrics at 100,000 error bounds between 10−18 and 10−12. The PSNR,
KS-test p-value, and R value must be above their threshold in order to satisfy the
constraints. The spatial error % must be below its threshold. All points to the left of
the black line satisfy the constraints. 97

6.1 Workflow Overview . 106
6.2 Tuning the Superconductor Dataset . 113
6.3 Consistency Metrics . 114
6.4 Pareto Optimal Points Compression Ratio and Quality for Various Applications . . . 115
6.5 Pareto Optimal Points for MLSVM . 116
6.6 Distribution of the value Ranges for Candle NT-3 . 117

x

Chapter 1

Introduction

Compression transforms data to a more compact representation than the original. When

this transformation does not lose information, we call it lossless (i.e. zip files). While these kinds of

transformations can be used almost anywhere, their ability to reduce data size is limited, especially

for floating point data. When the transformation instead makes a “close” approximation of the

original, we call this lossy compression (i.e. JPEG images). However, most lossy compression com-

pressors do not make guarantees about where or how much information is lost. Error-Bounded Lossy

Compressors (EBLC) such as SZ [5], ZFP[6], and MGARD[7] make these kinds of guarantees and

have better compression ratios than lossless methods making them ideal for scientific applications.

However, the current state of the art in EBLC features many challenges which make it is

not very approachable. The compressors have completely different interfaces and calling conventions

(such as C/Fortran data order) requiring components of applications to be re-written to adopt new

techniques. Additionally, Some compressors, like SZ, have over 27 factors that impact compression

or like MGARD require a substantial background in mathematics to understand. Finally, the bounds

that these compressors enforce differ greatly from what application scientists use to assess quality so

often need help understanding how it will affect their analysis. Instead, application scientists want

a consistent interface that bounds the metrics that they are interested in with tools that help them

figure out how to do correctly and effectively employ compression.

My dissertation endeavors to address these and other challenges to help application scien-

tists take advantage of these tools to improve the performance of the applications and understand

the trade-offs of lossy compression. It is divided into 3 parts: a standard, parallel and efficient

1

interface for compression; automated configuration tools for compression; and tools and techniques

for understanding compression. The organization of these topics can be see in Figure 1.1 The re-

mainder of the dissertation is organized as follows: Chapter 2 provides an overview of compression,

error bounded lossy compression specifically, and the applications of lossy compression in scientific

applications and instruments. Chapter 3 addresses the first task: providing a standard interface for

compression. It describes LibPressio a fundamental library which I developed to abstract away the

differences between various compressors and used in all the remaining sections of my dissertation. I

describe the implementation of an automated parallelization scheme that improves the performance

of compression on CPUs. Chapter 4 begins the first of two chapters on the automated configuration

of compressors. It looks at the preliminary problem of tuning compression for a fixed compression

ratio. Chapter 5 continues the theme of the automated tuning of compression to look at single buffer

user metrics. Lastly, Chapter 6 describes work which looks at tooling for analyzing the effects of

compression on machine learning and artificial intelligence applications.

2

Figure 1.1: Dissertation Topics

3

Chapter 2

Background

2.1 Data Reduction Techniques

Data Reduction fundamentally is a class of techniques used to reduce the volume of data

while it is begin stored, transported, or computed upon. These techniques are useful because they

allow us to move, store, or compute upon less information to improve the performance of these

processes. Han et al in [8], propose a tripartite distinction of data reduction techniques: dimen-

sionality reduction, numerosity reduction, and data compression. Dimensionality reduction exploits

correlations or patterns between different facets or features of the data to only store the most impor-

tant facets or features. Techniques in this category include principle component analysis or wavelet

transform methods. Numerosity reduction reduces the number of instances or observations of data

either parametrically or non-parametrically. Parametric numerosity reduction replaces the data

points with a model of them such that only the model parameters need be stored. Non-Parametric

numerosity reduction either uses a non-parametric statistical model such as a histogram or sampling

based approach. Data Compression focuses on techniques that attempt to represent the data in

different encodings which are more compact. Data Compression techniques are the focus of this

work1.

Data compression methods consists of two processes: compression and decompression. The

1This distinction is not perfect. It is possible to view both dimensionality and numerosity reductions as forms of
lossy data compression. However, the distinction is still helpful because in data compression, the emphasis is on the
compression and decompression operations, whereas dimensionality and numerosity reductions focus simply on the
reduction step rather than the re-constructive decompression step.

4

compression process takes the original or uncompressed data and produces a compressed represen-

tation of the data. The decompression process takes the compressed representation and produces

a decompressed dataset. The compressed data is often smaller than the original or uncompressed

dataset. Compression researchers often talk about the effectiveness of the size reduction using the

compression ratio. Although few papers use the inverse, the compression ratio is reported as the

ratio of the size of the uncompressed data divided by the size of the compressed data.

Data Compression is then traditionally divided into lossless and lossy methods. Lossless

methods create a compressed representation which can be used to perfectly reconstruct the original

data by identifying and storing common patterns amongst the data. This has the advantage of being

usable in almost all applications since user’s don’t have to worry about data integrity. However,

data with high entropy such as images, audio, or video which do not achieve high compression ratios

led researchers to consider lossy compression. Lossy compression, like lossless, creates a smaller

compressed representation, but unlike lossless, when decompressed, it produces an approximation

of the original data rather than a prefect reconstruction. The benefit of this approach is that the

compressed representation can be much smaller because it does not need to make a prefect recon-

struction. Due to the limitations of lossless compression, this work will focus on lossy compression.

For an illustration of the power of lossy compression, consider the example in Figure 2.1.

The image on the left was losslessly compressed and is about 4MB, the image in the middle is

compressed with some loss, while the image on the right illustrates a greater amount of loss. The

middle image strikes a nice balance being 10 times smaller, but with less lost than what a typical

observer could discern the differences [9]. While the quality of the image on the right is much lower,

it is 17 times smaller showing the kinds of trade-offs that exist in these techniques.

(a) Lake Hartwell Losslessly
Compressed

(b) Lake Hartwell with some
loss Compressed

(c) Lake Hartwell using high
loss

Figure 2.1: Comparison of a Lossless and lossy Compressed Images. The figure in the middle is 10x
smaller, The figure on the right is 17x smaller. Error bounded lossy compression offers a midpoint
between these options

More recently, lossless compression continues to under-perform on scientific codes which

make heavy use of floating point numbers. This is because of the high degree of entropy that

5

appears in the mantissa bits of IEEE floating point numbers. This has lead some researchers to

consider lossy compression for scientific codes and to the introduction of error bounded loss com-

pressors. However, for scientists concerned about data integrity, the possibly of a compression result

like 2.1c is unacceptable. This inspired the development of error bounded lossy compressors which

provide strong mathematical guarantees about the amount of error that can be introduced during

the compression and decompression process. This work focuses most specifically on these techniques.

2.2 Big Data Applications and Use Cases

Over the last few decades, the capabilities of storage systems have been increasing. Table 2.1

shows the development and expected development of storage systems at the time of writing. However,

the in values reported in Table 2.1 are the advertised peak values – what one might expect with

the ideal bulk sequential parallel write using the entire machine. In practice [10] studies such as

this one show that few applications get anywhere near peak IO performance. They found that over

75% of applications get less than 1% of the peak storage bandwidth, and 99% jobs on machines like

Mira get approximately the peak performance of a USB stick. They also found that many HPC

applications spend close to 60% of their total runtime performing IO – something one might expect

to get worse as the gap between peak compute and storage performance widens.

System Year Disk Storage Peak Bandwith Memory

Palmetto Various .725PB n/a .168 PB
CRAY Jaguar 2008 10PB 0.24 TB/s .36 PB
CRAY Blue Waters 2012 20PB 1.1 TB/s ≈1 PB
Mira 2012 24PB ≈0.7 TB/s ≈1 PB
Bebop 2017 < 2PB n/a 0.3 PB
Theta 2016/2020† 11PB n/a ≈1 PB
CRAY CORI 2017 30PB 1.7 TB/s 1.4 PB
Summit 2018 250PB 2.5 TB/s 10 PB
Aurora 2021 (expected) 230PB 25 TB/s 10 PB
Projected Exascale 2022 (expected) 500PB

† Theta was expanded in 2020 with a CARES Act grant
‡ Aurora only achieves 25 TB/s using DAOS, and may not be portable to applications

Table 2.1: Reported System Storage on Major HPC Clusters

However, since 2015 when [10] studied the issue, the volumes of data that users want to write

have continued to grow. Cosmology simulations of the Hardware/Hybrid Accelerated Cosmology

Code (HACC) [11], for instance, may produce ∼20 petabytes of data when simulating 1 trillion

6

particles for 500 time steps, while one of the most powerful supercomputers—the Oak Ridge National

Laboratory Summit [12]—provides only hundreds of terabytes of storage for each user; and hundreds

of users share the limited total storage space (250 PB in total). In materials science, raw data can

be produced with a very high acquisition rate. for example, 250 GB/s on LCLS-II [13]). In order

to sustain the data production rate, storing the raw data without compression is impractical. The

LCLS-II data system designers calculated that the expected data compression ratio required is 10

or higher to reduce the required storage bandwidth to 25 GB/s.

Between the tiny faction of peak IO that applications achieve, the growing demand for

IO from applications, and the fundamental capabilities of the machines, there is a clear need for

techniques to reduce the amount of data that needs to be written to or even read from disk. Com-

pression provides this capability. Lossless compression often is ill-suited for many HPC codes for the

reasons presented in the end of Section 2.1. This has lead researchers to explore areas where lossy

compression can prove valuable [13]:

1. Visualization – Visualization is a common principally lossy piece of post-analysis performed

for many applications. The human visual system is limited in its ability to perceive differences

between images. This means that lossy compression can be used to reduce the volume of

data destined for visualization when the differences are “diagnostically lossless” [9]. These

kinds of techniques have been used for decades since JPEG compression is a lossy compression

algorithm [14], but traditional lossy methods like JPEG have been shown to be insufficient for

climate research because the results are not consistently diagnostically lossless. This has lead

climate researchers to study the use of error bounded lossy compressors for this work [9], [15].

2. Reducing Streaming Data Intensity – Instruments like the LCLS-II and the APS (an X-ray

based laser used in crystallography and other applications) transport huge volumes (>250GB/s)

of information from detectors to local analysis clusters for visualization and post-processing.

However, this process is bottle-necked by the transfer from the detector to the analysis cluster

which has less bandwidth available. Researchers have determined that a 10X reduction in data

volume would aleviate this bottleneck. Work is ongoing to meet this requirement.

3. Reducing Storage Footprint – Some applications such as HACC and CESM-LE can produce

enormous volumes of data (≈ 20PB and 200 TB respectively) that need to be stored for later

analysis for each full size run of the applications. Because the largest machines are shared

7

and users do not have access to the full storage space of the machine. Scientists have been

exploring the use of lossy compression to store especially large results from their experiments.

4. Reducing IO time – Work by [16] has shown that by first lossy compressing data in memory,

it is possible to reduce the overall run time of the application by reducing the time spent

performing IO for applications like NYX – a cosmology code.

5. Accelerating Checkpoint Restart – Many HPC applications use checkpoint restart to provide

resilience to node and other kinds of job failures. However, as machines grow, so does the

overhead of using checkpoint restart. There has been work investigating the use of lossy com-

pressed checkpoint restart [17] to accelerate the IO bandwidth used in Partial Derivative Equa-

tion based applications. This particular class of applications is often naturally self-correcting

to the kinds of errors introduced by lossy compression, making it an ideal use case. Initial

evaluation showed that as the number of processes grow, using lossy compression can reduce

checkpoint times by ≈ 60 % allowing more time to be used for the application.

6. Reducing Memory Footprint – A quantum circuit simulation application [18] uses lossy com-

pression to store the quantum state in memory to enable the application to simulate larger

circuits than would be possible without compression due to limited available system memory.

By reducing in the in-memory footprint, to only the needed state at any particular moment, the

application can simulate larger quantum circuits without a discernible impact on the quality

of the results.

7. Accelerating Execution – The project PaSTRI [19] uses error bounded loss compression to a

a ”lossy cache” for the GAMESS application used in quantum chemistry. Applications like

GAMESS do many repeated calculations that would be ideal for caching, but if stored in full,

would not fit into memory. The lossy compressor PaSTRI provides an efficient method to store

the data generated by GAMESS, which resulted in a 24% improvement in run time with no

discernible effect on the quality of the result.

Readers are encouraged to read [13] for more details on these use cases.

8

Figure 2.2: SZ Compression Principles

2.3 Error-Bounded Lossy Compression

Over the last decade, several error bounded lossy compressors have been developed. In this

dissertation, I will focus on SZ, ZFP, and MGARD some of the current leading contenders. In this

section, I will discuss the principles used to perform the compression and decompression operations.

There are three major lossy compressors – SZ, ZFP and MGARD.

2.3.1 SZ

SZ which was developed over the papers by [5], [20]–[22] has been widely evaluated in the

scientific floating-point data compression community [9], [18], [23], [24] , showing that it is one of

the best compressors in its class.

SZ splits each dataset into many consecutive non-overlapped blocks (such as 6×6×6 for a

3D dataset) and performs compression in each block. Compression then involves three key steps.

(1) data prediction – each data point is predicted based on its nearby values in space; two major

predictors are applied, Lorenzo [5] and linear regression [20]. Blocks that cannot be predicted are

stored losslessly. (2) linear quantization – each data point is converted to an integer by applying

a equal-bin-size quantization on the difference between its predicted value and real value; and (3)

compression of the generated integer code arrays by a series of custom lossless compression methods

including entropy encoding such as Huffman encoding and dictionary encoding, such as Zstd [25].

The compression principles of SZ are summarized in Figure 2.2.

SZ offers multiple error-controlling approaches, including absolute error bound (denoted

9

εabs), relative error bound (denoted εrel), and target PSNR (denoted by εpsnr), which are formulated

in the following three constraints, respectively:

|xi − x̃i| ≤ εabs,∀xi ∈ df,t (2.1)

value range(df,t)|xi − x̃i| ≤ εrel · xi,∀xi ∈ df,t (2.2)

10 log10

value range(df,t)
2√

mse(df,t, d̃f,t)
≤ εpsnr, (2.3)

where df,t refers to the raw data, d̃f,t refers to the decompressed data, mse() is the mean squared

error, and value range() refers to the range of values in the dataset df,t (i.e., max(df,t)−min(df,t)).

2.3.2 ZFP

[6] is another outstanding error-bounded lossy compressor, which is broadly evaluated in

many scientific research studies [2], [24]. Similar to SZ, ZFP supports different types of error controls,

such as absolute error bound and precision. The precision mode allows users to set an integer number

between 1 and the number of bits in the type to control the data distortion with an approximately

relative error effect. The higher the precision number is, the lower the data distortion. A precision

value of 32 causes 32-bit IEEE floating-point data to be losslessly compressed.

Unlike SZ, ZFP adopts a blockwise transform-based compression model, which includes four

critical steps: (1) exponent alignment and fixed-point representation, which align the values in each

block to a common exponent and performs fixed-point representation conversion; (2) transformation,

which applies a near orthogonal transform to each block; and (3) embedded-coding, which orders

the transform coefficients and encodes the coefficients one “bit plane” at a time. SZ and ZFP have

different design principles, and neither always has the best compression quality on all types of data

sets [2], [24]. The stages of this pipeline are summarized in Figure 2.3.

10

Figure 2.3: ZFP Compression Principles

2.3.3 MGARD

MultiGrid Adaptive Reduction of Data (MGARD) [7], [26], [27] is an error-controlled lossy

compressor supporting multilevel lossy reduction of scientific floating-point data. MGARD was

designed based on the theory of multigrid methods [28]. An important feature of MGARD is

providing guaranteed, compute-able bounds on the loss incurred by the data reduction. MGARD

provides different types of norms, such as infinity norm and L2 norm, to control the data distortion.

The infinity norm is equivalent to the absolute error bound, and the L2 norm mode can be used to

control the mean squared error (MSE) during the lossy compression. levels of partial decompression

such that users reduce the dataset by either minimizing storage with a required data fidelity or

minimizing the data distortion with a target compression ratio. The compression principles of

MGARD are summarized in Figure 2.4.

11

Figure 2.4: MGARD Compression Principles

12

Chapter 3

Productive, Performant, and

Parallel Generic Lossy Data

Compression with LibPressio

Portions this chapter are in submission to IEEE Transactions on Parallel and Distributed

Systems the under the title: Productive, Performant, and Parallel Generic Lossy Data Compression

with LibPressio

Abstract

In recent years, error bounded lossy compressors have been developed to cope with the ever

increasing volume of scientific floating point data. However not all compression techniques are ap-

propriate for all datasets, and determining which one to use can be time consuming requiring code

modifications and trial and error. We present LibPressio a generic abstraction for the compression

of dense tensors to minimize the code changes scientists need to make to take advantage of new and

improved compression techniques. In this work we assess how using an abstraction like LibPressio

can have on usability, overhead, and scalability of compression showing at least 50% reduction in

the volume of client code for 8 different applications while preserving statistically insignificant over-

head for compression and automatic parallelization capabilities which have comparable scalability

13

and less than 10% compression ratio overhead for moderate numbers of tasks relative to bespoke

implementations enabling performance portability.

3.1 Introduction

In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting

user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative

approach to accurately determine the appropriate error settings for different lossy compressors based

on target compression ratios. (2) We perform a thorough performance and accuracy evaluation

for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled

lossy compressors, using several real-world scientific floating-point datasets from different domains.

Experiments show that FRaZ effectively identifies the optimum error setting in the entire error

setting space of any given lossy compressor.

In recent years, error bounded lossy compression methods such as SZ, ZFP, and MGARD

have begun to revolutionize the way that application scientists transport data across the network,

store data to persistent storage, and process data in memory. This is because Error Bounded Lossy

Compression methods achieve much higher compression ratios than what can be typically achieved

with lossless compression methods, but also provide a bound on the errors introduced making lossy

compression possible for scientific applications where data integrity is key. These advances have

enabled advances in checkpointing, cosmology codes, climate codes, physics simulations, and more

[13].

However, to gain further adoption scientists who use these methods need a consistent, flex-

ible, and high performance interface to use and understand the effects of compression regardless of

what programming language they use. All of the existing lossy compressor methods suffer from a

proliferation of interfaces and semantics making it difficult to perform comparisons between methods

[2], [29], [30]. Users need one interface so they can focus on their science and allow compression

researchers to develop their methods independently.

Additionally, many compressors are not equipped to take advantage of multi-core architec-

tures. Many compressors have only a single mode [31] or operation [6] of the of the compressor

that has been parallelized – if any modes or operations have CPU parallel versions at all [7] – re-

sulting in an inefficient use of hardware. Creating parallel implementations for these compressors

14

can require significant engineering effort as evident from the volume and complexity of the code for

SZ and ZFP parallel implementations and the lack of feature parity between the parallel and serial

versions. User’s could invoke compressors in parallel using a framework such as OpenMP or MPI

if the compressor supports it, however this process requires attention to detail to do correctly and

difference compressors may benefit from different discretion schemes and requires the scientist to

further make changes to their code from adopting a serial version of a compressor. Finally, parallel

implementations require careful performance tuning to obtain optimal performance on a particular

platform which may change from compressor to compressor. Again this code can be written, but

further explodes the volume of code required if it is to be done efficiently.

In this paper, we aim at developing a low-overhead interface LibPressio which provides one

common, low overhead, productive interface which applications can use to automatically configure,

perform in parallel, and analyze the results of compression. This work is challenging because: (1) the

sheer number and variety of interfaces that compressors currently provide requires careful attention

to detail to provide an interface that all compressors can implement efficiently while being easy to use,

(2) developing scalable, high-performance parallel compressors is difficult for a single compression

algorithm – let alone a generic version that could be used with many compressors, (3) parallel

systems often require careful tuning and adaptable algorithms to best utilize available hardware

and naive implementations have high overhead This paper presents the design, implementation, and

some of the applications of LibPressio. Our contributions are:

• an extensive analysis of the API designs of 8 competing compression abstractions highlighting

their strengths and weaknesses for use in high performance parallel and distributed computing.

• a detailed consideration of the design considerations made in LibPressio

• We demonstrate at a 50% - 90% reduction in the volume of client code as measured across 11

different applications implemented with at least feature parity and often additional features,

while showing a 50% reduction in the complexity of the implementation of the command line

interface for SZ and ZFP and decreased porting effort.

• We demonstrate that LibPressio has statistically insignifigant overhead across multiple datasets

and error bounds.

• We demonstrate comparable run-time scalability and compression ratio to the bespoke parallel

15

implementations of SZ and ZFP for the modes that they implement. We further demonstrate

scalability of decompression for ZFP and compression and decompression for MGARD which

previously did not exist.

Here we outline the remainder of the paper: First in Section 3.2 we provide an overview of

the compression principles, APIs, and uses of error bounded lossy compressors used in HPC. Then in

Section 3.3 we compare our proposed solution to the extensive work in this area. Next in Section 3.4

we discuss the design trade-offs in the development of LibPressio. After that in Section 3.5 we

demonstrate the generalizablity of LibPressio to an array of different applications, and evaluate

its effectiveness by considering run-time overheads and code complexity changes. Finally, we draw

conclusions about the design of LibPressio and offer a path forward in the architecture of new

compression libraries.

3.2 Background

3.2.1 Compression Interfaces

Designing an effective interface requires a deep understanding of the kinds of operations that

are performed in compression and decompression. For lossless compression where no information is

lost, this would seem somewhat straight forward. However, due to differences in semantics, this can

be complex.

The simplest lossless compressors – such run length encoding which removes repeated con-

secutive sequences in the binary representation of the data and replaces then with a special sequence

that encodes the sequence and the number of times that sequence was repeated – can be viewed as

isomorphisms that map between the “origional” and “compressed” representations. Additionally,

many but not all of these compressors, accept any sequence of bytes as valid inputs to compres-

sion allowing them to be widely used. This property lends itself to a relatively small number of

meaningfully different interface design. The interface often consists of two functions compress and

decompress which are inverses of each other that perform compression and decompression on 1d

arrays in input bytes to produce a 1d array of output bytes.

However even for lossless compressors, there are some minor differences in the interfaces

relating to initialization of global structures, const-ness of the buffers accepted as arguments, whether

16

to accept inputs from the file system or from memory also, memory management for the underlying

buffers, and the passing of additional configuration parameters. Additonally, as soon as it is possible

for compression to fail such as with the ubiquitous zlib library – such as due to insufficient memory or

space in the output buffer, or a malformed input to decompression – compression and decompression

no longer form an semi-isomorphism let alone a isomorphism because once the compressor returns

the failure state, both compression and decompression operations can no longer uniquely recover the

original input prior to the compression using only the failure state.

Furthermore, some specialized lossless compressors like fpzip only accept IEEE arrays of

floating point inputs. This means that a compressor interface that abstracts between different

lossless compressors needs to pass type information about the data being compressed.

With lossy compression this problem is compounded. The decompression process for most

lossy compressors preserves the “structure” of the output while the values are often not preserved

but instead are approximations of the originals. The loss of losslessness requires users to conduct

tests and experiment with different lossy compressors to ensure that their data is preserved suffi-

cently for their applications. However, the lack of consistent implementations for this often leads to

a proliferation of metrics interfaces and implementations as well. Additionally many of the leading

lossy compressors for dense tensors take advantage of spatial information requiring a more sophisti-

cated description input metadata to describe dimension ordering, type information for their inputs

and the leading compressors again all differ on how to best do this.

3.3 Related Work

There have been several other related works that attempt to provide generic abstractions

for compression. Many of these approaches are specialized for specific domains that are not suitable

general for scientific computing. Table 3.1 provides an overview of the features of the various

compressor abstraction libraries.

3.3.1 Points of Comparison

In this section we compare compression abstraction libraries using the following criteria:

Does it support lossless compressors, Does it support lossy compressors, is it dimension aware, is it

datatype aware, is it embed-able in-process, does it allow arbitrary pointers for configuration, can

17

library purpose lo
ss

le
ss

co
m

p
re

ss
io

n

lo
ss

y
co

m
p

re
ss

io
n

n
-d

d
at

a
aw

ar
e

d
at

at
y
p

e-
aw

ar
e

em
b

ed
-a

b
le

d
es

ig
n

ar
b

it
ra

ry
co

n
fi

g
u

ra
ti

o
n

op
ti

on
in

tr
os

p
ec

ti
o
n

th
ir

d
p

ar
t y

ex
te

n
si

o
n

s

ADIOS-2 data processing framework 3 3 3 3 3 7 7 7
ffmpeg video 3 3 o 3 3 3 3 3
Foresight/CBench analysis 3 3 3 7 o 3 7 7
HDF5 data processing framework 3 3 3 3 3 7 3 3
imagemagick images 3 3 o 3 3 3 7 3
libarchive file-backup 3 7 7 7 3 7 3 7
NumCodes compression 3 3 3 3 7 7 3 3
SCIL compression + analysis 3 3 3 3 3 7 3 7
Z-checker (0.7) analysis 3 3 o 3 o 7 7 3

LibPressio compression + analysis 3 3 3 3 3 3 3 3

Table 3.1: Feature Comparison Table

options of compressors be introspected, and does it allow 3rd party extensions?

The first two categories are relatively self explanatory. If a compressor abstraction provides

any lossless compressors, it has a check for lossless compressors. If a compressor abstraction provides

any lossy compressor, it has a check for lossy compressors.

If a compressor abstraction is n-d data aware, it accepts information about the organization

of data in memory for N arbitrary dimensions. This is important because understanding the layout

of the data allows you to take advantage of spatial features in the data when compressing. Most

lossy and some lossless compressors use this information – such as some lossless image formats

such as PNG – to improve compression ratios. Many compressors do not support arbitrary higher

dimensional data structures; however, supporting 1-4d data is common [5]–[7]. It is important to

note that most compressor which supports at least 1d can often still operate on higher dimensional

information by treating contagious higher dimensions as a single dimension with a larger stride.

This is not always true, MGARD requires at least 3 rows in each dimension or it returns an error

rather than compressing the data [7]. Likewise while compression may not fail, passing incorrect

information about dimensions can produce inefficient compression. For example, with ZFP, passing

a dimension smaller than the blocksize results in inefficient compression due to required zero padding

for the algorithm. Therefore passing the dimensions accurately is important.

18

If a compressor abstraction is data-type aware, it accepts information about the data type

and allows at least two datatypes. This is important because this information is key to correctly

preserving data using lossy compression. You cannot preserve a data type to a non-zero error

tolerance if you don’t know how the data is stored. Lossless compressors can allow multiple data

types without begin data-type aware because they treat all input types as a stream of bytes regardless

of the underlying structure of the data. However, they also typically do not except information about

type information 1.

If a compressor abstraction is embeddable, it can be embedded into a application written

in native languages such as C or C++ without the use of the exec or loading an interpreter. This is

important because many HPC environments and frameworks (such as MPI) limit the use of exec to

start other processes, and running interpreters can be expensive overhead for running an application

[33].

If a compressor abstraction supports arbitrary configuration, it can accept arguments of

arbitrary type. This is essential to support compressors which can be configured with non-serializable

native types such as MPI Comm or cudaStream t to control the degree and placement of parallel

resources [34], [35]. This can also be important for compressors such as SZ which require structs be

passed for configuration of certain modes which may not have native serialization representations.

For this reason, compressor abstractions which are string-ly typed (use strings to store configuration

[29], [36], and parse the string to the appropriate type at runtime) or JSON typed are not appropriate

for existing lossy compressors.

If a compressor abstraction is introspectiable, it allows users to ask what options a com-

pressor supports and what types are used to represent these options. This becomes more and more

important the more compressor plugins that an abstraction provides. Users need to have some

common options way of enumerating the options supported by a compressor in order to program-

matically configure them. Compressors abstractions which allow this for all non-arbitrary types are

introspectiable.

If a compressor abstraction supports third party extensions, it allows additional compressors

or other facilities to be added to the abstractions interface without modifying the code for the

abstraction. This becomes important because it allows developers to create their plugins out of tree

so that they can be used experimentally before being upstreamed. If the source code has to be

1For two exceptions consider [32] and ZFP’s reversible mode [6]

19

modified, this becomes more difficult.

3.3.2 Existing Libraries

One example of this is libarchive – the library that underlies many modern implementations

of the Linux/UNIX tar command. It supports a number of what it calls filters which are lossless

compressors such as gzip, lz4, lzma, sx, zstd, and others. It also supports a number of formats such

as cip, zip, tar, rar and other container formats which encapsulate separate files stored within the

buffer. One of its key portability features is that it uses callback functions so that archives can be

read or written from sockets, files, memory, or other custom resources. Lastly libarchive expects a

”record” organized layout – that an archive file consists of one or more ”named” records. However

in scientific codes, this is not always true, but share some similarities with HDF5 which is commonly

used in HPC. The weaknesses of libarchive is that it only supports lossless formats, has no concept

of the underlying type or structure of the data being stored, and does not allow third party filters.

There are two examples of libraries dedicated to compressing/decompressing lossy artifacts:

imagemagick and ffmpeg. These compress/decompress images and video respectively. However not

all scientific data can be neatly characterized either as 2d image or even a video. So while these inter-

faces could be used, they do not necessarily represent a universal interface for lossy compression, but

rather specialized interfaces for specific domains. ImageMagick further supports a variety of features

that generally feel out of place in scientific computing such as image transforms or color mapping.

The same is true for the various libraries such as the one in VLC called libcompression. In addition

to these libraries there are also specialized libraries for specific algorithms such as libjpeg-turbo.

These libraries use still different interfaces which optimize for there usecase by providing a ”by-

scanline” interface which allows reading images by row for ease of rendering. This falls short of the

various random and parallel strided access patterns used by HPC codes.

In Python there are tools that are closer to LibPressio, for example, NumCodecs is a python

library that provides a set of “codecs” which implement various lossless and loss compressors. First of

all NumCodecs is a python library, and a vast majority of HPC codes are not written in python. The

translation between python and C++, even with the python buffer protocol introduced in Python 3.2

and improved in 3.3 is still moderately expensive. The further restrictions of the global interpreter

lock for multi-threading in C Python make it unlikely that applications will embed Python to perform

compression in a multi-threaded C or Fortran application. However, the interface requirements of

20

NumCodecs are overly strict. For example, at time of writing, SZ one of the leading error bounded

lossy compressors cannot implement its interface correctly due to its use of global memory to store

configuration parameters. Additionally, NumCodecs does not support all of the kinds of options

modern lossy compressors in HPC require. For example, it doesn’t support passing structures or

opaque pointers that can’t be serialized as JSON such as MPI Comm or sycl::queue structures used

by some compressors to control parallelism. Finally, NumCodecs doesn’t have a uniform way to

query certain kinds of important information about compressors such as their thread safety level.

Analysis tools such as Z-checker and Foresight also provide there own lossy compression

abstractions. Older version of Z-Checker as well as current versions of CBench – the compression

library behind Foresight – provide their own compressor abstraction layers. Both of these interfaces

are limited in that they aim to adapt only a subset of compressor options. Z-checker is notable

in that it provides adapters to convert the native bounds kept by error bounded lossy compressors

those supported by SZ using mathmatical relationships between the bounds. Both of these tools

use ”stringly typed” configuration parameters. This shares the weakness of NumCodecs, but then

aggravates the problem by using string based encodings of floating point numbers which further

loose precision. Neither of these libraries provide runtime information such as thread safety that can

be used to safely parallelize workloads. Futhermore, only parts of Zchecker[37] which are designed

to collect and store metrics are designed to be embedded into other applications. While CBench the

actual compressor abstraction can be embedded, Foresight was designed as a standalone application.

Because of these weaknesses, current versions of Z-Checker are in the process of adopting LibPressio

for interfacing with compressors.

3.4 Design Overview

The architecture of LibPressio was developed after evaluating all of the strengths and weak-

nesses of the existing compressor libraries. The goal was to develop a library which would fit the

specific needs of users in the HPC community who have some of the most complex needs of any

compression user.

LibPressio has six major components. pressio structures are used to create references to,

enumerate, and handle errors while creating compressors, metrics and io modules. pressio data

structures are an abstraction for handling memory management, and different shapes and types of

21

data buffers. pressio compressor structures are used to compress and decompress data. pressio options

structures hold introspectiable configuration for compressors, metrics, and io objects. pressio io

structures provide convenience functions for reading data from various sources into our out of

pressio data buffers. pressio metrics structures provide functions for measuring the performance

of compression and the quality of compression. These relationships are summarized in figure 3.1.

For a high level overview of the usage of the library, A complete example of the LibPressio

API can be found in Appendix A. In the remainder of this section, we discuss some of the key

architectural decisions in LibPressio.

3.4.1 C api with a C++ implementation

Compressors that can be embedded within an application can be used in far more contexts

than those that must be used from a separate process. This is because some frameworks such as

MPI limit access to the fork system call (or CreateProcess on Windows). Because you can’t rely

on libraries that make out of process calls, an embedded design is prefered.

Then comes the question of what language to choose for the task. One could either choose

a native or a byte-code/interpreted interface. Likewise, there can be dramatic performance and

dependency management implications for using an interpreter such as Python or Java’s JVM. Many

of these runtimes don’t support running multiple independent, concurrent runtimes, a necessity for

parallel codes and have some an initialization routine that can be called at most once. WebAssembly

offers a promising option, but currently doesn’t support all of the various types used in HPC codes

and doesn’t currently have wide adoption. Thus a compressor abstraction should prefer a native

interface.

In order to save engineering time and effort a single language for the interface and plugins

should be chosen. For ease of porting that language should have numerous foreign function interfaces.

The language that has the most foreign functions interface implementations is C because all programs

need to make system calls, and system call interfaces are almost always written in C. However, C does

not provide commonly used higher level abstractions that would aid in implementation of plugins

– or support compressors written natively in C++ such as MGARD. Thus, C++ was chosen for

the implementation language because of its C compatible ABI and higher level abstractions such as

templates which greatly simplify code.

22

Figure 3.1: Major Components of LibPressio and how they interact with plugins and client code

23

3.4.2 Data Abstraction

A compressor abstraction library ought to have an abstraction to describe the type and

layout of data. This is because every compressor library that we studied has a different understanding

of what it should be passed. This also allows the underlying implementation to use the dimension

and type information if it can be used, and ignore it if it cannot be.

Memory management is another key aspect of the data abstraction. The compression library

might want provided memory to compress/decompress into, it may allocate the compressed or

decompressed buffer on compression and decompression respectively, it may need to run on a GPU

or on persistent memory [34]. If the library didn’t take responsibility for memory management,

users would not know how to pass memory to or from each application and it would leak through

the abstraction.

The most flexible design is essentially a pointer, with an array to store the dimension infor-

mation, and an enum to store the datatype, a function pointer to a deleter method, and an optional

void pointer to state for the deleter method. As an alternative to an enum the address of a fully spe-

cialized templates function could be used; this design is used by many implementations of std::any

to allow it to be used without RTTI. The advantage of this design is that it trivially supports new

types. The disadvantage of this design is that this address could differ from compiler to compiler,

and could foil network serialization in a heterogeneous environment. The design allows users to use

persistent or GPU unified memory memory function with API’s like mmap or sycl::malloc device

easily. The deleter can be a static function to memunmap or sycl::free respectively. Likewise, this

design allow for shallow copies where the deleter function is a noop.

3.4.3 Compress and Decompress

Compressor interfaces themselves differ in a surprising number of ways. A good abstraction

needs to handle all of these cases.

For example, ZFP and image and video libraries tend to use a Fortran based dimension or-

dering whereas SZ and MGARD expect a C based dimension ordering. Passing the wrong dimension

ordering can result in poor compression quality because incorrect strides are used to represent the

data. For sake of simplicity, the user should only have to learn and write one ordering and have the

abstraction provide the compressor with the correct underlying ordering where required.

24

Compressors have different construction methods. SZ has a single shared configuration store

which is created by SZ Init and deallocted by SZ Finalize. ZFP can have multiple independent

configuration stores. This has impacts on thread safety since a thread can only call SZ Finalize

if they are confident no other thread (possibly in a different library) is still using SZ. The safest

approach is reference count instances of compressors and to provide an interface to indicate if the

instance returned is a shared instance or not – allowing use of multi-threading if it is not shared.

Compressors may or may not encode the compressor configuration into the compressed byte

stream. The abstraction should require that users provide the configuration outside of the use of

the compressor, but provide interfaces to use the stream encoded metadata if it exists. This is the

same solution choosen by NumCodecs.

Compressors may or may not clobber the buffers passed to them by the user. Some versions

of MGARD treat the input data as mutable to save on memory during compression. However

clobbering the input data is unusual amongst compressors, and could surprise the user. Enforcing

constness of the input data is preferable from a consistency perspective, so compressors that clobber

the input data should generally make a copy and compress on the copy.

Error bounded compressors don’t all have the same notions of error bounds or options.

SZ for example has 27+ different configuration parameters, where as some lossless compressors

have either zero or one parameter. The compressor abstraction should allow compressors to have

arbitrarily many options, while at the same time providing a list of “common” options understood

by one or more compressors. When the compressor abstraction also provides introspection, users

can select the compressors that meet their specific needs programmatically.

3.4.4 Options Abstractions

Now that we have discuss the ways in which compressors can differ, we consider the ab-

stractions for representing these configuration options.

When compressors can use different types for the same option, it becomes important to pro-

vide conversions between these options. However, implicit casting between options has the potential

to be surprising, and depending on the conversion to lead to a loss of precision thus only should

be enabled when desired. LibPressio chooses to allow safe conversions with the as set routine, but

also has a cast set routine which allows a safely level parameter for increasing more surprising

conversions from implicit, to explicit, to special conversions (such as atoi, or to string).

25

Introspection of types is key to an interpretable interface between compressors. Users need

to know what type the compressor expects in order to supply arguments of the correct type. In

Libpressio, each option can report its type as one of 9 options: signed and unsigned integers of size

8, 16, 32, and 64, IEEE 32bit single precision floating point, IEEE 64bit double precision floating

point, string, array of string, data, user data, and unset. The first 5 are self explanatory and store a

scalar of the specified type. The array of string option allows a dynamically sized list of string to be

passed to an option. It can be used for compressors which support multple error bounds at a time.

The data option allows a full data buffer to be passed to an option. It can be used for compressors

which need a mask such as SZ’s ExaFEL mode [38]. The user data mode allow the user to pass a

void pointer to a compressor. It is most commonly used to pass opaque types that represent parallel

resources such as MPI Comm. The unset type is used to indicate an invalid error state and does

not actually contain data.

Another key design decision is to allow hierarchical options setting. With the introduction

of a clean API for interacting with compressors, developers can create meta-compressors which

provide helpful functionality for other compressors. A few good examples of this from LibPressio

are the many independent and many dependent modules which parallelize a series of independent

or dependent compression tasks in parallel using MPI. Other good examples are a compression auto-

configuration plugin which tunes the compressor the users desires to meet some objective. This could

be through of as a hierarchy of compressors. With a hierarchy of compressors, users need a way to

configure the various levels of the hierarchy both efficiently, but also independently. LibPressio sets

an option for all compressors that support the same option lower on the hierarchy unless it has a

different setting explicitly set for it.

3.4.5 Metrics Abstractions

A good compressor abstraction should also provide at least a basic debugging and metrics

interface. Being able to inspect the uncompressed, compressed, and decompressed buffers in transit

can save users a great deal of effort in analyzing their code. This allows all compressors to share the

same metrics gathering code for things like compression ratio where are common to all compressors.

This doesn’t mean that compressors can’t provide their own specialized metrics, SZ for example

reports the number of blocks that were predicted with the lorenzo predictor vs the regression predic-

tor. What is key is to provide these interfaces as a series of callbacks. The most important callbacks

26

are pre/post compression and decompression, but as identified above, a callback to get compressor

specific metrics can also be important[31].

3.5 Example Applications and Effectiveness

In this section, we highlight a number of sample applications and plugins that we developed

that we developed to demonstrate the generalness and flexiblity of the LibPressio api.

3.5.1 Plugins

At time of writing, LibPressio currently has over 54 public first-party plugins that were

developed in connection with researchers and scientists at 6 different institutions. These plugins

include all of the leading error bounded lossy compressors as well as common lossless and image

compressors. LibPressio also supports some of the most commonly used IO formats used in scientific

computing such as flat binary files, HDF5 files, and character-delimited files such as CSV. These

plugins enabled researchers to quickly adopt LibPressio into their existing work flows. Figure 3.2

gives an overview of the available plugins. Descriptions of these can be found in the glossary.

LibPressio also supports a number of meta compressors. As alluded to in section 3.4.4,

meta-compressors are not compressors themselves, but compressor interface compatible tools that

boost productivity of those using and developing compression techniques. Some of these plug-

ins allow performing common pre/post processing steps such as transposition, resizing, and linear

quantization. Others provide more robust capabilities such as fault or statistical error injection, auto

tuning, and automatic task-based parallelization. By allowing and encouraging these kinds of ser-

vices to conform to the compressor interface and using the same data abstraction for uncompressed,

compressed, decompressed data compression and decompression operations become endomorphisms

allowing arbitrary composition of compressors and these services. This allows users or even com-

pressor developers to experiment with different compressor designs out of their consistent functional

parts such as quantization, transform, prediction, and encoding stages. This even allow new ap-

proaches to compressor architecture by allowing compressors to provide only small components of the

compressor pipeline that can be chained with the most efficient stages developed by other developers.

Beyond meta compressors, unlike prior approaches for developing tools for compression

which were tied to specific compressors, meta compressors and external tools built upon LibPressio

27

Figure 3.2: List of Plugins, Applications and Language Bindings using LibPressio. Descriptions can
be found in the Glossary. A up to date list and description can be found at https://github.com/
robertu94/libpressio

28

https://github.com/robertu94/libpressio
https://github.com/robertu94/libpressio

benefit the entire compression community. Abstractions such as ZFP’s inline array’s, python bind-

ings for a compressor, HDF5 plugins no longer have to be developed for a single compressor, but all

of them simultaneously. In the remainder of this section, we discuss some particular tools that we

have or are developing using LibPressio.

3.5.2 Productivity

In this section, we evaluate productivity improvements from adopting LibPressio. We mea-

sure productivity improvements in three ways: First, we consider the number of lines of normalized

client code which has long been used as an estimate of effort for developing new applications and

maintenance effort required for an implementation and show a 50% to 90% reduction in lines of

client code. Next, we consider the complexity of the client code using the established McCabe Cy-

clomatic Complexity which estimates the complexity of client code by the number of possible paths

through the code and show a 50% improvement for SZ and ZFP. Lastly, we evaluate porting costs

when switching between compressors by using both the lines of changed code and the Levenshtein’s

distance and demonstrate a lower switching cost by all measures considered.

First we look at the effort to develop or maintain a code base supporting multiple com-

pressors using lines of code. We started with a number of use cases which were supported by at

least one of the leading lossy compressors: ADIOS2, Julia bindings, Python bindings, Rust bindings,

command line interfaces (CLI), HDF5 filters, a configuration optimizer, and Z-Checker. We added

to our list a few use cases that were requested by our collaborators: R bindings, an experimen-

tal test harness written in C++ distributed with MPI, a fuzzer which provides random inputs to

the compressor to identify implementation flaws in the compressors. We then implemented each

of these facilities in LibPressio to at least feature parity with the native tool. In some cases such

as the LibPressio CLI, the LibPressio version implements many more features – for example, the

libpressio CLI can compress and decompress HDF5 datasets where as the SZ, ZFP, and MGARD

cannot. Additionally, in some cases the LibPressio bindings use the compressors in a more correct

way such as passing dimensionality information correctly. Finally, in there of these cases – the CLI,

python bidings and HDF5 filter – the implementation do not have competing a multi-compressor

implementation: in these cases we simply sum the lines of code in each implementation. While

this will over-count some code, like command line argument parsing code, it is often less than the

code required to implement a correct abstraction. For clarity, we mark these entries in our table.

29

C
om

p
re

ss
or

s

L
in

es
N

at
iv

e

L
in

es
L

ib
P

re
ss

io

Im
p

ro
v
em

en
t

R
el

at
iv

e
Im

p
ro

ve
m

en
t

Task

ADIOS2 [36] 3 744 367 377 50.67%
BindingJulia [39] 1 299 25 274 91.64%
BindingPython [38], [40] † 2 768 363 405 52.73%
BindingR - - 793 - -
BindingRust [41] 1 112 34 78 69.64%
CLI [6], [7], [38] † 3 1649 756 893 54.15%
Configuration Optimizer [42] 1 4683 1869 2814 60.09%
DistributedExperiment - - 613 - -
Fuzzer - - 24 - -
HDF5 filter [6], [38] † 2 1469 438 1031 70.18%
Z-Checker [37] 7 3052 405 2647 86.73%

Table 3.2: Lines of Client Code for Various Usages, † indicates no native multi-compressor imple-
mentation exists

To account for differences in formatting/style, clang-format was applied to all files, and we then

measured the number of lines of code example applications utilities using the cloc utility. In the

case of larger libraries like ADIOS2 [36] or Z-checker ([37], we include only the files that directly

include compressor libraries headers.

Table 3.2 provides a summary of our results. We consistently find that LibPressio decreases

the number of lines of code required between 50-90%.

We also computed the McCabe complexity of the command line tools [43]. MGARD again is

the smallest at 14, followed by libpressio at 55, and SZ and ZFP clock in at 128 and 137 respectively.

Most of the complexity is due to parsing of the command line arguments, but some of this is

responsible for handling different reading in different types of data or different handling of some

modes. Note for libpressio, this is a fully mpi-parallelized implementation that supports 6+ input

formats as well as 27+ compressors and meta compressors whereas the others are a serial C version

for a single compressor and input type. Figure 3.3 summarizes these results.

We computed the difference between switching from SZ to ZFP both with and without

LibPressio for a basic use with a hard-coded error bound. We computed the Levenshtein’s distance

for both configurations [44]. We report these values in Table 3.3. While for small examples like

30

Figure 3.3: McCabe Cyclomatic Complexity for the Command Line Interfaces; MGARD has fewer
robustness checks and can crash if used incorrectly

31

Source Source Config
Method Characters Lines Lines

Native 768 27 0
LibPressio 90 3 0
LibPressio+ConfigFile 0 0 3

Table 3.3: Minimum Changes to switch from SZ → ZFP in C

Component Description Component Version

CPU Intel Xeon 6148G (40 Cores) Compiler GCC 8.3.1
RAM 372 GB OS CentOS 8
Interconnect 100 GB/s HDR Infiniband MPI OpenMPI 3.1.6
MGARD v0.1.0 SZ v2.1.12
ZFP v0.5.5 LibPressio 0.70.4

Table 3.4: Hardware and Software Details

this one the cost of switching is relatively minor, they do not account for the added complexities of

learning new APIs or the benefits of performance portability to be gained by adopting LibPressio.

3.6 Quantifying Overhead

First we measure the runtime overhead of using LibPressio relative to using the native APIs

for the compressors such as SZ, ZFP, and MGARD. For this portion, we consider only the serial

CPU version of these functions and leave the evaluation of the parallel functions to Section 3.7.

The hardware we used for our experiments in summarized in Table 3.4. We selected these

particular nodes because they were the largest nodes on the cluster that were available in sufficiently

large quantifies to run the experiments in a reasonable time. Generally we selected the newest

“prefered” version of the software available in Spack’s develop branch at the time of submission

and the compiler was the default system compiler [45]. All software was compiled using default

optimizations provided by Spack (generally -O2).

For native APIs, we modify the command line interfaces to introduce timing calls di-

rectly around the calls to SZ Compress, zfp compress, and mgard::compress using the POSIX

clock gettime api with CLOCK MONOTONIC. For LibPressio, we used the metrics interface time mod-

ule which uses libstdcxx’s std::chrono::steady clock::now() before and after the call to the

compressor’s compress function which in turn uses the same POSIX api. We confirm with GDB

that the same arguments are passed to the calls to the underlying compression functions. We further

32

Figure 3.4: Compression Overhead for SZ/ZFP using LibPressio

confirm that both the native and libpressio implementations link the the same shared libraries that

provide the compression functions to ensure that equivalent code generation occurs.

We conduct our experiments for several value range error bounds on various files from the

SDRBench repositories to show that our results are robust to the choice of file and error bound for

multiple compressors [46].

As we can see in Figure 3.4, the overhead measured for compression and decompression is

for the overwhelming number of cases not statistically significant with the absolute overhead within

the 95% confidence interval for the test and always less than 0.7% runtime overhead. While not

dis-positive, there is insufficient evidence to conclude that there is a difference in run-time between

these configurations.

3.7 Performance Portability

A general abstraction like LibPressio can enable a variety of possible features that can

be used between compressors. One such features is the automated cpu-based parallelization of

compression for thread-safe compressors. In this section, we evaluate the development effort, and

features, compression performance, and run-time performance of LibPressio’s automatic parallel

compression against the bespoke parallel versions of SZ and ZFP to demonstrate how it can enable

a scalable implementation as well as for MGARD which at time of writing has no bespoke parallel

implementation.

We begin by evaluating the features of LibPressio’s parallel implementation against SZ and

ZFP custom implementations. Table 3.5 summarizes the difference between the implementations.

33

Implementation Lines n-d data datatypes

SZ-OMP 830 1 (3d) 1
ZFP-OMP 299 4 (1-4d) 4
LibPressio 356 arbitrary arbitrary

Table 3.5: Comparison of Parallel Implementations

SZ’s parallel implementation runs in parallel 3 portions of the SZ algorithm: the prediction

of points, the copying of unpredictable data, and the encoding of the saved data using a Huffman

encoding. The algorithm it uses it requires that the number of threads used be a multiple of 4 and

is only implemented for data for 32 bit floating point 3-d data bounded by the absolute error bound.

ZFP’s error bounded parallel CPU implementation of compression in ZFP but not decom-

pression 2. ZFP’s compression implementation supports all data types and dimensions supported

by ZFP. ZFP implementation operates by splitting the data into 4n chunks as it does in the serial

case, but instead the compressing each of the chunks in parallel, and then concatenating the results.

When the data is smaller than a 4n chunk, it is padded to the nearest multiple of size 4n.

However, many compressors such as MGARD do not have a parallel CPU implementation.

We include MGARD in this section as an evaluation for a compressor one would like to parallelize,

but may not have the time or expertise to warrant a bespoke parallelization.

LibPressio’s implementation is in principle similar to ZFP’s but with a few important dif-

ferences. First, it has been generalized to operate with any compressor rather than only ZFP by the

use of libpressio’s compressor abstraction. This means that LibPressio’s implementation has lower

compression ratios that what a bespoke parallel implementation can offer since it doesn’t have suffi-

cient information to output common header information – such as SZ’s huffman tree which could be

shared – and because of the built-in index described next. It also means that LibPressio’s implemen-

tation will support the same dimensions and data-types as the underlying compressor. The exact

difference in compression ratios differs depending on the exact compressor, dataset, and chunksize,

but can be quite comparable as shown in Table 3.6 However because LibPressio’s implementation

does not make any assumptions about the underlying compressor outside of thread safety, compres-

sors like MGARD just work with LibPressio’s implementation. Second, LibPressio writes a header

containing the sizes of each compressed chunk to the beginning of the compressed output. This en-

2There is also a parallel GPU implementation of its non-error bounded mode which does implement parallel
decompression, but is excluded from consideration here for a closer comparison between methods and because non-
error-bounded modes may not be appropriate for scientific codes

34

ables the parallel decompression feature not offered by ZFP. During decompression, the compressed

buffer is partitioned according to the header and then decompressed in parallel. Third, the current

implementation in LibPressio allows arbitrary block sizes that contiguous in memory. In order to

share the serial decompression implementation, ZFP uses the blocks of size 4n used by the serial

version, however, because LibPressio has the header it can support re-assembling arbitrary chunks.

Additionally, the custom chunk size effects performance as we show shortly. It is planned that a

future version of LibPressio will lift this restriction and allow padding like ZFP solution to allow

truly arbitrary block sizes or other possible alternative solutions.

We conducted a series of scalablity and compression ratio experiments using SZ, ZFP, and

MGARD using their custom parallel implementations and using a automatic parallelization system

using LibPressio we developed.

We used the same hardware and software as described in Table 3.4 These nodes have 2

sockets with 20 cores each therefore we choose several chunk sizes: 1, 2, 4, 8, 10, 20, 22, 24, 26, 28,

30, and 40. SZ’s parallel implementation requires either 1, 2 or thread multiples of 4, and will not use

additional threads unless they complete a full multiple of 4. LibPressio and ZFP’s implementation

places no restriction on the number of threads. For sake of space, we report up to size 24; results

after 24 threads are similar. For these experiments, we repeat each experiment 30 times to account

for variance between runs.

For our experiments, we choose the volume field from the SCALE-LETKF dataset on SDR-

Bench. Other data-sets yielded similar results. We choose this dataset as one the largest 3d floating

point data sets included in SDRBench with dimension 1200×1200×98. Large data-sets sizes provide

parallel compression implementations provide sufficient data to warrant a threaded implementation.

The current implementation of LibPressio’s parallel implementation requires that the chunk sizes be

contiguous and equal sized. Therefore we considered chunk sizes of 7 chunks of 1200× 1200× 14, 14

chunks of 1200×1200×7, and 49 chunks of 1200×1200×2. We excluded 2 chunks of 1200×1200×49

as this would limit the amount of parallelism that could be expressed. SZ does not have a concept

of chunk-size that is exposed. ZFP also has a chunk-size parameter, by default it creates a number

of chunks equal to the number of threads which we found to be the best configuration. For this

dataset, ZFP has 2,250,000 fixed size blocks of size 4 × 4 × 4 of which 90,000 of them are padded

to 2× of their original size which are divided as evenly as possible between the available chunks

resulting in an effective input data size of that is 2% larger.

35

compression ratio
configuration chunks

libpressiothread MGARD 7 1.389971
14 1.435876
49 n/a

libpressiothread sz 7 2.245248
14 2.197810
49 1.887099

libpressiothread zfp 7 1.427047
14 1.377799
49 0.830169

szthreads sz 1 2.256079
zfpthreads zfp 1 1.589013

Table 3.6: Compression Ratio of different parallel implementations, error bound=1e-6, 7 chunks,
SCALE-LETKF V dataset, chunksize=49 not supported for MGARD due to minimum data size
requirements in MGARD

We first consider the compression ratio results in Table 3.6. For LibPressio threads, the

compression ratio generally worsens as the number of chunks increases. For small chunk sizes, a

compression ratio overhead of between .04 and 10% Excluding ZFP with 49 chunks, For larger

chunk sizes, a compression ratio overhead up to 16% is observed. This is because the libpressio

threaded versions have duplicate header information that a custom implementation could discard,

less spatial information to use to find trends in the data which can be exploited for compression, and

similar meta-data structures that could be combined such how the Huffman tree in SZ which SZ’s

openmp implementation uses a common tree. The results of ZFP with 49 chunks is a pathological

case. Recall that ZFP effectively pads blocks that are not 4n. Where as ZFP parallel implementation

padded only 4% of the blocks, the libpressio implementation with 49 chunks forces ZFP to pad all

2250000 blocks because it sees each input as 1200×1200×2. If the LibPressio implementation were

modified was able to use a chunk size of 1200× 1200× 4 much of this overhead would be eliminated

for this dataset. Likewise the MGARD with chunksize=49 is omitted because the compressor does

not support chunks with any dimension less than 3.

Next we consider the parallel runtime for compression in figure 3.5. We see at small thread

counts, each of the methods is relatively similar regardless of what methods are used. Generally,

greater chunk counts allow a higher maximum performance at the optimal number of threads. This

is because there is more work that can be done in parallel allowing it to be completed more quickly.

However even for 49 chunks, performance maxes out after about 20 threads for both LibPressio and

36

native methods. This is likely due to these systems have 20 cores per socket and with more than 20

threads, the tasks must be spread across a NUMA boundary and participate in cross-socket cache

invalidation. One exception is that LibPressio with 49 chunks shows a performance degradation after

22 threads that gets worse as thread counts increase that is not seen with LibPressio with using

ZFP. One explanation for this behavior is that SZ performs both a Huffman encoding and a lossless

ZSTD encoding which are both heavily dependent on the CPU cache to have high performance.

As the thread count rises, there is increased contention for these cache resources. The reason that

SZ’s native implementation does not suffer the same performance degradation as the number of

threads grows is because it shares a common Huffman tree allowing for better cache behavior and

the lossless encoding is done serially. MGARD which has no other parallel CPU implementation

also scales nicely.

Next we consider the parallel runtime for decompression in figure 3.6. We see similar results

to the parallel speedup for compression, however there are a few notable differences. First, we

don’t see the performance degradation in ZFP for SZ above 22 threads that we saw for compression

with 49 chunks. This is likely because during decompression there aren’t any writes to the memory

containing the Huffman trees after they are loaded requiring cache invalidation between NUMA

nodes resulting in a more efficient usage pattern. Next, we observe that ZFP natively doesn’t

parallelize decompression and thus does not provide a performance speedup meaning that LibPressio

is the only currently the error bounded implementation for parallel decompression using ZFP. We

also observe that decompression scales better than compression achieving a greater speedup than

what compression achieves. This is likely due to better cache behavior for decompression than for

compression which has been long observed in lossless compression algorithms [34].

When compression and decompression results are viewed in concert with the compression

ratio results, a chunk count of 14 could be recommended. However, these parameters can very

from machine to machine. LibPressio provides a meta-compressor – LibPressio-Opt – that can

optimize the configuration of a compressor on given data-sets so the user does not have to conduct

this analysis themselves [2]. This initial validation could be performed on the first compression

operation to enable easy to use performance portability across machines.

37

Figure 3.5: Compression Speedup for SZ/ZFP using LibPressio

38

Figure 3.6: Decompression Speedup for SZ/ZFP using LibPressio

39

3.8 Conclusions and Future Work

In this paper, we highlighted several key aspects of LibPressio and how they can be used to

enable a wide array to tools to advance the state of compression usage and research by simplifying

existing work flows. We further demonstrate These various improvements brought many new features

to existing compressors and new compressors to new languages and tools while simplifying the

existing compressor work flows and reducing redundant work.

For future work on the abstraction of compressors, we plan to extend LibPressio to account

for the following use cases. Each of these cases require research to answer questions regarding how

to most efficiently perform this these improvements.

1. Better support for Accelerators – with the apparent demise of Moore’s law, computing ar-

chitectures are becoming increasing heterogeneous requiring libraries to become aware of this

heterogeneity to make maximal use of the hardware. For libraries like LibPressio this means

three things: 1) a notion of data locality for compression tasks to enable efficient migration of

data to and from memory pools on accelerators such as the GPUs, FPGAs, and specialized

memory resources on board with the CPU. The abstaction should provide means for indicating

which memory types the compressor supports to reduce or eliminate redundant copies to and

from these different memory pools, and potentially allow for better non-uniform memory access

patterns on mulit-core CPUs. 2) a consistent means of compressors reporting and requesting

which parallel resources compression libraries require, can use if are available, are allocated

for the task, and a means to share common parallelism resources such as GPU devices devices

between other libraries that may use them to avoid contention and allow for efficient scheduling

of compression tasks to available accelerators. 3) Support in the compressor plugins to use the

parallel implementations where available.

2. Better support for Asynchrony and Streaming Compression – this is another key feature for

supporting accelerators, but deserves its own heading because it has applications beyond ac-

celerators. A common challenge with compressors is having sufficient data to compress in

order to achieve a desirable bandwidth through the compressor. One way to achieve this is

to batch multiple requests for compression to a single underlying call the compression library.

Beyond accelerators, some applications such as LCLS-II produce data in a streaming fashion.

In such a case, the user does not know how large the incoming stream of data will be. Given

40

the volumes of data involved with LCLS-II, buffering the entire dataset in memory is infea-

sible due to the shear volume of memory involved with a single stream. Instead compressors

that support it need a way to provide asynchrony between calls to the compressor and the

compression stream. Some of this design could be abstracted to a meta compressor to enable

these features for existing compressors.

3. Better support for Sparse data Compression – Another growing problem in HPC is the prob-

lem of sparse datasets. Sparse datasets have many redundant zeros, but that doesn’t mean

they are small. Even sparse datasets can be many GB, thus inviting the use of compression.

These datasets present different challenges for lossy compressors since traditional prediction,

transform, multi-grid, and encoding compressors were designed for dense data representations.

To be a compression library that supports all compression problems, sparse problems cannot

be ignored. From a compression abstraction library perspective, supporting sparse problem

means providing a means of using spare data volumes to compressors in a way to which they

can be converted to appropriate representations for the compressors is key.

41

Chapter 4

FRaZ: A Generic High-Fidelity

Fixed-Ratio Lossy Compression

Framework for Scientific

Floating-point Data

Portions this chapter were previously published [2] in the International Parallel and Dis-

tributed Processing Symposium 2020 under the title: FRaZ: A Generic High-Fidelity Fixed-Ratio

Lossy Compression Framework for Scientific Floating-point Data

Abstract

With ever-increasing volumes of scientific floating-point data being produced by high-performance

computing applications, significantly reducing scientific floating-point data size is critical, and error-

controlled lossy compressors have been developed for years. None of the existing scientific floating-

point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio

lossy compression for scientific floating-point data not only compresses to the requested ratio but

also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ:

42

a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The

contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the

appropriate error settings for different lossy compressors based on target compression ratios. (2) We

perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression

framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world

scientific floating-point datasets from different domains. Experiments show that FRaZ effectively

identifies the optimum error setting in the entire error setting space of any given lossy compressor.

4.1 Introduction

Today’s scientific research applications produce volumes of data too large to be stored,

transferred, and analyzed efficiently because of limited storage space and potential bottlenecks in

I/O systems. Cosmological simulations [11], [47], for example, may generate more than 20 PB of

data when simulating 1 trillion particles over hundreds of snapshots per run. Climate simulations,

such as the Community Earth Simulation Model (CESM) [48], may produce hundreds of terabytes

of data [49] for each run.

Effective data compression methods have been studied extensively. Since the major scientific

floating-point datasets are composed of floating-point values, however, lossless compressors [32], [50],

[51]cannot effectively compress such datasets because of high entropy of the mantissa bits. There-

fore, error-bounded lossy compressors have been widely studied because they not only significantly

reduce the data size but also prevent data distortion according to a user’s specified error bound.

Most existing lossy compressors consider the error bound preeminent and endeavor to improve the

compression ratio and performance as much as possible subject to the error bound.

However, many scientific application users have requirements for the compression ratio.

These requirements are determined by multiple factors such as the capacity of the assigned storage

space, I/O bandwidth, or desired I/O performance. Hence, these users desire to perform fixed-ratio

lossy compression—that is, compressing data based on the required compression ratio instead of only

strictly respecting user’s error bound. In this case, the lossy compressor needs to adjust the error

bound to respect the target user-specified compression ratio, while minimizing the data distortion.

The user can also provide additional constraints regarding the data distortion (such as maximum

error bound) to guarantee the validity of the results from reconstructed data. While fixed-ratio

43

compression can be obtained by simply truncating the mantissa of the floating-point numbers, this

approach may not respect the user’s diverse error constraints. With such additional constraints,

the lossy compressor should make the compression ratio approach the expected level as closely as

possible, while strictly respecting the data distortion constraints.

In this paper, we propose a generic, efficient fixed-ratio lossy compression framework, FRaZ,

that is used to determine the error settings accurately for various error-controlled lossy compressors,

given the particular target compression ratio with a specific scientific floating-point dataset. Our

design involves two critical optimization strategies. First, we develop a global optimum searching

method by leveraging Davis King’s global minimum finding algorithm [52] to determine the most

appropriate error setting based on the given compression ratio and dataset in parallel. Second, our

parallel algorithm optimizes the parameter searching performance by splitting the search range into

distinct regions, parallelizing on file, and—in the offline case—by time-step.

Constructing a generic, high-fidelity framework for fixed-ratio lossy compression poses many

research challenges. First, as we elaborate in Section 4.5, the relationship between error bounds and

compression ratios is not always monotonic because of the use of dictionary encoder phases in

some compressors such as SZ. Second, since we aim to create a generic framework such that more

compressors can be included in the future, we cannot utilize properties of the specific compressors

we use to optimize performance as has been done in prior work [21], [53] and must instead treat

the compression algorithm as a black box. This means that our algorithm cannot take advantage

of properties induced by block size or expected behavior induced for a particular data distribution.

Third, since we treat the compressors as a black box, we must carefully study how to modify existing

algorithms to minimize the calls to the underlying compressors and orchestrate the search in parallel,

in order to have a tool that is useful to users while working around the limitations of the various

current and potential future compressors.

We perform the evaluation for our framework based on the latest versions of state-of-the-art

lossy compressors (including SZ [5], [20], [31], ZFP [6], and MGARD [7]), using well-known real-world

scientific floating-point datasets from the public Scientific Data Reduction Benchmark (SDRBench)

[46]. We perform the parallel performance evaluation on Argonne’s Bebop supercomputer [54] with

up to 416 cores. Experiments show that our framework can determine the error setting accurately

within the user-tolerable errors based on the target compression ratios, with very limited time

overhead in real-world cases.

44

The remainder of the paper is organized as follows. In Section 4.2, we introduce the back-

ground of this research regarding various state-of-the-art lossy compressors, and we present several

examples about user’s requirement on specific compression ratios. In Section 4.3, we compare our

work with the related work from fixed-rate compression, image processing, and signal processing. In

Section 4.4, we present a formal problem formulation to clarify our research objective. In Section

4.5, we describe our design and our performance optimization strategies. In Section 4.6, we present

the evaluation results. In Section 4.7, we present or conclusions and end with a vision of future

work.

4.2 Background

In this section, we describe the research background, including the existing state-of-the-art

error-controlled lossy compressors and fixed-ratio use cases.

Although SZ, ZFP, and MGARD provide advanced features to control the distortion of lossy

compression, none of them provide high-fidelity fixed-ratio compression.

Accuracy of EBLC is dictated at compression time by selection of an error bound and error

bounding type — e.g., absolute, relative, number of bits and are selected to minimize impact on

quantities of interest in scientific simulations. For use cases that preform data analytics on lossy

compressed data, trial-and-error is often used to identify acceptable compression tolerances [15].

The trial-and-error is often done offline to ensure that the selected error bound is robust for multiple

time-steps and does diminish the quality of the analysis. However, if the lossy compressed data is

used to advance the simulation the simulation trial-and-error is possible [55], but recent works have

explored the relation of compression error to numerical errors present in the simulation and provide

strategies on error tolerance selection [17], [24], [56].

4.2.1 Fixed-Ratio Use Cases

In this subsection, we describe several fixed-ratio use cases to demonstrate the practical

demands on the fixed-ratio compression by real-world application users.

The first use case is significant reduction of storage footprint. On the ORNL Summit system,

for example, the capacity of the storage space is limited to 50 TB for each project by default. Many

scientific floating-point simulations (such as the CESM climate simulation and HACC cosmological

45

simulation) may produce hundreds of terabytes of data in each run (or even over 1 PB of data), such

that the compression ratio has to be 10:1 or higher to avoid execution crash due to no space being

left on storage. Even if a larger storage allocation is awarded or purchased at considerable financial

cost, projects generating extreme volumes often face the need to reduce their storage footprint in

order to make room for their next executions. Fixed-rate compression provides the ability to store

multiple simulations given a fixed amount of storage but suffers from large inaccuracies in the data

which high compression ratios are required (see Figure 4.10).

The second practical use case explores best-fit lossy compression solutions based on the user’s

post-analysis requirement (such as visual quality or specific analysis property) by at fixed compressed

sizes. None of the existing error-controlled lossy compressors provide the fixed-ratio compression

mode, however, and therefore users have to seek the best-fit choice by conducting inefficient trial-

and-error strategies with different error settings for each compressor to achieve a target compression

ratio. Furthermore, there is no universal model that accurately predicts compression ratio based on

compressor configuration for a variety of input data.

The third practical use case involves the matching of I/O bandwidth constraints and ac-

celerating the I/O performance. Advanced light-source instruments, such as the Advanced Photon

Source and Linac Coherent Light Source (LCLS-II), may generate image data at an extremely high

acquisition rate, such that the raw data cannot be stored efficiently for post-analysis because of

limited I/O bandwidth. Specifically, LCLS-II is producing instrument data with up to 250 GB/s

while the corresponding storage bandwidth is only 25 GB/s. Thus the designers of LCLS-II expect

to reduce the data size with a compression ratio of 10 or higher [13]. Spring8 [57] researchers also

indicate that their data could be generated with 2 TB/s, which is expected to be reduced to 200

GB/s after data compression.

We note that users often require random-access decompression across time steps, which

means that they prefer to be able to decompress the data individually at each time-step because

decompressing the whole dataset with all time-steps requires a significant amount of time or is

impossible because of memory allocation limits.

46

4.3 Related Work

In the compression community, the similar type of compression is called “fixed-rate com-

pression,” where the rate here refers to the bit rate, which is defined as the number of bits used

to represent one symbol (or data point) on average after compression. The lower the bit rate, the

higher the compression ratio. Hence, fixing the bit rate means fixing the compression ratio. In the

remainder of this section, we compare our work with prior work in these areas.

In addition to the fixed-accuracy modes (i.e., accuracy and precision error-bounding modes),

ZFP offers a fixed-rate mode [6]. The fixed-rate mode of ZFP offers precise control over the number

of bits per symbol in the input data. It operates by transforming the data into a highly compressible

domain and truncating each symbol to reach the appropriate rate. However, the fixed rate mode

of ZFP is not error bounded, and it suffers from significantly lower compression quality than does

the fixed-accuracy mode of ZFP. Figure 4.1 (b) demonstrates the compression quality of ZFP using

fixed-accuracy mode and fixed-rate mode, respectively. One can clearly see that the latter exhibits

much worse rate distortion than does the former (up to 30 dB difference with the same bit-rate in

most cases). Rate distortion is an important indicator to assess the compression quality. Its detailed

definition can be found in Section 4.6.2 (4). figures 4.1 (c) and (d) clearly show that the fixed-rate

mode results in much lower visual quality (e.g., more data loss) than the fixed-accuracy mode with

the same compression ratio, 50:1 in this example. In absolute terms, the fixed-accuracy mode leads

to much higher peak signal-to-noise ratios (PSNR) and lower auto-correlation of compression errors

(ACF(error)), which means better compression quality than the fixed-rate mode. In ZFP’s website

and user guide, the developer of ZFP also points out that the fixed rate mode is not recommended

unless one needs “to bound the compressed size or need random access to blocks” [6].

In contrast, not only does our framework fix the compression ratio but it also achieves higher

compression quality for different compressors (such as SZ, ZFP, and MGARD) based on their error-

bounding mode. Additionally, it can provide random access to the same level as can ZFP’s fixed

rate mode when supported by the underlying compressor. Since our framework utilizes a control

loop to bound the compression ratio, it may suffer a lower bandwidth than ZFP’s fixed-rate mode

to a certain extent. The tradeoff for this lower bandwidth is compressed data of far higher quality

for the same compression ratio, which we demonstrate in detail in the evaluation section.

The literature also includes studies investigating the use of fixed-ratio compressors for im-

47

(a) Rate Distortion (b) original raw data

(c) ZFP (accuracy) PSNR=55.3,
max error=4.2, SSIM=0.94,
ACF(error)=0.67

(d) ZFP(fixed-rate) PSNR=45.4,
max error=33.7, SSIM=0.94,
ACF(error)=0.72)

Figure 4.1: Data distortion of ZFP in fixed-accuracy mode and fixed-rate mode (Hurricane TCf
field) with CR=50:1

ages. One such work [58] is JPEG-LS, a fixed-ratio compressor for images. This work adopts a

combination of a prediction system for data values and two runs of Golumb-Rice encoding to en-

code RGB values for images. The first run of the Golumb-Rice encoding is used to estimate the

quantization level used in the the second run of the encoder. Golumb-Rice assumes integer inputs,

whereas our work is applicable on all numeric inputs.

Some work also has been done on fixed-ratio compression in digital signal processing [59] In

this domain, adaptive sampling techniques are used to maintain a budget for how many points to

transmit. When a point is determined to provide new information (using a predictor, interpolation

scheme, or some other method), it is transmitted and the budget is expended as long as there is

48

remaining budget. If the budget is spent, then no points are transmitted until the budget is refilled.

Over time, the budget is increased to keep the rate constant. In contrast, our work does not rely on

a control loop to maintain the error budget, so can look at the data holistically to decide where to

place the loss in our signal, allowing for more accurate reconstructions.

4.4 Problem Formulation

In this section, we formulate the research problem, by clarifying the inputs, constraints, and

the target of our research.

Before describing the problem formulation, however, we introduce some related notations

as follows. Given a specific field f at time-step t of an application, we denote the dataset by Df,t

= {d1, d2, . . . , dn}, where di refers to the original value of data point i in the dataset and n is the

number of elements. We denote its corresponding decompressed dataset by D′f,t= {d′1, d′2, · · · , d′n},

where d′i refers to the reconstructed value after the decompression. We denote the original data size

and compressed data size by s(Df,t) and s(D′f,t), respectively. The compression ratio (denoted by ρ)

then can be written as ρ(Df,t) =
s(Df,t)
s(D′

f,t)
. Moreover, we denote the target compression ratio specified

by the users as ρt(Df,t), and the real compression ratio after the compression as ρr(Df,t, e).

The fixed-ratio lossy compression problem is formulated as follows, based on whether it is

subject to an error-control constraint or not.

• Nonconstrained fixed-ratio compression: The objective of the nonconstrained fixed-ratio lossy

compression is to confine the real compression ratio to be around the target compression ratio

within a user-specified tolerable error (denoted by ε), as shown below.

ρt(Df,t)− ε ≤ ρr(Df,t) ≤ ρt(Df,t) + ε (4.1)

• Error-control-based fixed-ratio compression: The objective of the error-control-based fixed-

ratio compression is to tune the compression ratio to be within the acceptable range [ρt(D)−ε,ρt(D)+ε],

while respecting the user-specified error bound (denoted by e), as shown below.

ρt(Df,t)− ε ≤ ρr(Df,t, e) ≤ ρt(Df,t) + ε

s.t. Π(Df,t, D
′
f,t) ≤ e,

(4.2)

49

where Π(Df,t, D
′
f,t) is a function of error control. For instance, Π(Df,t, D

′
f,t)=maxi |di−d′i| for

the absolute error bound, and Π(Df,t, D
′
f,t)=

∑
di∈Df,t,d′i∈D′

f,t
(di − d′i)2 for the mean squared

error bound.

We summarize the key notation in Table 4.1.

Table 4.1: Table of Key Notation

Notation Description
D original data set for all time-steps and fields
Df original data set for all time-steps of a particular field
Df,t original data set for a particular field and time-step
D′f,t decompressed data set for a particular field and time-step

ρt target compression ratio
ρr real compression ratio
ε acceptable error for ρt
e error bound for compression
γ maximum value of the loss function
θ fixed parameters of the compressor
N the number of dimensions
n the total number of data points
T the number of time-steps
α the degree overlap between error-bound search ranges
U maximum allowed compression error

4.5 Design and Optimization

In this section, we present the design of our fixed-ratio lossy compression framework and

optimization strategies.

4.5.1 Design Overview

Figure 4.2 shows the design overview with highlighted boxes indicating our major contri-

butions in this paper and the relationship among different modules in the framework. As shown

in the figure, our FraZ framework is composed of five modules, and the optimizing autotuner and

parallel orchestrator are the core modules. They are, respectively, in charge of (1) searching for the

optimal error setting based on the target compression ratio with few iterations and (2) parallelizing

the overall tuning job involving different searching spaces for each field and different time-steps and

across various fields. We develop an easy-to-use library (called Libpressio [60]) to build a middle

layer for abstracting the discrepancies of the APIs of different compressors.

50

Modified to include

early termination

Users

FRaZ

Compressors

HACC Hurricane EXAALT CESM

FRaZ: Parallel Orchestator

MPI4py

FRaZ: Auto-tuner Optimization

Dlib

Libpressio

SZ ZFP MGARD

Legend

C t ib ti

Figure 4.2: Design overview and summary of our contributions

We list our major contributions as follows:

1. Formulated fixed-ratio compression as an optimization problem in a way that converges quickly

without resorting to multiobjective optimization

2. Evaluated several different optimization algorithms to find one that works on all of our test

cases, and then modified it to improve performance for our FRaZ

3. Implemented and ran parallel search to improve the throughput of the technique

4.5.2 Autotuning Optimization

In this subsection, we describe our autotuning solution in detail, which includes three critical

parts: (1) exploration of the initial optimization methods, (2) construction of a loss function, and

(3) improvements to the optimization algorithm that involves how to deal with infeasible target

compression ratio requirement and determines the exact error-bound setting.

4.5.2.1 Exploration of Initial Optimization Methods

In this subsection we describe how we choose which optimization method to use as a starting

point for later refinement.

51

Before detailing FRaZ’s optimizing autotuning method, we first analyze why the straight-

forward binary search is not suitable for our case. On the one hand, the application datasets may

exhibit a non-monotonic compression ratio increase with error bounds. We present a typical example

in Figure 4.3, which uses SZ to compress the QCLOUDf field of the hurricane simulation dataset.

We can clearly see that the compression ratios may decrease significantly with larger error bounds

in some cases. We also observe the spiky changes in the compression ratios with increasing error

bounds on other datasets (not presented here due to space limit). The reason is that SZ needs to use

decompressed data to do the prediction during the compression, which may cause unstable prediction

accuracy. Moreover, SZ’s fourth stage (dictionary encoder) may find various repeated occurrences

of bytes based on output of the third stage, because a tiny change to the error bound may largely

affect the Huffman tree constructed in the third phase of SZ. By comparison, our autotuning search

algorithm is a general-purpose optimizer and takes into account the irregular relationship between

compression ratios and error bounds. On the other hand, even on the datasets where monotonicity

holds, binary search may still be slower than FRaZ’s optimizing autotuner. For example, when

searching for the target compression ratio 8:1 at the 48th time-step on the Hurriane-CLOUD field,

our method requires only 6 iterations to converge to an acceptable solution, whereas binary search

needs 39 iterations. The reason is that binary search may spend substantial time searching small

error bounds, which would not result in an acceptable solution because it climbs from the minimum

possible error bound to the user-specified upper limit.

When developing FRaZ’s optimizing autotuner, we considered a number of different tech-

niques to perform the tuning. Since we are developing a generic method, we cannot construct a

general derivative function that relates the change in error bound to the change in compression

ratio. Therefore, we need to decide between methods that use numerical derivatives and derivative-

free optimization because the derivative of the compression ratio with respect to the error bound

is unknown. The methods using numerical derivatives approximate the slope of the objective func-

tion by sampling nearby points. Some methods that fall in this category are gradient descent (i.e.,

Newton-like methods such as [61] and ADAM [62]). However, when evaluating an error bound to

determine the compression ratio, we must run the compressor since we are using the compressors as

black boxes, which may take a substantial amount of compared with the optimization problem. In

this sense, numerical derivative-based methods are too slow.

We therefore turned our consideration to derivative-free optimization. We considered meth-

52

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Error Bounds

 65

 70

 75

 80

 85

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 118

 120

 122

 124

 126

 128

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

Figure 4.3: Example based on the hurricane simulation dataset (field: QCLOUDf.log10) showing
that the relationship between error bounds and compression ratios is not always monotonic

ods such as BOBYQA [63], but they do not handle a large number of local optimums. This ability

is essential for developing a robust tuning framework for lossy compression because many of the

functions that relate error bounds to compression ratios look like the plot on the left of Figure 4.4:

a step-like function with perhaps a slight upward slope on each step. In practice, we noted that it

is easily able to escape the local optima in these functions.

We also took into account a variety of implementations of these algorithms, such as the ones

in [52], [64], [65]. We decided between these libraries using three criteria: (1) correctness of the result,

(2) time to solution, and (3) modifiability and readability of code. Ultimately we started with a

black-box optimization function called find global min from the commonly used Dlib library from

which we make our modifications [52]. The global-minimum-finding algorithm designed by Davis

King that combines the works of [66] and [67]. It requires a deterministic function that maps from

a vector to a scalar, a vector of lower bounds, and a vector of upper bounds as inputs. At a high

level the algorithm works as follows. It begins with a randomly chosen point between the upper and

lower bounds. Then, it alternates between a point chosen by the model in [66], which approximates

the function by using a series of piecewise linear functions and chooses the global minimum of this

function, and the model in [67], which does a quadratic refinement of the lowest valley in the model.

According to [52], this method performs well on functions with a large number of local optimums,

53

and this performance was confirmed by our experience.

0 20
Error Bound

5

10

15

20
C

om
pr

es
io

n
R

at
io

 (
r)

0 20
Error Bound

0

20

40

60

80

100

D
is

ta
nc

e
Fr

om
 O

bj
ec

ti
ve

Objective Acceptable Region

Figure 4.4: Illustration of autotuning optimization function: On the left is a hypothetical relationship
between an error-bound level and compression ratio for some compressor and dataset. The target
compression ratio is marked as a red line, and the acceptable region is colored green. On the right
is the corresponding loss function using our method. The green area above the target compression
ratio refers to the acceptable region. In this case, where there are blue points in the acceptable
region, we call the result feasible. If the acceptable region was below the blue points, we would call
it infeasible.

4.5.2.2 Construction of Loss Function

Now that we have an optimizer framework, we need to construct a loss function. First, we

created a closure for each compressor, ρr(Df,t, e) that transformed its interface including a dataset D

and parameters θ in a function accepting only the error bound e. To create the closure, we developed

libpressio [60]—a generic interface for lossy compressors that abstracts between their differences so

that we could write one implementation of the framework for SZ, ZFP, and MGRAD.

To convert this to a loss function, we chose the distance between the measured compression

ratio and target compression ratio ρr(Df,t, e) − ρt(Df,t). Now, the function that relates an error

bound to a compression ratio is an arbitrary function that may or may not have a global or local

optimum. Therefore, we transformed the function by applying a clamped square function (i.e.

min
(
x2, γ

)
, where γ is equal to 80% of the maximum representable double using IEEE 754 floating-

point notation). This maps the possible range of the input function from the range (−∞,∞) to the

54

range [0, γ]. The benefits of this are twofold. First, the function now has a lowest possible global

minimum we can optimize for. Second, the function now has a highest possible value that avoids a

bug in the Dlib find global min function that causes a segmentation fault. We also considered the

function min (|x|, γ), but found that the quadratic version converged faster. This leaves us with the

final optimization function l(e) = min
(

(ρr(Df,t, e)− ρt(Df,t)))
2
, γ
)

.

4.5.2.3 Development of Worker Task Algorithm

Our next insight was that often the exact match of the compression ratio is not always feasi-

ble and is neither desired nor required. It may not always be feasible because for some compressors,

for example ZFP’s accuracy mode, the function that maps from the error bound to the compression

ratio is a step function, such that not all compression ratios are feasible. In addition, it may not

always be desired or required because the user might accept a range of compression ratios and prefer

finding a match quickly rather than waiting for a more precise match.

Looking again at Figure 4.4, we see a typical relationship between an error bound and the

compression ratio. If the user asks for a compression ratio of 15, no error bound would satisfy that

request using this compressor. In contrast, FRaZ will return the closest point that it observes to the

target; in the case of Figure 4.4 it would report an error bound that results in a compression ratio

near 17.5. Depending on the user’s global error tolerance, this value near 17.5 may or may not be

within the user’s acceptable region, meaning it may or may not be a feasible solution.

Another case that the solution may be infeasible is when needed error bound required to

meet the objective is above the user’s specified upper error bound, U . In this case, FRaZ will report

the error bound that resulted in the closest that it observed to the target compression ratio, and the

user can run FRaZ again with the default upper bound, which is equal to the maximum allowed level

of an error bound by the compressor. If FRaZ identifies a solution in this case, the user can evaluate

whether to relax the perhaps overly strict error tolerance to meet the objective or decide that the

fidelity of the results is more important and that the bound cannot be relaxed. Alternatively, the

user can try a different compressor backend that implements the same error bound.

In fact, determining the exact error bound that produces a specified compression ratio may

not be desired or required. The reason is that a large number of iterations may be needed in

order to converge to an error bound, and the user would rather trade time for accuracy. Therefore,

we implemented a version of Dlib’s find global min that implements a global cutoff parameter

55

Lower bound Upper bound
Adjacent regions overlap

E1 E2

……

E3 Ek-1 Ek

Figure 4.5: Illustration of error bound ranges. We divide the range from lower bound to upper bound
into K slightly overlapping regions (E1, E2, . . . EK). The overlap is a small fixed percentage of the
width of the regions (i.e., 10%). Each region (E1, E2, . . . , EK) is then passed from the parallel
orchestrator to the autotuning optimizer. Note that the ends E1 and EK are slightly smaller to
preserve the error bound range.

ε ∈ [0, 1]. Specifically, we allow the algorithm to terminate if the result of the optimization function

results in a value in the range: [0, ε2ρt(Df,t)
2]. This has a substantial impact on the performance

on the typical case.

We combine these insights into our worker task algorithm, as shown in Algorithm 1.

Input: target ratio (ρt(Df,t)), acceptable error ε, dataset Df,t, prediction p, region’s
lower bound l, region’s upper bound u

Output: real compression ratio ρr(Df,t, e), recommended error bound setting e

1: if p 6= 0 then
2: ρr(Df,t, e)← compress(Df,t, p) /*If a prediction was provided, try it first.*/
3: end if
4: if (1− ε) ∗ ρt(Df,t) ≤ ρr(Df,t, e)) ≤ (1 + ε) ∗ ρt(Df,t) then
5: return ρr(Df,t), p /*terminate if ρr(Df,t, e) meets requirement.*/
6: end if
7: ρr(Df,t, e), e← train with cutoff(Df,t, l, u, ρt(Df,t), ε)
8: return ρr(Df,t, e), e

Algorithm 1: Worker Task

4.5.3 Parallelism Scheme

After optimizing the serial performance via the design of the optimization algorithm, we de-

velop a parallel optimization method using Dlib’s built-in multithreaded optimization mode. Some

compressors (such as SZ and MGARD) do not support being run with different settings in a mul-

tithreaded context because of the use of global variables. In this situation, we can only treat each

compression as a non-multithreaded task because we are developing a generic framework.

We use multiple processes based on MPI to parallelize the search by error bound range.

Figure 4.5 provides an overview of our method. Rather than a serial search over the entire lower

to upper bound range, we divide the range into k overlapping regions. We then give each of the k

regions to separate MPI processes, and use Algorithm 2 to process them. As the processes complete,

56

we test whether we have satisfied our objective subject to our global threshold ε (line 7–9). If so,

we terminate all tasks that have not yet begun to execute (line 10–14). If a particular task finishes

and we have not satisfied our objective, we do nothing. If all the tasks finish and we still have not

met our objective, we conclude that the requested compression ratio is infeasible (line 18–25).

So why do we overlap the error bound regions? Overlapping the regions avoids extremely-

long worst-case search time in the optimization algorithm. Since we terminate early once a solution

is found, FRaZ’s runtime depends on the region containing the target. Without small overlapping,

if the target error-bound coincides a border, its MPI rank iterates longer lacking stationary-points

for quadratic refinement.

Input: target compression ratio ρt(Df,t), acceptable error ε, dataset Dt, max allowed
compression error U

Output: real compression ratio ρr(Df,t, e), recommended error bound setting e

1: tasks[N]
2: done← false
3: for (i, (l, u)) ∈ make error bounds(U) do
4: tasks[i]← launch task(Dt, l, u, ρt(Df,t), ε, h)
5: end for
6: while notdone do
7: last task ← next completed(tasks)
8: candiate← compression ratio(last task)
9: if ρt(Df,t)(1− ε) ≤ candidate ≤ ρt(Df,t)(1 + ε) then

10: done← true
11: for task ∈ tasks do
12: cancel if not finished(task)
13: end for
14: end if
15: done← has next(completed)
16: end while
17: ρr(Df,t, e) =∞
18: for task ∈ tasks do
19: if finished(task) then
20: ρ← compression ratio(task)
21: if (ρr − ρ)2 < (ρt − ρ)2 then
22: ρr = ρ
23: end if
24: end if
25: end for
26: return ρr(Df,t, e), error bound(task)

Algorithm 2: Training

To limit the effects of waiting on wrong guesses, we constrain the number of iterations to

a maximum value. We considered limiting by time instead, but we were unable to find a heuristic

that worked well across multiple datasets, fields, and time-steps. This is because the compression

57

time is a function of the dataset size, the entropy of the data contained within, and properties of

each compressor.

Limiting the amount of wasted computational resources is desirable. Since we are dividing on

error-bound range, a small number of the searches (typically one) are expected to return successfully

if the requested ratio is feasible. Additionally, there seems to be a floor for how many iterations

are required to converge for a particular mode of a compressors. Hence, there is limited benefit to

splitting into more than a few ranges, and cores could perhaps be more efficiently used for other

fields. Preliminary experiments found that 12 tasks per a particular field and time-step dataset

offered an ideal tradeoff between efficiency and runtime, and we set it as the default. The user can

choose to use more tasks, however.

One can also perform additional optimization of multiple time-step data. Often, subsequent

iterations in a large simulation do not differ substantially and have similar compression properties.

Therefore we ran the first time-step as before, but then we assumed that the error bound found by

the previous iteration was correct for the next full dataset. If our assumption proved correct, we

continued on and skipped training. Otherwise, we reran the training and adopted the new trained

solution for the next step. We then repeated this process over the remaining datasets. In practice, we

retrained only a small percentage of the time. On the hurricane dataset, for example, we retrained

only 4 times on the CLOUD field.

We also take advantage of the embarrassingly parallel nature of parallelizing by fields, as

shown in Algorithm 3. The results show some additional speedup.

Input: target ratio ρt(Df,t), ε, dataset D, max allowed compression error U
Output: real compression ratio ρr(Df,t, e), recommended error bound setting e

1: for Df ∈ D /*in parallel*/ do
2: p← 0
3: for Df,t ∈ Df do
4: ρr(Df,t, e), e← parallel error bound(Dt, ε, U)
5: if (1− ε) ∗ ρt(Df,t) ≤ ρr(Df,t, e) ≤ (1 + ε) ∗ ρt(Df,t) then
6: p← e
7: end if
8: end for
9: end for

Algorithm 3: Parallel by Field

58

4.6 Performance and Quality Evaluation

In this section, we first describe our experimental setup, including hardware, software, and

datasets. We then describe our evaluation metrics and results using five real-world scientific floating-

point datasets on Argonne’s Bebop supercomputer [54].

4.6.1 Experimental Setup

4.6.1.1 Hardware and Software Used for Evaluation

The hardware and software versions we used on the Bebop supercomputer [54] are given in

Table 4.2.
Table 4.2: Hardware and Software Versions Used

Hardware Description
CPU 36 Core Intel Xeon E5-2695v4
MEM 128GB DDR4 Ram
NIC Intel Omni-Path HFI Silicon 100 Series

Software Description Software Description
OS CentOS 7 SZ 2.1.7
CC/CXX gcc/g++ 8.3.1 ZFP 0.5.5
MPI OpenMPI 2.1.1 MGARD 0.0.0.2
Dlib 2.28 Singularity 3.0.2

We have packaged our software as a Singularity container for reproducibility.

4.6.1.2 Datasets used for Experiments

In our experiments, we evaluated our designed fixed-ratio lossy compression framework

based on all three state-of-the-art compressors described in Section 4.2, using five real-world scientific

simulation datasets downloaded from scientific data reduction benchmark [46]. The raw data are

all stored in the form of single-precision data type (32-bit floating point). We describe the five

application datasets in Table 4.3.

We chose these datasets for a few reasons: First, they offer results over multiple time-steps,

which matches well user’s practical post-analysis with a certain simulation period. Second, the

datasets use floating-point data which are often not served well by traditional lossless compressors.

Third, the datasets are commensurate with the use cases of fixed-ratio compression described in

Section 4.2.

59

Table 4.3: Dataset Descriptions

Name Domain # Time-steps Dim. # Fields Total size
Hurricane Meteorology 48 3 13 59 GB
HACC Cosmology 101 1 6 11 GB
CESM Climate 62 2 6∗ 48 GB
Exaalt Moledular Dyn. 82 1 3 1.1 GB
NYX Cosmology 8 3 5 35 GB
* A limited number of fields had multi-time step data. Only fields for which

multiple time step data were included.

In some cases, we are not able to use all the datasets with all compressors. We run all the

experiments for all datasets and compressors when possible. MGARD supports only 2d and 3d data

so it is not tested on the HACC and Exaalt datasets. We adopt 6 typical fields for CESM application

because other fields exhibit similar results with one of them (CLDHGH CLDLOW, CLOUD, FLDSC,

FREQSH, PHIS). We generally noted similar results for each dataset and compressor.

4.6.2 Experimental Results

Over the course of our experiments, we evaluated four properties of FRaZ using the datasets

from SDRBench [46]:

1. How close do we get to the target compression ratio when it is feasible?

2. How long does it take to find the target compression ratio or determine that it is infeasible?

3. How does the runtime of the algorithm scale as the number of cores increase?

4. How does FraZ compare with existing fixed-rate methods in terms of rate distortion and visual

quality?

4.6.2.1 How close do we get to the target compression ratio?

How close we get to the target compression ratio depends heavily on whether the requested

compression ratio is feasible for the underlying compressor used. Figure 4.6 (a) and Figure 4.6 (b)

show a bad case and a good case, respectively.

In Figure 4.6 (a), we see an example of where ρt(Df,t) is infeasible for most time-steps for

the CLOUD field. The early time-steps compress within the acceptable range, but by time-step ten

the ρt(Df,t) = 15 is no longer feasible. The reason is that as the time-steps progress, the properties

60

0 10 20 30 40 0 10 20 30 40
Time Step Time Step

10

12

14

16

18

6

7

8

9

(a) Bad Convergence Case (b) Good Convergence Case

Figure 4.6: Demonstration of two types of convergence cases (Hurricane-CLOUD)

of the dataset change, affecting the ability of compressor to compresses it at this level. As a result, we

oscillate between a compression ratio that is larger and a compression ratio that is smaller. However,

a larger tolerance (i.e., ε = .2) would have allowed even this case to converge for all time-steps.

In Figure 4.6 (b), we see an example of where the algorithm converges on over 90% of the

time-steps. In this case, we quickly converge to the acceptable range and are able to often reuse

the previous time steps error bound for future iterations. In this particular case, we have to retrain

only four times over the course of the simulation on iterations: 0, 8, 15, 29. Thus, the algorithm can

quickly process many time-steps.

4.6.2.2 How long does it take to reach the target compression ratio?

When evaluating the algorithm, we wanted to consider how long the algorithm takes to find

the target compression ratio. This again depends greatly on whether ρt(Df,t) is feasible or not.

Therefore, we considered a large number of possible ρt(Df,t)’s for different datasets. The results

of this search are shown in Figure 4.7. We can see that some compression ratios require far longer

total times. figures 4.6 (a) and (b) show a zoomed in view of ρt(Df,t) = 8 and ρt(Df,t) = 15. The

difference in runtime is explained by the difference in the number of time-steps that converge. In the

case shown in Figure 4.6 (a) relatively few time-steps converged because the objective was infeasible

with the specified compressor; in the case shown in Figure 4.6 (b) almost all time-steps converged

because the objective was feasible. This resulted in about a 10x difference in performance between

the two cases.

Why do low target compression ratios have long runtimes? Many of the lossy compressors

61

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Target Compression Ratio (t)

0

200

400

600

800

1000

1200

Ti
m

e
(s

)
Sensitivity to the Target Objective

Total Time Compression Time

Figure 4.7: Sensitivity of FRaZ to the choice of ρt(Df,t): This is because not all values of ρt(Df,t)
are elements of the co-domain of the function that relates ρ and e.

have an effective lower bound for the compression ratio. In Figure 4.7, it is about 7.5. This effective

lower bound on the compression ratio, means that FRaZ will never meet its objective and spends

the remainder of the time searching until it hits its timeout.

How does this change across datasets? In general, the more feasible compression ratios near

the target, the better FRaZ preformed. Each dataset had a compressor which was able to more

accurately compress and decompress the data.

How does this change between compressors? Generally SZ took less time than ZFP or

MGARD even though ZFP may take less time for each compression. This is because ZFP typically

had fewer viable compression ratios than SZ due to limitations of ZFP’s transform based approach.

As a result, FRaZ took more time-steps which took the maximum number of iterations lengthening

the total runtime. The difference in runtime between SZ and ZFP for a representative dataset can

be seen in Figure 4.8 below.

4.6.2.3 How does the algorithm scale?

To evaluate how well the algorithm scales, we considered the runtime of the algorithm as it

scales over multiple cores on ANL Bebop [54].

62

36 72 10
8

14
4

18
0

21
6

25
2

Cores

0

5000

10000
R

un
ti

m
e

(s
ec

)

Scalability

sz:abs
zfp:accuracy

Figure 4.8: Scalability: our solution reaches the optimal performance at 180–216 cores, in that the
total time is equal to the longest task’s wallclock time at this scale.

Figure 4.8 shows the strong scalability of the algorithm. We see that the algorithm scales by

time-step and field levels for the first 180–216 cores with steep decreases in runtime due to parallelism

at early levels and then less additional parallelism after that. This is because the runtime of the

algorithm is lower bounded by the longest running worker task. All of the datasets we tested has at

least one fields that takes substantially longer to compress than others. And the scalability of this

algorithm is limited by the longest of these. In the case of the Hurricane dataset using the error-

bounded compressor SZ, the QCLOUD field took 1022 seconds to compress while the 75 percentile

is less than 500 and the 50 percentile is less than 325.

What accounts for the substantial difference between the scalability of FRaZ using ZFP

and SZ? Those familiar with ZFP likely know that it is typically faster than SZ, but this seems to

contradict the result in Figure 4.8. This result is explained by considering the individual fields rather

than the overall scalability. For the cases in which ZFP finds an error bound that satisfies the target

compression ratio, it is much faster. However ZFP often expresses fewer compression ratios for the

same error bound range, resulting in more infeasible compression ratios and thus increasing the

runtime. ZFP expresses few compression ratios because it uses a flooring function in the minimum

exponent calculation used in fixed-accuracy mode.

Fields may take longer for a variety of reasons: (1) the ρt(Df,t) may not be feasible for one

or more of the time-steps, (2) the dataset may have higher entropy resulting in a longer encoding

63

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)
MGARD(FraZ)

(a) Hurricane(TCf48)

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)
MGARD(FraZ)

(b) NYX(temperature)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)
MGARD(FraZ)

(c) CESM-ATM(CLDHGH)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)

(d) HACC(x,y,z)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)

(e) EXAALT(x,y,z)

Figure 4.9: Rate distortion of lossy compression (MGARD is missing in (d) and (e) because it does
not support 1D dataset)

stage for algorithms such as SZ, or (3) the fields may be of different sizes, and larger fields take

longer.

4.6.2.4 How does FRaZ compare with the existing fixed-rate compression methods in

terms of rate distortion and visual quality?

We present the rate distortion in Figure 4.9, which shows the bit rate (the number of bits

used per data point after the compression) versus the data distortion. Peak signal-to-noise ratio

(PSNR) is a common indicator to assess the data distortion in the community. PSNR is defined as

20 · log10(dmax−dmin

rmse) where rmse =
√

1
N

∑N
i=1(di − d′i)2, and dmax and dmin refer to the max and

min value, respectively. In general, the higher the PSNR, the higher the quality of decompressed

data.

In this figure, one can clearly see that ZFP (FRaZ) provides consistently better rate dis-

tortion than does ZFP (fixed-rate) across bit-rates (i.e., across compression ratios). Moreover, SZ

(FRaZ) exhibits the best rate distortion in most cases, which is consistent with the high compres-

sion quality of SZ as presented in our prior work [31]. That being said, FRaZ can maintain the

high fidelity of the data very well during the compression, by leveraging the error-bounded lossy

compression mode for different compressors.

64

In addition to the rate distortion, we present in Figure 4.10 visualization images based

on the same target compression ratio, to show fixed-ratio compression approach preserves visual

quality. We wanted to set compression ratio of 100:1, but the closest fesible compression ratio

for ZFP is ∼85:1 (see Section 4.6.2). Hence, we set the target compression ratio to be 85:1 for

all compressors. Because of the space limit, we present the results only for NYX-temperature field;

other fields/applications exhibit similar results. All the results are generated by FRaZ except for the

ZFP(fixed-rate). ZFP(FRaZ) exhibits a much higher visual quality than does ZFP(fixed-rate) (see

Figure 4.10 (b) vs. Figure 4.10 (c)), because FRaZ tunes the error bound based on fixed-accuracy

mode, which has a higher compression quality than ZFP’s built-in fixed-rate mode. ZFP(FraZ)

exhibits higher PSNR than does ZFP(fixed-rate), which means higher visual quality. We also present

the structural similarity index (SSIM)[68] for the slice images shown in the figure. SSIM indicates

similarity in luminance, contrast, and structure between two images; the higher SSIM, the better.

Our evaluation shows that ZFP(fixed-rate) has lower SSIM than ZFP(FRaZ) – i.e. better quality.

From among all the compressors here, MGARD(FRaZ) leads to the lowest visual quality (as well as

lowest PSNR and SSIM), because of inferior compression quality of MGARD on this dataset.

4.7 Conclusions and Future Work

We have presented a functional, parallel, black-box autotuning framework that can produce

fixed-ratio error-controlled lossy compression for scientific floating-point HPC datasets. Our work

offers improvements over existing fixed-rate methods by better preserving the data quality for equiv-

alent compression ratios. We showed that FRaZ works well for a variety of datasets and compressors.

We discovered that FRaZ generally has lower runtime for dataset and compressor combinations that

produce large numbers of feasible compression ratios.

A number of areas for potential improvement exist. First, we would like to consider arbitrary

user error bounds. By user error bounds, we mean error bounds that correspond with the quality

of a scientist’s analysis result relative to that on noncompressed data, such as [15] which identifies

a particular SSIM in lossy compressed data required for valid results in their field. Second, we

would like to develop an online version of this algorithm to provide in situ fixed-ratio compression

for simulation and instrument data. Third, we would like to further improve the convergence rate

of our algorithm to make it applicable for more use cases. While fixed-ratio lossy compression is

65

slower than fixed-error compression, it provides an important new lossy compression technique for

users of very large scientific floating-point datasets.

66

(a) original raw data

(b) ZFP (FRaZ)
(PSNR=76, SSIM=0.997,
ACF(error)=0.516), CR=85:1

(c) ZFP (fixed-rate)
(PSNR=56, SSIM=0.986,
ACF(error)=0.383), CR=85.3:1

(d) SZ (FraZ)
(PSNR=80.4, SSIM=0.999,
ACF(error)=0.344), CR=86:1

(e) MGARD (FraZ)
(PSNR=70, SSIM=0.977,
ACF(error)=0.92), CR=85.7:1

Figure 4.10: Visualization of NYX (temperature:slice 256) with CR ≈ 85:1

67

Chapter 5

OptZConfig: Fast Parallel

Optimization of Lossy

Compression Configuration

Portions of this chapter are in submission [3] to The IEEE Transactions on Parallel and

Distributed Systems under the title: OptZConfig: Fast Parallel Optimization of Lossy Compression

Configuration

Abstract

Lossless compressors have very low compression ratios that do not meet the needs of today’s

large-scale scientific applications that produce vast volumes of data. Error-bounded lossy compres-

sion (EBLC) is considered a critical technique for the success of scientific research. Although EBLC

allows users to set an error bound for the compression, users have been unable to specify the require-

ments on the compression quality, limiting practical use. Our contributions are: (1) We formulate

the problem of configuring EBLC to preserve a user-defined metric as an optimization problem.

This allows many classes of new metrics to be preserved, which improves over current practices.

(2) We present a framework, OptZConfig, that can adapt to improvements in the search algorithm,

compressor, and metrics with minimal changes, enabling future advancements in this area. (3) We

68

demonstrate the advantages of our approach against the leading methods to configure compressors

to preserve specific metrics. Our approach improves compression ratios against a specialized com-

pressor by up to 3×, has a 56× speedup over FRaZ, 1000× speedup over MGARD-QOI post tuning,

and 110× speedup over systematic approaches which had not been bounded by compressors before.

5.1 Introduction

the ever-increasing execution scale and problem size of today’s scientific applications, vol-

umes of simulation data are produced that cannot be stored and transferred efficiently because of

the limited storage space and I/O or network bandwidth. Consequently, scientific data reduction

techniques are studied. Since most scientific datasets are composed of floating-point numbers, tra-

ditional byte-stream-based lossless compressors (such as Gzip [69] and Zstd [25]) suffer from low

compression ratios (generally ∼2× or lower). Although some lossless compressors such as FPC [70]

are designed for floating-point data, the compression ratio is still far lower than the user-required

level (often 10× or higher) because of the high entropy of the mantissa of floating-point numbers.

Error-bounded lossy compressors (EBLCs) address this issue by allowing users to control

the data distortion by specifying point-wise error bounds. By leveraging the correlation of adjacent

data points in either space or time, an EBLC can obtain a compression ratio of 100× or even

higher while respecting user prescribed point-wise accuracy requirements on the decompressed data,

significantly reducing the data storage and data movement burden. Nevertheless, a significant gap

still exists between the EBLCs and the user’s compression needs. Users must invest significant effort

to understand the effectiveness of each lossy compressor on their specific scientific datasets and the

impact of data distortion to their post-hoc analysis. To this end, users have to manually perform

many tedious trial-and-error tests for the different compressors with their large datasets, and each

compressor may involve setting many parameters. For example, SZ [5], [38] offers more than 25

parameters, including different types of error bounds (absolute error bound, relative error bound),

number of quantization bins, block size, and lossless compression technique (e.g., Zlib [69] and Zstd

[25]).

In addition to specialized compressors, there have been two major developments in this area:

FRaZ [2] and MGARD-QOI mode [26]. The former uses numerical optimization techniques to find

a fixed compression ratio. The latter uses general mathematical proprieties to bound compression

69

errors on certain specific and limited kinds of Quantities of Interest (QoIs). However, both share

significant shortcomings, namely performance and applicability to a wide array of user defined met-

rics. In this paper, we propose OptZConfig and Fixed Metric Fidelity Search (FMFS), which help

users select the best-fit lossy compressor with optimized parameter settings in a fully automatic way

for more general user defined metrics by building upon the methodology in FRaZ. That is, provided

a scientific dataset and the user’s specific required compression quality (e.g., some analysis metric

and/or target compression ratio), OptZConfig quickly selects the best-fit compressor and determines

its optimal parameter setting.

Our major contributions are as follows:

1. We formulate the configuring of EBLCs to preserve a user-defined metrics as an optimization

problem improving over current trial-and-error or scientist in-the-loop evaluations.

2. We present a framework, OptZConfig, that adapts to improvements in the search algorithm,

compressor, and metrics with minimal changes, enabling future innovations. Prior approaches

were strongly tied to at least one of these three.

3. We present and evaluate on real world data sets and metrics a novel parallel algorithm, Fixed

Metrics Fidelity Search (FMFS), that improves over the compression ratio of specialized com-

pressors [42] by up to 3× , is 56 × faster than prior black box searching methods [2], over 1000×

faster post-tuning than MGARD-QOI post-turning [26], and 110× faster than systematic ap-

proaches to bound metrics that are not bound-able by any prior compressor or compressor

framework.

5.2 Research Background and Related Work

This section presents the background and highlights the motivation for this research. First,

we provide a discussion of several scientific applications with big data issues and the user’s require-

ments. We discuss several use cases that require automatic lossy compression optimization strategies

in practice. Then, we describe the state-of-the-art error-bounded lossy compression (EBLC) tech-

niques fundamental to developing the OptZConfig framework.

70

5.2.1 Big Data Applications and Use Cases

Today’s scientific applications are producing too much data to efficiently process or store

at runtime. Cosmology simulations of the Hardware/Hybrid Accelerated Cosmology Code (HACC)

[11], for instance, may produce 21.2 petabytes of data when simulating 2 trillion particles for 500

time-steps. Summit, one of the most powerful supercomputers, at the Oak Ridge National Labora-

tory [12] provides only hundreds of terabytes of storage for each user. Hundreds of users share the

limited total storage space (250 PB in total).

Materials science can produce raw data with a very high rate (e.g. 250 GB/s with Light

Coherent Light Source (LCLS-II) [13]). In order to sustain the data acquisition rate, storing the raw

data without compression is impractical. The LCLS-II data system designers calculate that a data

compression ratio of 10× or higher is needed to reduce the required storage bandwidth to 25 GB/s.

Each scientific application brings a unique use case for EBLC in the analysis of high-

performance computing simulation data or instrument data. For example, cosmology researchers

explore galaxy structures formed by particles coalescing into halos, and the bias of halo masses [71],

[72] should be limited to within 3% based on the lossy reconstructed particle data.

A number of metrics can be used to understand the impact of compression errors. These

metrics measure the quality of specific statistical outcomes, signal distortion (such as peak signal-

to-noise ratio (PSNR)), and spatial error. However, not all metrics are supported by all lossy

compressors. FPZIP and ZFP do not natively support PSNR or spatial-error-preserving modes

requiring workarounds. SZ supports fixed PSNR but suffers from large errors especially for high-

compression cases, which is attributed to the assumption of uniform error distribution. This may

degrade compression ratios. We refer readers to the survey paper [13] for more use cases of EBLCs.

We summarize some key user-analysis metrics and corresponding user-acceptable thresholds in Ta-

ble 5.1.
Table 5.1: Summary of Important Lossy Compression User Analysis Metrics

Metric Domain Threshold Range

Pearson Correlation (R value) Climate ≥ .99999 [9] [-1, 1]
p value for KS Test Climate ≥ .05 [9] [0,1]
Spatial Relative Error Climate ≤ .05, δ = 1e−4 [9] [0, 1]
Peak Signal-to-Noise Ratio (PSNR) Various Various [0, ∞)

Users want to guide the compression that they perform by metrics used within their com-

munities [9], [15]. Some robust examples come from the climate community where research has gone

71

into determining thresholds acceptable to the climate community at large. The Pearson correlation

coefficient is used to show the strength of a linear relationship between two datasets. When used

between uncompressed and decompressed data, it measures how well the value in the uncompressed

dataset represents the decompressed dataset. The Kolmogorov Smirnov (KS) test is a nonparamet-

ric hypothesis test that tests whether two samples are from the same distribution. The metric of

interest is the p-value, which says how likely the observation is given that the hypothesis is true.

It is calculated by computing an empirical cumulative distribution function for each sample and

finding the largest difference between these functions. The probability of this distance occurring is

computed by using methods from [73]. The spatial relative error is the percentage of points that

exceed a specified relative error threshold indicating how widely spread a distortion is.

Another important set of metrics comes from the Scientific Data Reduction Benchmarks

(SDRBench) [74]. These represent a collection of real-world problems from various domains paired

with the metric(s) of interest. All datasets in this paper come from SDRBench.

5.2.2 Error-Bounded Lossy Compression

Here we describe the EBLC techniques used in the leading error-bounded lossy compressors

SZ, ZFP, and MGARD.

SZ [5], [20]–[22] is an error-bounded lossy compressor offering multiple error-controlling

approaches, including absolute error bound (denoted εabs) [5], value-range relative error bound

(denoted εrel) [38], and target PSNR (denoted by εpsnr) [22].

SZ adopts a blockwise prediction-based compression model, which involves three key steps:

(1) data prediction – each data point is predicted based on its nearby values in space and two major

predictors are applied, Lorenzo [5] and linear regression [20]; (2) linear-scale quantization – each

data point is converted to an integer by applying a equal-bin-size quantization on the difference

between its predicted value and real value; and (3) compression of the generated integer code arrays

by a series of custom lossless compression methods including entropy encoding, such as Huffman

encoding, and dictionary encoding, such as Zstd [25].

ZFP [6] is another outstanding error-bounded lossy compressor, which is broadly evaluated

in many scientific research studies [2], [24], [75]. Similar to SZ, ZFP supports different types of

error controls, such as absolute error bound and precision. The precision mode allows users to set

an integer number to control the data distortion with an approximately relative error effect. The

72

higher the precision number is, the lower the data distortion.

Unlike SZ, ZFP adopts a blockwise transform-based compression model, which includes three

critical steps: (1) exponent alignment and fixed-point representation, which align the values in each

block to a common exponent and performs fixed-point representation conversion; (2) transformation,

which applies a near orthogonal transform to each block; and (3) embedded-coding, which orders

the transform coefficients and encodes the coefficients one “bit plane” at a time. SZ and ZFP have

different design principles, and neither always has the best compression quality on all datasets [2],

[24].

MGARD [7], [26], [27] is a state-of-the-art lossy compressor supporting multigrid adaptive

reduction of data. The most important principle of MGARD is a hierarchical scheme that offers

the flexibility to produce multiple levels of partial decompression such that users reduce the dataset

by either minimizing storage with a required data fidelity or minimizing the data distortion with

a target compression ratio. MGARD’s Quantity of Interest mode bounds some limited kinds of

metrics. We discuss it in detail in Section 5.7.3.

5.2.3 Numerical Optimization to Configure EBLC

The relationship between a metric and the compressor configuration can be multidimen-

sional, non-monotonic, and non-convex. Therefore, näıve approaches such as binary search are not

sufficient [2]. Rather, we require numerical optimization.

Analytic derivatives provide a closed form description of the relationship between the com-

pressor settings. Also, metrics are difficult to construct and can change frequently depending on

the implementation of the compressor, making them ill-suited to this task. Numerical methods that

estimate the derivative by computing the slope of nearby points are too slow because of the time re-

quired to evaluate each point. That is, regularly computing a slope at each point is time prohibitive

because it requires running the compressor and any associated metrics.

Derivative-free methods do not rely on having derivatives available during the search. Thus,

they are a good candidate for use in this context since one does not have to wait to compute the

derivative. A typical example is the FRaZ algorithm [2], which itself is based on [52], [66], [67].

FRaZ is hard-coded to adjust only one compressor setting using a specific kind of derivative-free

optimization. It bounds compression ratios and does not require any call-backs to a user-defined

metric. Its parallelism scheme is not thread-safe, however. The use of multi-threading in the search

73

function or compressor can cause incorrect results or failure. Most importantly, it has no protocol

for communicating early termination between iterations, but only between grid cells. Since some

sophisticated metrics that users care about could take hours to compute, one grid of the search

might complete successfully, but the algorithm may continue to run for hours until each grid finishes

its remaining iterations. This makes FRaZ feasible only for metrics that are quick to compute

like compression ratios in offline use cases. Our two novel strategies (OptZConfig and FMFS),

significantly outperform FraZ by addressing these and other issues, enabling an online use case. We

discuss this in greater detail in Section 5.6.

5.2.4 White-Box/Trial-Based Approaches

At least two related works use white-box approaches to autotune compression [42], [53]. In

contrast to a specialized compressor, white box methods allow a limited variety of metrics to be

bounded on a limited number of compressors that share certain properties which are exploited for

performance. They might use internal properties such as the exact methodology of the prediction

and quantization scheme or the sampling based on the block size [53] in newer versions of SZ to speed

up the search process to maximize bandwidth at a given error bound for a compressor [42]. Notably,

these approaches have no means to invoke a user-defined metric. Furthermore, these approaches

exploit properties of the compressor and how they are tied to the specific metric(s) they preserve

and generally are not transferable to new problems without degrading performance relative to the

problem they were designed for or require substantial rewrites if it is possible to adapt the method.

Another attempt was taken by SCIL[30]. SCIL shares properties of both OptZConfig and

LibPressio. Like LibPressio, it attempts to abstract across compressors and also has the concept of a

meta-compressor. However, it differs in that it has a fixed-function compression pipeline, which limits

the chaining of arbitrary meta compressors and some of the more robust configurations supported

by LibPressio. It also does not expose the metadata needed for safe multi-threading of compression

nor does correctly pass dimensionality information onto the underlying compressor. SCIL also has

features like OptZConfig. However, most importantly it only attempts to bound a specific list of

compressor-centric measurements such as the relative tolerance or the number of significant digits

preserved rather than arbitrary metrics provided by the users. It does so via previous runs which

are then converted into an internal decision tree.

These approaches are complemented and extended by the approaches in OptZConfig. For

74

example, if the users know that they are employing SZ, they can use the search interface provided by

OptZConfig to define a custom searcher based on the methods in these papers – allowing a white-box

style usage when an algorithm is available. For example, one could adopt the approach by [42] to

cache the 20 – 30 best configurations and try the best ones at runtime, or use the approach by [53]

and sample blocks at the compressor block size to choose between compressors.

5.3 Problem Formulation

In this section, we formalize our research problem. The overarching goal is to automatically

select the best-fit lossy compressor with a tuned configuration based on user analysis metrics. This

is a generalization and extension of past methods [2] that only considered a single objective with

a single input parameter and a single output parameter. Constructing this problem in the general

case enables entirely new classes of problems (see Section 5.7.4).

Let D be a set of data buffers that involve a set of fields, denoted by FD, and a set of

simulation time-steps, denoted by TD. We refer to a specific data buffer as df,t that holds a dataset

to compress, where t ∈ TD and f ∈ FD.

5.3.1 Lossy Compression-Based Parameter Space

State-of-the-art error-bounded lossy compressors use multiple configuration parameters (or

error settings) to tune the compression quality and performance. We divide a lossy compressor’s

configuration parameters into two sets: a set of fixed parameters (~θc) and a set of nonfixed parameters

(~c). Fixed parameters’ values are already specified by users and are not modified during tuning.

Nonfixed parameters are to optimize performance or compression quality. For instance, SZ controls

the compression quality and performance by tuning an error-bounding type (see Section 5.2.2), error

bound value (a specific positive threshold value), and the number of quantization bins. Each of the

three parameters is either set to be a fixed parameter as a constraint by the user, or set to be a

nonfixed parameter to be optimized whose values are determined based on the feasible settings of

corresponding compressors.

For simplicity of description, let U denote the whole set of the nonfixed parameters (~c),

and let Ω denote the whole feasible parameter set (including both nonfixed parameters and fixed

parameters). Without loss of generality, each ~c in U has a value constraint that is bounded by a

75

Table 5.2: Key Notations

Notation Description

D Set of all uncompressed buffers for all fields and time-steps
D′ Set of all decompressed buffers for all fields and time-steps
TD Set of all time-steps for dataset D
FD Set of all fields for dataset D
df,t Buffer for field, f , and time-step, t, in uncompressed form
ε Some threshold; Typically an error bound provided by a compressor
~c Vector of nonfixed compressor parameters
~θc Vector of fixed compressor parameters
˜df,t(~c; ~θc) Decompressed buffer for field, f , and time-step, t
~θm Vector of fixed parameters of the user-specified metrics function
U Set of feasible nonfixed compressor parameters
Ω Set of feasible fixed and nonfixed compressor parameters

Q
(
df,t, ˜df,t

(
~c; ~θc

)
; ~θm

)
User-specified data fidelity metric function

Qτ (df,t; ~θm) Early termination threshold for user-specified metrics function

lower bound vector ~l and upper bound vector ~u such that ~li ≤ ~ci ≤ ~ui, where ~li, ~ui, and ~ci are

the ith element of ~l, ~u, and ~c, respectively. We denote the reconstructed data buffer based on lossy

compression by ˜df,t(~c, ~θc) and the corresponding set by D′.

5.3.2 User-Analysis-Based Parameter Space

Performing high-fidelity analysis on the decompressed buffers (D′) for a particular time-

step t and field f compared with the one with original uncompressed data may involve some fixed

parameters, denoted by ~θm. We refer to the user-required fidelity comparison metric on the original

uncompressed buffer df,t and its decompressed buffer as Q(df,t, ˜df,t(~c; ~θc); ~θm). The user expresses

a requirement by identifying some threshold for this fidelity comparison metric; we denote this

threshold by Qτ (df,t; ~θm). We use an example to further explain the definition of Q and Qτ in the

following text. Unlike the prior work [26] which requires Q be a bounded linear functional, we do not

place any constraints on the fidelity requirement of Q (or Qτ). We summarize all the key notations

in Table 5.2.

5.3.3 Finding The Optimal Configuration

Based on the compression parameter space under some compressor and the analysis pa-

rameter space defined for some application, we formulate the task of finding the optimal con-

figuration as the following optimization problem: Given D,U, ~θc, ~θm, e, ∀ df,t ∈ D, optimize:

76

max~c∈U Q
(
df,t, ˜df,t

(
~c; ~θc

)
; ~θm

)
. If a threshold Qτ

(
df,t; ~θm

)
is provided, the search may termi-

nate early if this constraint is met: Q
(
df,t, ˜df,t

(
~c; ~θc

)
; ~θm

)
≥ Qτ

(
df,t; ~θm

)
We further illustrate the research problem using the following example based on the target

metric of the Pearson’s correlation coefficent (R). This is a common measure for compression quality

which no previous compressor bounds. Our FMFS helps find the best-fit parameter setting of the

lossy compressor efficiently based on the user-defined target metric.

Here is an example using a real problem set to help illustrate the analysis process. Suppose,

in our example, the user wants to use SZ’s value-range-based error bound mode to compress as

much as possible the Hurricane simulation dataset [74], such that R ≥ 0.99999. We tune SZ’s

relative error bound parameter (denoted by εrel) and the number of quantization bins (denoted by

M) to get different quality and performance. The Hurricane simulation dataset has 13 fields with

48 time-steps, for a total of 13×48 = 624 buffers, each being a df,t. In this case, we set the nonfixed

parameter vector ~c as {ε, M}), with the first element representing the error bound parameter and

the second element representing the number of quantization bins. We construct U by determining a

vector of lower bounds and upper bounds. According to the SZ documentation [5], ε and M should

be in the range of [0,1] and [1,65536], respectively. Thus, we have ~l = {0, 1} and ~u = {1, 65536}.1

This makes ∀~c such that ~li ≤ ~ci ≤ ~ui,~c ∈ U .

Without loss of generality, we set all of the remaining 25+ parameters to their defaults,

forming the fixed-parameter vector (~θc). With df,t and ~θc, we compute ˜df,t(~c; ~θc) for any choice of ~c

that the search specifies by setting the appropriate compressor settings and running the compressor

on the buffer df,t. Now, we must define ~θm, Q, and Qτ . We let ~θm = {.99999} corresponding to the

R threshold of .99999 described above. In this case, Q is defined as follows:

Q
(
df,t, ˜df,t

(
~c; ~θc

)
; ~θm

)
= 

CR(df,t,~c; ~θc) if R(df,t, ˜df,t(~c; ~θc)) ≥ ~θm0

0 otherwise,

(5.1)

where CR is the compressor’s compression ratio on a given buffer and compressor configuration, R is

the Pearson’s correlation coefficient between original datasets and decompressed datasets, and ~θm0

= .99999 in this example. Based on this formula, if we reach the target R value in a compression

1If more restrictive bounds are known or desired, specifying those makes OptZConfig’s search task more efficient.

77

case {df,t, ˜df,t(~c)}, then our solution maximizes the compression ratio (CR) for the corresponding

data buffer. Q = 0 indicates that our solution skips all the configuration settings that do not meet

the user-required R value threshold.

If the user specifies an acceptable value Qτ for all buffers in D, say a compression ratio

20, we terminate the search early if we find a value of Q that exceeds this value. We further

distinguish between successful compression and unsuccessful compression tunings by checking if Q

is 0. Without loss of generality, this formulation applies to the user’s postanalysis metric that needs

to be minimized (such as mean squared error or autocorrelation of errors).

It is possible that we are unable to find a configuration that satisfies the user’s requirements

either because insufficient resources were committed to the search or because the user requested an

infeasible configuration. In these cases, we return to the user that the search has failed along with

the best point found so far allowing them to determine if they wish to commit additional resources,

widen their search area, or stop searching.

5.4 Overall System Design

At a high level, we implement OptZConfig as a metacompressor in the larger LibPressio

ecosystem2. A metacompressor implements all the features of a compressor, allowing it to be used

with little change to the user’s code, and OptZConfig takes advantages of new compressors as they

are developed which may have advantages for specific problems or data-sets [13]. OptZConfig,

unlike prior work in [2], is completely embedded within an application to be used online. Figure 5.1

demonstrates where OptZConfig fits within this larger ecosystem and its major subcomponents.

The OptZConfig library consists of three sets of components: the opt metacompressor, the

pressio search interface, and many implementations of the search interface including FMFS and

FRaZ’s algorithm. The opt metacompressor and the pressio search interface provide services to

the search implementations such as: query if both the MPI implementation and the compressor

supports threading, a callback to notify and check the early termination status, and a callback to

invoke the compressor with a particular configuration and return a set of computed metrics for that

configuration. The opt metacompressor is responsible for invoking the search implementation (such

as FRaZ) which implements the pressio search interface.

2LibPressio[76] is a library that provides an abstraction over common lossy and lossless compressors. It supports
all of the compressors in this paper and more.

78

Applications

Hurricane NYX CESM-LE ……

OPT FMFS
FraZ/

binary

search/...

ZFPSZ MGARD

Lossy compressor container
Search module

S
e
a

rc
h

invoke
Third party

Key modules

Libpressio Ecosystem

Component type

(main contributions)

…

Analysis Metric Adaptor/Plugin Launch handler

User User & Apps

Specify target

Figure 5.1: LibPressio [76] ecosystem with OptZConfig’s metacompressor plugin (OPT), search in-
terface (pressio search plugin), and several default search modules including FMFS, FRaZ algorithm
[2], and binary search.

A key improvement we introduce in this paper is the Fixed Metric Fidelity Search (FMFS)

search algorithm (see Algorithm 4). FMFS builds on the design of FRaZ’s algorithm which builds on

classical techniques in numerical optimization and parallelization [77], [78]. However, OptZConfig

leverages additional information and cancellation callbacks to allow finer grained parallelism and

cancellation, significantly improving performance and quality. The blue text represents new paral-

lelism available (see Section 5.6.2). The red text represents significant changes to communication

(see Section 5.6.3. The green evaluates a user defined metric. No metric in Table 5.1 or Section 5.7

are possible in FRaZ without OptZConfig and FMFS.

5.5 Computing Metrics

Another significant contribution of this work is a comprehensive framework to adapt user

developed metrics for use with minimal effort to be used with any compressor. To this end, OptZ-

Config provides 47 commonly-used builtin metrics, 5 methods for using user provided metrics, and

an interface for providing additional methods without recompiling OptZConfig; allowing users to

mix and match for their needs.

We divide the Metrics types into in-core (dataset in RAM) and out-of-core (dataset com-

municated through the file-system or network). Figure 5.2 shows in-core metrics are direct imple-

mentations of the metrics interface. The out-of-core metrics are invoked from the “ExternalMetric”

module which handles process management and serialization to/from the formats used by external

metrics applications using one of many launch methods and a set of IO plugins.

79

begin search
mpi-parallel for f ∈ FD do

last← null;
for t ∈ TD do

if last 6= null then

q ← Q(df,t, ˜df,t(last.~c, ~θc; ~θm); //thread-parallel
if good enough(q) then

store(df,t, last.~c, q); continue;
end

end
partitions← make partitions(U);
mpi-parallel for p ∈ partitions; reduce(best : max) do

s← derivative free search partition(p, last.~c);
thread-parallel while ¬done(s) do

~c← next point(s);

q ← Q(df,t, ˜df,t(~c, ~θc; ~θm); //thread-parallel
best← max(best, (q,~c));
if good enough(q) then

global notify cancel(); break(2);
end

end

end
store(df,t, best.~c, best.q); last← best;

end

end

end
Algorithm 4: FMFS

External I/O intefaceIn-memory interface

R interpreter

C++ module

…

Metrics Management

Posix Petsc

csv HDF5 numpy

Copy template

MPI launcher

Launch handler

Posix Fork/Exec

Remote HTTP

Analysis metric Adapter/Plugin

A
s
s
ig

n
m

e
n
t

M
e

tr
ic

Figure 5.2: Components in metric adapter and launch handler.

80

In-core techniques are generally faster as they do not require reading/writing from external

storage. Moreover, some environments prohibit the spawning of additional processes beyond the

initial mpiexec. In these cases, in-core metrics modules may be all that are allowed by the system

administrator. The primary disadvantage is that applications and/or libraries often require substan-

tial rewrites to support embedding. OptZConfig provides two in-core methods: C++ shared library

modules and embedded R scripts.

The primary advantage of out-of-core methods are that they require minimal changes to the

user’s application and avoid some of the threading limitations required for thread safety. OptZConfig

currently provides three out-of-core-methods to maximize performance and meet specific environ-

mental requirements: Fork+Exec, MPI Comm spawn, and HTTP endpoint. To use an out-of-core

method, the user’s application and OptZConfig need to agree on a protocol for communicating the

decompressed data. To make this easy for users porting their applications, OptZConfig provides

routines to write the data in many common formats including a binary blob, an HDF5 file, a numpy

array, a PetSc Matrix, and CSV files. Additionally, we support dynamically loaded user defined

serialization and de-serialization methods.

C++ shared libraries are the fundamental implementation of the metrics types. They allow

the greatest degree of control over exactly how memory is used, allowing for a zero-copy usage

for some metrics. They also provide more possible callbacks into LibPressio than other methods

provide, enabling some classes of metrics which are currently not possible using the other methods,

for example, timing the compression. They can be used in a multi-threaded context, but users can

opt out of this behavior by setting a flag.

The R metrics module embeds R in OptZConfig 3 to efficiently access all of the modules

in R. The R Metrics module takes an R script and a list of output variables as input to compute

metrics. However, due to limitations in the R implementation, access to the R interpreter in any

given process has to be protected by a shared lock which limits scalability.

The MPI Comm spawn method uses MPI-2 features to spawn child MPI programs. Some

MPI implementations do not allow calling Fork+Exec explicitly and others do not support nested

invocations of MPI programs, and because OptZConfig uses MPI, using Fork+Exec can cause un-

defined behavior. However, because the MPI-2 standard envisions this routine may talk to a batch

3a specialized programming language for statistical computing and has visualization and sophisticated error analysis
tools not common in other languages

81

scheduler or other runtime system, some system administrators have disabled it, and some MPI

implementations have never implemented it.

The alternative solution on systems where MPI Comm Spawn is not allowed is to use the

HTTP endpoint module. It avoids the problem of nested MPI by calling out to a distinct process

tree that does not use MPI. Thus, the the lifetime of the metrics program is extended beyond the

life of the metrics invocation. This enables programs that are written in languages such as Julia or

other systems, that have large startup times to be used for metrics.

We choose HTTP and not a more efficient protocol because of its ubiquity and wide support

among many programming languages 4. Additionally, if users want to use a more efficient protocol

such as Mochi’s Mango, Protocol Buffers, or Apache arrow, a launch plugin could be written and

used.

5.6 Optimizating FMFS and OptZConfig

OptZConfig and FMFS make several important improvements over FRaZ, which is both an

algorithm and an implementation [2]. First, the FRaZ implementation does not support being used

online or embedded within an application as a metacompressor whereas OptZConfig does. Second,

OptZConfig supports custom search methods. This allows OptZConfig to compete with advances

in white-box-based methods (see Section 5.2.4) and adopt new searching techniques as they become

available. Third, OptZConfig supports quality constraints on the objective — such as enforcing a

specific PSNR or p-value on the KS test — and multidimensional searches allowing users to adjust

multiple parameters of the compressor simultaneously to achieve higher compression ratios and

higher quality than what is possible in FRaZ, which allows adjusting only the error bound. Finally,

OptZConfig enables composeable distributed-memory and multithreaded parallel search algorithms

and compressors with fine-grained resource allocation by allowing searches to delegate a subdomain

of the search to other implementations of the pressio search interface.

FMFS utilizes the additional context and features of OptZConfig to account for up to a 60×

speedup over the FRaZ algorithm (see Section 5.7.2). We take a novel approach to parallelism for a

black-box-based compressor auto tuner by allowing multithreading in the inner search algorithms,

parallelism in the compressor implementation, and faster cancellation by moving the cancellation

4While this method was intended for HTTP(S), the implementation uses libcurl and supports any protocol sup-
ported by libcurl.

82

check between iterations of the underlying search algorithm rather than after all iterations. Sec-

tions 5.6.1, 5.6.2 and 5.6.3 describe the details.

5.6.1 Compose-able Parallelism

OptZConfig provides two types of search algorithms: concrete and metasearch algorithms.

Concrete search algorithms implement a specific search algorithm. For example, fmfs, fraz and

binary search implement our new algorithm FMFS, the FRaZ algorithm from [2] and a simple

binary search, respectively.

Metasearch algorithms (e.g., guess first, dist gridsearch modules) allow common search

functionality to be implemented in a reusable way. The guess first module implements the com-

mon functionality that attempts to test a prediction first before spawning an expensive search

process. The dist gridsearch takes a search request and spreads it out into a user-defined number

of subgrids across the cluster, spawning a search on the search grid cell and enabling search methods

that do not normally take advantage of distributed-memory parallelism to take advantage of it.

What makes this truly reusable, however, is the interface requirements for sharing resources.

Numerous researchers find that when multiple frameworks attempt to control parallelism, parallelism

suffers [79]–[82]. OptZConfig addresses this problem by requiring well-known options for expressing

the allocation of parallel resources such as CPU processes, MPI communicators, and (in the future)

GPUs and other accelerators. Thus, users can specify where they would like to allocate different

scarce parallel resources, giving them fine-grained control over the degree of parallelism.

5.6.2 Safe Multithreading

Not all search algorithms or compressors are thread safe in all use cases. For example, SZ 1.X

and 2.X safely uses multiple threads if the compression parameters are identical between the threads.

But because SZ has global state parameters that are shared between threads, data races are possible

if these are modified while another thread is invoking the compressor. However, checking if the

compressor is thread safe alone is insufficient. The library must also check the MPI implementation,

and ensure each invocation gets its own compressor handle. To support this, OptZConfig’s callback

to invoke the compressor clones the output buffer and compressor object explicitly for each thread,

thereby implicitly cloning the metrics object held by the compressor. These clones ensure that

threads do not clobber a compressed buffer produced by other threads. The remaining objects are

83

either stack allocated by each thread or are referenced in a read-only manner, preventing a data

race.

Give the clones involved, it is important to consider the memory usage of this design. The

outer-most loop of FMFS uses MPI parallelization giving each rank a seperate address space. In

order to reduce memory usage at this level, a careful use of public, shared, virtual memory mappings

ensures that each input is loaded exactly once and only on the rank that uses it. Additionally, the

input buffers for each field and time-step that are not currently being processed can be paged out

efficiently when they are not in use. In an HPC usage scenario, processes are typically allocated

one thread per hardware core, and OptZConfig uses at most one input buffer per thread at any

given time. The memory usage grows linearly with respect to the thread count and O(1/x2) with

respect to the per-thread memory overhead. The largest single buffer used in our experiments is 539

MB. Assuming a worse case of a compression ratio of 1 for the compressed and output buffers, and

the memory overhead from SZ (3.004 ×), ZFP (.6623 ×), or MGARD (4.412 ×)5, the maximum

memory usage per thread is at worst 4.0 GB per thread with fits well within the per-node memory

limit.

5.6.3 Inter-Iteration Early Termination Support

The last major performance improvement is inter-iteration early termination support. Can-

cellation in OptZConfig is cooperative rather than preemptive. At the beginning of the search

process, each of the worker ranks (excluding the master) begins an nonblocking collective broadcast

with the master process. If the master wants to terminate, it completes the nonblocking broadcast,

and the children test their handle for the broadcast to see whether it completes. If a worker wants

to request a termination, it sends a message out of band to the master indicating the request. The

master completes the broadcast indicating that a process requests termination.

5.7 Experimental Evaluation

We perform the evaluation as comprehensively as possible in four areas. First, in sub-

section 5.7.1, we evaluate OptZConfig against specialized compressors which are custom-built to

5measured via the peak resident set size for both compression and decompression, m, from getrusage for a data
of input size i and compressed size c. Then computed as (m− 2i− c)÷ (i)

84

Table 5.3: Hardware and Software Details

Component Description Component Version

CPU Intel Xeon 6148G (40 Cores) Compiler GCC 8.3.1
RAM 372 GB OS CentOS 8
Interconnect 100 GB/s HDR Infiniband MPI OpenMPI 3.1.6
MGARD v0.1.0 SZ v2.1.10
ZFP v0.5.5 LibPressio 0.66.1

preserve a specific metric. In subsection 5.7.1, we show that OptZConfig achieves up to 3 × im-

provements in compression ratio on some data sets over a state-of-the-art specialized compressor

while yielding a tighter bounding on the user’s metric. Next, in subsection 5.7.2, we evaluate

the performance improvement over the FRaZ algorithm. In subsection 5.7.2, we show how three

performance optimizations we make over FRaZ contribute to a 56 × speedup. After that, in subsec-

tion 5.7.3, we conduct a comparison against MGARD’s Quantity of Interest Mode (MGARD-QOI)

which is the only other compressor which attempts to bound a very limited form of user-defined

quantities. In subsection 5.7.3, we show a over a 1000× speedup when both MGARD-QOI OptZ-

Config are tuned. We show our technique reduces tuning time from 23.36 minutes for MGARD-QOI

to at most 6 seconds for OptZConfig. We further demonstrate that OptZConfig without tuning is

faster than the tuned version of MGARD-QOI 75% of the time and only up to 5× slower in the

worst case. Finally, in subsection 5.7.4, we evaluate the runtime of OptZConfig on problems that

are not solvable with any current other current compressor. In subsection 5.7.4, we show a speed

up over the prior systematic approach from 24 node hours to 13 node minutes – a 110× speedup.

We conduct all of these evaluations on nodes of REDACTED cluster (see Table 5.3). We

select these nodes to have a large number of CPUs since at the time of writing MGARD’s GPU

support is still maturing for all modes and does not include MGARD-QOI mode.

For our analysis we use a number of datasets from SDRBench[74]. These are summarized

in Table 5.4. We choose these datasets because they represent regular-grids and have metrics of

interests defined by their communities. Regular grids are the type of data structure that MGARD

is designed to protect. SZ and ZFP work on other datasets as well, but we focus on regular grids for

the purpose of comparison with MGARD. In particular we present only Cloudf48 from Hurricane,

Prec from CESM-LE, pressure from miranda, baryon density from NYX and volume from SCALE-

LETKF, without loss of generality, in that other fields are similar based on our observation.

85

Table 5.4: Datasets

Dataset Description total size buffer size

CESM-LE Climate Earth Science Model Ensemble 17GB 643MB
Hurricane Weather data from hurricane Isabelle 48GB 96MB
Miranda Hydrodynamics turbulence simulation 1.87GB 288MB
NYX Cosmology simulation 2.7GB 512MB
SCALE-LETKF Local Ensemble Transform Kalman Filter 4.9GB 539MB

5.7.1 Comparison to Specialized Compressors

To evaluate OptZConfig against specialized compressors with built-in metric support, we use

the PSNR metric. Among SZ, ZFP, and MGARD there are only a few specialized natively supported

user-defined metrics: PSNR (supported only by SZ; used in image analysis, climate science, and

other domains), metrics supported in MGARD’s QOI-mode (which are discussed in Section 5.7.3)

and the L∞ norm (supported only by MGARD; used in mathematics and finite element methods);

the other modes preserve some point-wise bound which are not widely adopted in the analysis used

by users. We choose PSNR because it is commonly used in the literature, and SZ natively supports

it. Additionally, both SZ and PSNR are significantly faster to compute presenting a worst case

for our approach. We exclude ZFP and MGARD in this test because they do not have a native

fixed-PSNR mode.

A straightforward idea of fixing PSNR within SZ is relating the absolute error bound to the

PSNR, which was proposed by Tao et al. [22]: 20 · log10(value range(df,t)/εabs) + 10 · log1012

In order to make it hold, there is a fairly strong assumption that the distribution of compres-

sion errors induced by the compressor must be uniform. However, much prior work has verified that

compressors often have a non-uniform distribution [24]. Moreover, the error distribution can vary

significantly with error bound [20], so that inevitably PSNR cannot be controlled accurately based

on the above formula [22]. Based on our observation with various application datasets, distribution

of errors are non-uniform in most cases, as exemplified in Figure 5.3, which also explains well why

SZ’s PSNR mode suffers inferior compression ratios, to be shown later.

We compare three different configurations: OptZConfig+sz (uses OptZConfig to set an ab-

solute error bound for SZ); OptZConfig+zfp (uses OptZConfig with ZFP to set the ZFP accuracy

parameter); and sz+psnr (specialized version of SZ which bounds PSNR). The goal of these config-

urations is to show how OptZConfig compares with the state of the art for bounding PSNR – SZ’s

86

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-3e-05

-2e-05

-1e-05

 0 1e-05

 2e-05

 3e-05
P

D
F

Compression Error

PSNR=30
PSNR=50
PSNR=70

(a) SZ

 0

 0.05

 0.1

 0.15

 0.2

-3e-05

-2e-05

-1e-05

 0 1e-05

 2e-05

 3e-05

P
D

F

Compression Error

PSNR=40
PSNR=50
PSNR=70

(b) ZFP

Figure 5.3: Distribution of Compressor Errors of SZ and ZFP for Miranda:pressure with different
data distortion levels

PSNR mode.

We run the three configurations with several possible PSNR tolerances of 30 – 90 db as

a set of plausible thresholds that a user might desire. The higher the PSNR threshold, the more

challenging the problem is for OptZConfig to find a feasible solution because of the smaller number

of nonfixed compressor settings that satisfy the bounds. During this evaluation, we find a solution

for every configuration, slice, and tolerance desired. Additionally, we allow OptZConfig to terminate

early if it finds a solution with a compression ratio such that most PSNR tolerances require searching

– greater than 60× – and the quality thresholds are met.

On each run, we record the achieved compression ratio, compression time (including search

time for OptZConfig-based methods), and the achieved PSNR. Compression time and compression

ratio are two common measures to evaluate compressors. We consider the achieved PSNR to un-

87

derstand how much overpreservation occurs. For example, if asked to target a PSNR of 40dB, did

the compressor get a higher PSNR like 80dB? Overpreservation is undesired because it will cause a

much lower compression ratio and higher compression time than expected.

 0

 100

 200

 300

 400

 500

 600

 700

30 40 50 60 70 80 90

C
o

m
p

re
s
s
io

n
 R

a
ti

o

Target PSNR (dB)

sz+psnr
optZConfig+sz
optZConfig+zfp

 627 627

399 +201%

+114%

(a) Hurricane (CR)

 0

 200

 400

30 40 50 60 70 80 90

C
o

m
p

re
s
s
io

n
 R

a
ti

o

Target PSNR (dB)

sz+psnr
optZConfig+sz
optZConfig+zfp

2.2k 2.2k

1.5k
518

604

+207%

+320%

(b) Miranda (CR)

 0

 20

 40

 60

 80

 100

 120

30 40 50 60 70 80 90

A
c
h

ie
v
e
d

 P
S

N
R

 (
d

B
)

Target PSNR (dB)

sz+psnr
optZConfig+sz
optZConfig+zfp

30
40

50
60

70
80

90

(c) Hurricane (PSNR)

 0

 20

 40

 60

 80

 100

 120

30 40 50 60 70 80 90

A
c
h

ie
v
e
d

 P
S

N
R

 (
d

B
)

Target PSNR (dB)

sz+psnr
optZConfig+sz
optZConfig+zfp

30
40

50
60

70
80

90

(d) Miranda (PSNR)

 0.1

 1

 10

 100

30 40 50 60 70 80 90

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Target PSNR (dB)

sz+psnr
optZConfig+sz
optZConfig+zfp

(e) Hurricane (Time)

 0.1

 1

 10

 100

30 40 50 60 70 80 90

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Target PSNR (dB)

sz+psnr
optZConfig+sz
optZConfig+zfp

(f) Miranda (Time)

Figure 5.4: Various methods attempting to maximize the compression ratio while maintaining a
specified PSNR tolerance. We achieve up to 3.2 × improvement in compression ratio for the same
target

We present our results in Figure 5.4. First, we consider compression ratios in Figure 5.4

(a) and (b). In general, OptZConfig achieves a higher compression ratio than what is possible using

the state-of-the-art with the same underlying compressor, because the state-of-the-art SZ often

overpreserve the PSNR by imposing a strict global bound rather than allowing individual points to

vary given that the overall constraint is met. This overpreservation is observed in Figures 4(c) and

4(d). Additionally, OptZConfig tunes other compressor parameters simultaneously to achieve better

88

results.

After that, we look at compression time in Figure 5.4 (e) and (f). In the case of SZ, the

state-of-the-art method is faster than using OptZConfig without tuning because the OptZConfig

tuning process invokes the compressor multiple times. Even given multiple invocations, however,

the runtimes are similar between SZ and OptZConfig because we minimize the number of search

iterations; OptZConfig often has higher quality or/and compression ratios that may mitigate the

differences in runtime in some use cases. We note, however, that this chart includes the tuning time

– the time used to find a suitable configuration of the compressor – for methods using OptZConfig.

Using the guess first module, the user can specify the parameters as the results of the tuning as

a prediction. When this prediction is correct, OptZConfig using SZ is the same as the runtime of

SZ+PSNR since no tuning is performed. Additionally, prior work shows that one often can reuse

predictions from prior time-steps or similar fields, resulting in even lower overhead [2].

5.7.2 Comparison versus FRaZ Algorithm

Allowing parallel compressors, parallel search techniques, and inter-iteration early termina-

tion improves the performance of the search over the techniques used in FRaZ algorithm. We first

consider the impacts of each of these optimizations separately.

First, we evaluate using multi-threading in the compressor. At time of writing: ZFP is

the compressor which has the greatest support for multi-threaded compression, MGARD has no

support for multi-threading compression, and SZ does not have multi-threaded implementations of

all of its modes. Therefore, we run ZFP with the same default configuration and error bound except

to allow increasing numbers of threads. Since threading performance for ZFP is variable, we run

each configuration of threads 30 times using defaults for all other parameters. Figure 5.5 shows

the decrease in compression time for increasing numbers of threads in the ZFP compressor on the

CLOUDf48 buffer from the Hurricane dataset. Similar results were seen for other datasets using

ZFP. Enabling threading in the compressor decreases the time spent evaluating each point during

the search progress and improves search performance on average by 2.07× for ZFP by going from 1

to 12 threads.

Next we consider only threading the search, we again use ZFP since it is the only EBLC

compressor that supports being called from a multi-threaded context with different configurations.

As we increase the threading in the search only from 1 to 4 threads performance improves on average

89

1 2 3 4 5 6 7 8 9 10 11 12
Number of Threads

80

100

120

140

160

Co
m

pr
es

si
on

 T
im

e
(m

s)

Figure 5.5: Improved search time by 2.07× on average (a speedup over the FRaZ algorithm) when
using 12 threads within ZFP
Table 5.5: Improvement in performance by 2.03× on average when going from 1 to 4 search threads.
Higher levels of threading have limited effect. This represents a speedup over the FRaZ algorithm.

Target PSNR Speedup

40 1.88
50 1.97
60 2.24

by 2.03× for different PSNR targets (40→ 1.88×, 50→ 1.97×, 60→ 2.24×). We again show results

using buffers from the Hurricane dataset, but other results from other datasets are similar. Allowing

multithreading of the search itself also has impacts on the execution time—as much as an additional

2.03× improvement in our tests. These improvements are similar to what we observe by using a

distributed grid search. However, in the multithreaded implementation, the implementation of the

search algorithm shares knowledge of the points as they are searched by other threads each iteration.

This allows a better guiding of the search process. Currently, only ZFP supports being called from

a multithreaded context, but this situation is expected to change with improvements to SZ and

MGARD.

The benefits of allowing inter-iteration early termination are the most dramatic. Figure 5.6

shows the speed up when using FRaZ over OptZConfig with two different compressors on different

slices from the Hurricane CLOUDf48 dataset to a user-defined PSNR tolerance. FRaZ does not

support user-defined metrics, only compression ratio. For sake of comparison, we took the FRaZ

90

 0

3

6

9

12

15

Sp
ee

du
p

 CLOUD-slice-1

 CLOUD-slice-31

40 50 60 70 80 90100
Tolerance

0

3

6

9

12

15

Sp
ee

du
p

 CLOUD-slice-51

40 50 60 70 80 90100
Tolerance

 CLOUD-slice-81
Configuration

OptZConfig+SZ+FMFS
OptZConfig+MGARD+FMFS

Figure 5.6: Inter-iteration early termination speedup over FRaZ algorithm on a search for a desired
PSNR.
algorithm and re-implemented it in OptZConfig to enable us to compare only the improvements from

early termination making only the changes required to provide a user-defined metric. In this example,

we allow FMFS and FRaZ to terminate early as soon as a feasible solution is found by setting the

acceptable PSNR threshold to 0 to represent an upper bound for the effectiveness of this technique

when used with PSNR and these compressors. PSNR was chosen because it can be evaluated in

linear time, and is easy to implement. We then compute the speedup of the inter-iteration early

termination over the intra-iteration early termination from earlier approaches [2]. When used with

MGARD, inter-iteration early termination offers improvements as great as 15×. In contrast, when

used with SZ, the improvements are closer to 2×. The key explanation of the difference here is

the relative fraction of the search time spent invoking the compressor and computing the metrics.

In its current implementation, MGARD is nearly 1000× slower than SZ. However, this time would

effectively be increased with additional metrics. These metrics from the perspective of the search

code are “part of” the compression time, meaning the more metrics or the more complex the metrics

being computed, the more SZ would also benefit from inter-iteration early termination.

91

These three FMFS improvements affect different aspects of the search process, and could

be used in conjunction if supported by the compressor and sufficient hardware is available. We ran

an experiment that used the ZFP compressor with each of the various speedups enabled in order

to find a configuration with a PSNR greater than 105 for the SCALE-LETKF V data buffer on a

single node. SCALE-LETKF has the largest buffers of the datasets we consider. We found that

a configuration of 3 MPI processes (2 workers and 1 leader), where the workers spawned 5 search

threads which in turn spawned 14 compressor threads 6 maximized performance on a single node 7.

In this configuration, we measured a 56.03 × speedup over FRaZ. 83% of the time is spent in tuning

the search, the remaining 17% corresponds to a single compress, decompress, compute metrics cycle

to compute the final results. A single cycle of compression, decompression, and computing metrics

took 780ms (17%), 900ms (19.7%), and 2900ms (63.3%) on average respectively. In total, only 6

invocations were used vs the 101 for FRaZ.

5.7.3 Comparison Versus MGARD-QOI

MGARD’s quantity of interest mode (MGARD-QOI) introduces an analytic approach that

relies on mathematical properties of supported metrics being computed to solve for an error bound

that is mathematically guaranteed to preserve the metrics 8. It works by computing a scaling factor

called the “norm of the quantity of interest” and properties of metrics it supports to bound the error

in the metric in terms of the Ls norm chosen by the user.

Specifically, MGARD-QOI requires that the metric be a bounded linear functional computed

on a regular grid. The term bounded linear functional implies that the distributive property hold

for the metric. An example of a bounded linear functional is the arithmetic mean. If one scales the

dataset or add two datasets together, the mean is the same regardless of the order of these operations.

The spatial error metric is an example of a metric that is not a bounded linear functional because

it allows unbounded error on a point by counting the percentage of points that exceed a threshold.

In fact, all of the other metrics mentioned in this paper are not bounded linear functionals. The

term regular grid applies to many HPC applications where a domain is discretized into equal-sized

6Our implementation requires that the thread count be a multiple of the data dimension in order to reduce copies
7Oversubscription in this case overlaps serial and highly parallel portions of ZFP’s compression and decompression

code from different thread teams maximizing performance
8What we call metrics in this paper are referred to as quantities of interest in [26]. The reason is that in the

mathematics community the term metrics has a strict mathematical definition. We choose to use it in the broader
computer science usage here.

92

and equally-spaced distinct chunks to compute the effects inside the domain. While MGARD-QOI

places restrictions on the metrics and problems supported, these restrictions allow the quantities

of interest for many scientific codes. The complete proof of how this works is in their paper [26].

In contrast, the approach offered by OptZConfig supports non-regular grids inputs, and does not

require the metric to be a bounded linear functional.

We do not consider the arithmetic mean of the entire dataset because any compressor that

bounds the maximum error on a dataset bounds the mean by the same error bound. Consider

the mean of the points xi ∈ df,t. If the compressor bounds the absolute error, the corresponding

decompressed points are x̃i ∈ ˜df,t

(
~c; ~θc

)
and by definition ∀xi − εabs ≤ x̃i ≤ xi + εabs The error in

the mean is maximized when
∑
i(xi + εabs)/‖df,t‖. Since we sum ‖df,t‖ εabs and divide by ‖df,t‖,

the maximum error is εabs. The minimum follows similarly, leading to a bound on the mean of ±εabs

The weighted mean is appealing for evaluation because it is a bounded linear functional but

less trivial to bound. This is because some entries may have a weighting near zero 9. Therefore,

an implementation that uses the max of absolute error bound times its weight for a cell grossly

over-preserves information if that entry never has much error from compression.

We attempted a comparison between MGARD-QOI mode and OptZConfig using the weighted

mean metric using a full-sized buffer; however this was performance prohibitive. As written, however,

the MGRAD-QOI calculation takes O(‖df,t‖) evaluations of the metric function. The weighted mean

itself takes O(‖df,t‖) time, making the time to find the norm of the quantity of interest O(‖df,t‖2).

Even if parallelized (current implementation is serial), this requires O(‖df,t‖2/p) time where p is

the number of processors. If run on a full-size problem, finding the norm of the quantity of interest

is expected to take between 17 and 19 days. We confirm this analysis by timing the first 250,000

basis values (1% of the basis values of the full dataset) on a full sized problem, which takes nearly

4.5 hours.

Instead we focus on the four 3% slices of the input data. we present results from only

four 3 × 500 × 500 slices from the 48th time-step of the CLOUDf48 field in the Hurricane dataset

from SDRBench[74]. Results from other datasets and their full sized counterparts are similar. This

approach is consistent with the slice-by-slice analysis used in the Climate community for CESM [15].

We choose the four slices to represent different problem difficulties: slice-1 is sparse and therefore

easy to compress to a specified tolerance; slice-81 is a little bit harder; slice-31 is harder still; and

9a weighting near zero is useful when you want to ignore “ghost cells” or the edges of detectors for analysis

93

slice-51 has the most visual features, making it the hardest to compress. Empirically, the time

required to compute the norm of the quantity of interest on a 3% sample MGARD-QOI mode takes

on average 23.36 minutes ±0.04. This is scaled down from the full computation in two ways. First,

in this problem, we are computing only the first 3% of the basis values. Second, in this problem,

each basis value takes 3% of the time that it takes on the full problem.

For fair comparison, this expensive norm-finding operation does not have be performed with

every evaluation of the compressor. The norm can be reused as long as the dimensions of the input

data remain constant and the metric does not change. Thus, for some quantities of interest that are

not dependent on the original data, one does not have to even recompute the norm of the quantity

of interest even if the values of the input data are changed. Additionally, quantities of interest with

this property converge to a constant times the number of bases computed as the number of bases

increases. Thus, users can often bootstrap their problem with a smaller version of the problem for

faster computing of the norm. However, because the weighting changes with the size of the matrix,

this kind of bootstrapping is not viable in this case.

There are two possible fair comparisons between MGARD-QOI and OptZConfig for the

metrics that MGARD-QOI supports: (1) MGARD-QOI with-tuning vs OptZConfig with-tuning,

and (2) MGARD-QOI with-tuning vs OptZConfig without-tuning. Case (1) is most appropriate

when there is the potential for substantial variation between the compressor configurations required

to preserve a user error metric – such as a turbulent simulations or shock codes. Case (2) is most

appropriate when the configuration is likely to be similar between time-steps for fields as prior work

has shown is true for many HPC codes [76].

To evaluate the differences between these two cases, we used MGARD-QOI and OptZ-

Config with SZ in absolute error bound mode to bound the weighted average for each of the dif-

ferent slices listed above. We attempted to bound the absolute error in the weighted average to

±10−3, 10−4, and 10−6 with both compressors and measured the tuning time for OptZConfig, with-

tuning compression time, and compression ratio. We attempted to include OptZConfig+MGARD

to have a OptZConfig+MGARD vs MGARD-QOI evaluation as well, but were unable to do so due

to implementation flaws in MGARD. OptZConfig+ZFP results were similar to the OptZConfig+SZ

results.

Figure 5.7 summarizes the results of this experiment. In the figure, the black line represents

the time that MGARD-QOI took post tuning and was identical for all tolerances and files. The

94

10−5 10−4 10−3

Tolerance

0

1

2
3
4
5
6

Ti
m

e
(s

ec
) CLOUD-slice-1

CLOUD-slice-31
CLOUD-slice-51
CLOUD-slice-81
OptZConfig+SZ Post-Tuning
MGARD-QOI Post-Tuning

Figure 5.7: OptZConfig vs MGARD-QOI for weighted mean: OptZConfig is 83% faster 75% of the
time without tuning OptZConfig; with tuning OptZConfig+SZ is over 1000× faster in all cases.

dashed line represents the post-tuning for OptZConfig and was the same for all tolerances and files.

The bars represent the time for compression and tuning using OptZConfig. We are able to tune SZ

compression faster than MGARD compresses the same buffer using QOI mode when the QOI norm

is already found in 75% of the cases we test. In those cases where OptZConfig is faster, the average

time taken by OptZConfig using SZ is 0.6 seconds compared to the 1.1 taken by MGARD-QOI

mode. In the other 25% of cases, OptZConfig was 2 – 5× slower than MGARD with its tuning

already complete. After OptZConfigs’ tuning was preformed, OptZConfig with SZ was over 1,000

times faster than MGARD-QOI with tuning in all cases.

5.7.4 Performance on Non-trivial Metrics

To provide more evidence of OptZConfig’s effectiveness on previously un-automated prob-

lems, we consider a real-world set of constraints from the climate community that cannot be bounded

by any other currently available compressor including MGARD-QOI and FRaZ. Section 5.2 states

metrics and bounds for PSNR, the p-value of the KS test, the spatial error percentage, and the R

value for the raw data using the thresholds from Table 5.1. We add PSNR to this evaluation as it is

discussed in [15]. However, the threshold we use is arbitrarily determined since a bound for PSNR

was not identified. Figure 5.8 shows that PSNR never binds over the search space.

For this evaluation, we use a buffer from the CESM application. Table 5.1 shows the

95

Table 5.6: Runtime for systematic sampling vs OptZConfig

method samples runtime CR found
(1 node)

systematic 10 17s no solution
systematic 100 33s no solution
systematic 1000 3m45s no solution
systematic 10000 35m40s no solution
systematic 100000 6h (4 nodes) 7.264

OptZConfig n/a 13m 7.3046

thresholds we use. For this evaluation, we use SZ in its absolute error bound mode and consider one

parameter, the error bound, for the sake of tuning time. OptZConfig finds a solution that meets

all of the constraints with a compression ratio of 7.3046× in 13.1642 minutes using 40 cores of one

node. Of this time, 95% is spent evaluating the various metrics on the decompressed data. Figure 5.8

shows a graphical summary of that evaluation.

Figure 5.8 shows that over the search range, the KS-test p-value was the only binding metric.

Most of the other values were not even close to their allowed tolerance. The R value is not able to

even detect loss in this error bound range. The spatial error percentage is able to detect at most

0.0017% spatial error at its most extreme value. Over the search range, the spatial error percentage,

KS Test p-value, and the PSNR are not monotonic. This nonmonotonic behavior defeats more näıve

approaches such as binary search [2].

Because binary search-like approaches are not applicable to this problem, users would have

to resort to an approach similar to OptZConfig or some kind of systematic evaluation. For a

performance comparison, we conducted a systematic evaluation of various numbers of points between

the error bounds we provide to OptZConfig 10−18 and 10−12. For the systematic evaluation, we

divide the state space into evenly sized bins and evaluate the compressor on the midpoint of each bin,

and record all points that meet the constraints outlined in this section. The results of this process

are in Table 5.6. With even a moderate number of points, the systematic approach was not able to

identify a valid solution. This is because a wide range of allowed error bounds result in infeasible

requests given the user’s constraints. If the user had placed a time limit on the search sorted than

the time required, our approach would have failed and returned the result which satisfied the most

constraints. The only systematic process which found a solution evaluated 100,000 points and took

a little over 6 hours running in parallel on 4 nodes compared to the 13 minutes for OptZConfig on

one node. The best result from the systematic search has a compression ratio of 7.264×, which is

96

6

7

Compression Ratio

0.0

0.5

1.0

KS Test P Value

10−7

10−3

101

Spatial Error % (δ= 1e− 4)

100

200

300 PSNR

10−17 10−16 10−15 10−14 10−13 10−12

Absolute Error Bound

0.99999

1

Pearson's Coefficient

Figure 5.8: Evaluation metrics at 100,000 error bounds between 10−18 and 10−12. The PSNR,
KS-test p-value, and R value must be above their threshold in order to satisfy the constraints. The
spatial error % must be below its threshold. All points to the left of the black line satisfy the
constraints.

97

about .5% worse than using OptZConfig’s solution taking 27× more time on 4× as much hardware.

5.8 Conclusions

Techniques such as OptZConfig and FMFS have great promise in helping applications cope

with moving and storing ever-increasing volumes of data. It offers a higher-performance method of

setting error bounds to preserve user metrics than do prior methods such as FRaZ or MGARD-QOI.

OptZConfig also offers new capabilities to bound arbitrary user metrics and provide fine-grained

control over the search. We demonstrate that OptZConfig can get up to a 3× improvement in

compression ratio for equivalent PSNR requirements as SZ’s specialized mode. We further show up

to a 56× speed up over FRaZ when using compressors that support being used from a threaded

context. OptZConfig further offers a 233× improvement over MGARD-QOI tuning time, and are

1000× faster than MGARD-QOI post-tuning. Lastly, we demonstrate our method on 3 metrics from

the climate community achieving a 110× performance improvement over the systematic approach

used previously for these metrics.

98

Chapter 6

Understanding The Effectiveness of

Applying Lossy Compression in

Machine/Deep Learning

Applications

6.1 Introduction

In recent years, there have been increasing focus on the use of machine learning (ML) and

deep learning (DL) techniques in high performance computing (HPC) applications [83]–[86]. Many

domains including cancer research [87], molecular dynamics [83], and even understanding IO patterns

to accelerate super computing [88] take advantage of these techniques. With these techniques, comes

a desire for processing an ever increasing volume of data for training and validation to improve the

ability to store, transport, and process the data efficiently. The Candle project – which does cancer

research – alone anticipates more than 1PB of data required for training per experiment, for just one

class of problem they consider [87]. Today’s advanced instruments such as Linac Coherent Light

Source (LCLS)-II [89] and Advanced Photon Source (APS) [90] may produce the X-ray imaging

data at a very high acquisition rate (250GB/s [13]).

99

With the fast growth of training and validation data, it is quite difficult to store or transfer

such large volumes of data, especially for the use-cases that require sharing data on wide area

network (e.g., using Globus [91]) so other researchers can perform experiments on shared data-sets for

comparison or require transferring data from instruments/devices to data centers or supercomputers

even within the same site. In addition to the examples (Candle and X-ray imaging data) mentioned

above, more typical examples include streaming input data from some instrument or sensor such

as structural health monitoring [92] or in traffic safety applications [93]. As these applications are

posed, data needs to be transferred over a rural cellular network back to a HPC facility for real-time

or near real-time processing. However for these applications, streaming the data becomes challenging

due to limitations in the available bandwidth. Moreover, it is also challenging to share data between

scientific institutes/supercomputers even on a highly-optimized data transferring platform such as

Globus [91]. According to [94], one data transfer node (DTN) on wide area network (WAN) has

only about 1GB/s bandwidth and one user generally uses only one DTN, which means transferring

petabytes of data between two different sites may take several weeks. Another critical issue is that

scientists may experience performance challenges related to the IO involved with training on the

input data. IO operations for large volume of data could be very slow – especially when data cannot

fit into main memory. The work by [10] has shown that even with advanced IO subsystems, most

applications experience peak IO performance less than that of a handful of USB mass storage media

– less than 0.1% of the peak storage bandwidth capacity. Last but not the least, limitations on

storage space is a serious concern for scientists. In many cases, there are huge costs for maintaining

a large amount of data in storage: just for the hard drives alone storing the data for one experiment

would cost over $20,000 not including the power, cooling, equipment, and staff to maintain the drives

over the their lifetime [95].

The challenges of storing/moving massive data for scientific applications have led researchers

to consider using efficient lossy compression methods to significantly reduce the data volumes. Com-

pared with lossless compression that achieves only modest compression ratios over numerical datasets

for many scientific applications [13], lossy compression techniques [5], [6], [13] yield larger compres-

sion ratios and have saw rapid development in recent years.

For lossy compression, the most critical concern for users is what is the impact of the

information loss that occurs in lossy compression on the applications. Without a good understanding

of such impact, it is very difficult to construct or select the most efficient/qualified lossy compressor

100

with a specific required fidelity on the quality metrics for applications. Therefore, an efficient

methodology to assess the impacts of lossy compression on the quality metrics for ML/DL scientific

applications is urgently needed.

In this paper, we present a methodology for assessing the impacts of lossy compression

on ML/DL and apply it to several different problems from different domains to identify some best

practices for applying training and validation data for ML/DL. We answer the following key research

questions:

• Is quality best preserved by compressing the data independently by row, by column, as collec-

tively as a matrix?

• What compression principles are most effective (and why) at preserving quality for each com-

pressed size?

• What indicators can be used to determine whether a problem is “well conditioned” and robust

to a particular form of lossy compression?

In order to answer the above critical questions, we need to resolve a series of key challenges, as

listed below. (1) This work requires to run several ML/DL-based data-analysis applications designed

for different use-cases (image analysis, scientific research, etc.) at different scales on supercomputers.

(2) This work requires an in-depth understanding of different types of compressors that could be used

on the numerical datasets, and also combining the various compressors with he ML/DL applications

to be studied. (3) This work requires an in-depth understanding of the critical quality metrics

regarding both compression and ML/DL applications, in order to design a comprehensive, efficient,

fair assessment framework for our investigation work.

The remainder of the paper is organized as follows: In Section 6.2, we highlight some key

background in data reduction techniques. Following the related work, we discuss in Section 6.3 our

overview of our experimental environment. In Section 6.4, we describe how we design the measure

system, including how to determine the interesting points for an ML/DL application and how to

measure inconsistent effect and threshold effects. In Section 6.5, we present two classes of results

that show the breadth and scalability of our approach in Section . In Section 6.6 we discuss related

work on how lossy compression is currently used in ML/DL. Finally, in Section 6.7, we present our

conclusions and future work.

101

6.2 Data Reduction Techniques Studied

In order to understand the impact of lossy compression to ML/DL analysis results, it is nec-

essary to have an in-depth understanding of the various data reduction techniques’ design principles

as well as their pros and cons. To this end, we classify and describe the data reduction techniques

carefully in this section. All the techniques mentioned here will be studied and compared in our

following comprehensive analysis.

In Machine/Deep Learning Applications (such as the CANDLE project [87]), data is often

represented as tables of information where each row represents some observation of the phenomena

in question and each column represents quantified proprieties of each observation. This model

generalizes to image recognition where each image represents a row and each pixel of information

corresponds to a particular column in a 2D representation.

There are three major types of techniques used for data reduction: dimensionality reduction

which reduces the number of features, numerosity reduction which reduces the number of observa-

tions, and data compression which neither reduces the number of observations or the number of

features but instead reduces the space that the existing features and observations take in memory or

storage. We discuss numerosity and dimensionality reduction in Section 6.2.1 and data compression

in Section 6.2.2.

6.2.1 Dimensionality Reduction and Numerosity Reduction

One class of data reduction methods is dimensionality reduction techniques such as Prin-

ciple Component Analysis. These methods generally operate by projecting the data into a lower

dimensional subspace with fewer features. We view these techniques as orthogonal to the techniques

we explore in this paper because they can be used in conjunction with the later techniques we discuss

to remove one or more features from the data.

Another class of data reduction methods reduce the number of observations in the data in

either the spatial or temporal dimension. For example, in order to control the data volume, many

scientific applications or use-cases output the simulation data every K time steps periodically [96]–

[98] or just store sampled data and reconstruct the full data by interpolation methods or compressed

sensing technology [99]. In our study, we use 3 sampling methods: with replacement, without

replacement, and naive sampling. Sampling with or without replacement are very commonly used to

102

reduce data volumes in ML/DL applications. The user selects a number of records at random either

the same record to retrieved multiple times (with replacement) or only once (without replacement)

during the sampling. Naive sampling is a degenerate case of sampling that is still commonly used

in some domains to accounts for large volumes of streaming data. In the naive method, the user

selects records systematically using some arbitrary method such as picking every kth record or the

the first k records. Often, systematic sampling is used when the event of some limitation of the

system such as having too many readings to fit in memory or too many records to process before

the next arrive. Since sampling is probably the most commonly used lossy compression technique

used in data mining, it is an important benchmark for comparison.

6.2.2 State-of-the-art Data Compression Techniques

Data compression is generally divided into two categories: lossless compression and lossy

compression. Lossy compression methods can now be further divided into traditional and error

bounded. The remainder of this section is divided into three subsections: lossless methods, lossy

methods, and error bounded methods.

6.2.2.1 Lossless Compression Methods

Lossless compression is the most generic data compression method, because it perfectly

preserves the information through the compression and decompression process for all possible inputs.

Formally, for a compression function, C(x), and a corresponding decompression function, D(x),

a compression scheme is lossless if and only if ∀x,D(C(x)) = x. Typical examples of lossless

compression include DEFLATE [100] used by the zip utility, LZ77 used by GNU’s gzip[69]. Many

lossless compressors such as Zlib [69] and Zstd [25] have been integrated different scientific I/O

libraries (such as HDF5 [101], Adios [102], and GIO [96]) and well-known scientific application

packages (such as HACC [96] and LAMMPS [98]), in case of the data compression need.

However, there are limitations to the effectiveness of lossless compression. A key finding

by Shannon in 1948 indicates that the amount of compression possible for a dataset is based on

its entropy [103]. This finding leaves researchers looking for other methods which can get higher

compression for high entropy datasets like images and floating point numbers.

Generally for these methods, there is a trade-off between high compression ratios and high

compression bandwidths. We considered 4 lossless compressors that are commonly used to strike

103

different trade-offs between bandwidth and compression ratio: zip (also known as DEFLATE) [100],

gzip [69], lz4 [104], and zstd [25]. Zip or DEFLATE is known for its higher compression ratios.

It applies a LZ77 similar method (described in detail in [105]) with a 32Kb window followed by

Huffman Encoding of the resulting data (described in detail [106]). It is one of a few lossless

algorithms standardized for use on the Internet [100], with slight modifications [69]. More modern

lossless methods have been developed by Yann Collet who developed both lz4 and zstd. lz4 is known

for its high decompression rate [104]. It used a byte encoding to replace common subsequences

of data with a compact representation similar to [105], but uses a fixed size block which improves

compression time. zstd builds on the concepts in lz4 to achieve higher compression ratios at a cost

of some speed. zstd uses LZ77 as a first stage and uses two bit reduction phases based on finite state

entropy [107] and huffman encoding respectively to improve compression.

6.2.2.2 Traditional Lossy Compression Methods

Lossy compression allows to have data distortion in the reconstructed data compared with

the original input and tries to keep a high “fidelty” to the original data, in that many practical

use-cases do not need “complete facsimile” [14]. Formally, for a compression function C(x), and a

corresponding decompression function, D(x), a compressor is lossy if ∀x,∃ε,D(C(x)) = x+ ε. This

technique has been widely used in ML/DL applications because the input data are generally stored

in the JPEG, PNG, or other image formats.

A JPEG compressed image is highly compressed relative to the image that a camera cap-

tures, but still “faithfully” displays the people, nature, or objects that are captured, but without

regard to what errors a machine might perceive [14].. Many of these methods, however, are not

designed for generic numeric data compression but rather for images. In our study, we still include

one method in this category: truncation. Truncation computes a lower-order approximation of the

model by neglecting the states that have relatively low effect on the overall model. In our experiment

we have truncated the size of the data attributes from 64 bits size to 32 and 16 bits.

6.2.2.3 Error Bounded Lossy Methods

Error Bounded Lossy Compression (EBLC) is a recent technique that attempts to strike

a balance between traditional lossless and lossy compression. Like lossy compression, EBLC loses

some information in the compression process. However, unlike traditional measures, the user is

104

able to specify aprori how much error and where the error can be located in their data set with a

mathematical bound on the error. This allows users to adopt the lossy compression on their datasets

with high performance and control the data distortion within the error bound. As different programs

and analysis need different concepts of error, these compressors often offer multiple kinds of error

bound.

There are two state-of-the-art EBLC compressors currently being used widely: SZ [5] and

ZFP [6]. ZFP was developed by Peter Lindstrom et al at Lawrence Livermore National Lab (LLNL)

in 2013-2014. ZFP fundamentally works by providing a different encoding of floating point numbers

that more easily compresses than the standard IEEE floating point notations (c.f. [6], [108]). ZFP

provides 3 error bounding modes: Fixed Precision Error Bounds (PREC), Fixed Accuracy Error

Bounds (ACC), and Fixed Rate Distortion Error Bounds (RATE). Fixed Precision (PREC) uses a

fixed number of bit planes (number of most significant uncompressed bits) to encode each number.

Fixed Accuracy (ACC) bounds the absolute difference between a uncompressed and decompressed

value. Fixed Rate (RATE) uses a fixed number of bits to encode each value. ZFP splits the each

dataset into equal-sized blocks and compresses the data block by block (the block size is set to 4d,

where d is the number of dimensions). In each block, ZFP performs an orthogonal transform on the

exponent-aligned data followed by an embedded encoding algorithm. For the transformed data, ZFP

truncates their insignificant bits, which is calculated based on the requested precision (i.e., different

types of error bounds). Details and implementations can be found in [109]. ZFP has been widely

used in many scientific applications [110]–[112], while its performance and impact to the ML/DL

applications is still unknown.

In 2016, Di and Cappello developed SZ [5]. SZ fundamentally works by using a set of

heuristics to approximate the error, and falling back to lossless compression if that failed to meet

a given error tolerance. As time progresses, SZ has evolved and gained additional heuristics and

metrics to help it improve its estimates for different kinds of data [20], [21]. For sake of time and

clarity, we have chosen a subset error bounding metrics from SZ to include in this paper. We

have included: Absolute Error Bound (ABS), Relative Error Bounds (REL), Peak Signal to Noise

Ratio (PSNR), and Point-Wise Relative Error Bounds (PW-REL). Absolute Error Bound ensures

that each value is with some constant of the original value. Relative Error Bound first computes the

range of values input into the compressor and keeps the bound of each below that a specified fraction

of that range. Peak Signal to Noise Ratio is a variant of Absolute Error Bounds based on the Peak

105

Signal to Noise Ratio metric from image compression. Finally, Point-Wise Relative Error Bound

bounds the error in a similar manner to relative, but using the value of the point rather than the

range of values as the scaling factor. Details and implementations can be found in [38]. SZ has been

widely used in many scientific applications [13], [96] across different domains (cosmology, chemistry,

mathematics, etc.), while its performance and impact to ML/DL applications is still unknown.

6.3 Experimental Overview

Figure 6.1: Workflow Overview

For each problem that we consider in the following sections, we will need applications to

evaluate. For the purpose of this paper, a problem is some specific use case for ML/DL such as

predicting if particular drug treats a particular kind of tumor (the P:Drug problem from Candle).

An application is a particular solution to the problem (i.e. Candle NT-3). An application consists of

a training and a testing dataset, some code that applies ML/DL to the application (a model), and

at least one metric that determines how well the model performs on the problem (such as accuracy,

gmean, pearson R coefficent, etc...). There may be many applications constructed for a particular

problem. To investigate the impacts of applying compression to ML/DL, We treat the applications

as a control variables for the purpose of the paper – that is we reused available applications that

perform the well without compression according to the metric for their particular problem while

just introducing compression. However, to account for differences for working on lossy data, we will

re-train the hyper parameters of the models if any.

We consider the application of compression to two possible points of the training and eval-

uation process. We consider decompressing the training data prior to training, and decompressing

the validation data prior to validation. This model is consistent with storing or receiving the data

in compressed form prior to training or validating on it. While we are focusing on training and

validation data in this paper, we expect that this methodology to extend to other points of applying

compression.

106

Table 6.1: Summary of Data Reduction Methods

Method Description

GZIP [69] lossless compressor known for its compression ratios
LZ4 [104] lossless compressor known for its decompresion speed
NONE no compression (control case)
SAMPLE NAIVE sample every kth entry
SAMPLE WR sample randomly with replacement
SAMPLE WOR sample randomly without replacement
SZ ABS SZ [5] Absolute Error Mode
SZ PSNR SZ [31] Peak Signal to Noise Mode
SZ PW REL SZ [21] Point-Wise Relative Error Mode
SZ REL SZ [5] Value-Range Relative Error Mode
TRUNC 64 → 32 bit float truncation
ZFP ACC ZFP [6] Fixed-Accuracy Mode
ZFP PREC ZFP [6] Fixed-Precision Mode
ZFP RATE ZFP [6] Fixed-Rate Mode
ZSTD [107] ZStandard lossless compressor which improves on LZ4 with better com-

pression ratios

Table 6.2: Hardware and Software Details

Component Description Component Version

CPU Intel Xeon 6148G (40 Cores) Compiler GCC 8.3.1
RAM 372 GB OS CentOS 8
Interconnect 100 GB/s HDR Infiniband MPI OpenMPI 4.0.5
GPU 2 Nvidia v100 Singularity v3.7.1
MGARD v0.1.0 SZ v2.1.11.1
ZFP v0.5.5 LibPressio v0.60.0

After we have identified various applications and have performed compression and decom-

pression, we turn our attention to how to analyze the impacts of compression using a variety of

different compression techniques. Table 6.1 summarizes the methods we considered in this paper.

For our experiments, we use the following hardware and software in Table 6.2. We selected

this hardware based on the availability of GPUs and CPU cores to run the models, and the availability

of a high speed network interconnect.

6.4 Problem Formalization and Methodology

Table 6.3 lists all the notations used in our design and analysis, which can be split into two

classes: compression-related parameters and analysis-related parameters. Basically, the compressor’s

parameters can be further split into two categories - nonfixed and fixed. The former refers to the

parameters allowed to be tuned by users (such as error bound) and the latter is composed of all

other parameters that are needed for running the compressor. Q is a data fidelity metric function

107

Table 6.3: Key Notations

Notation Description

~c Vector of nonfixed compressor parameters
~θc Vector of fixed compressor parameters
˜df,t(~c; ~θc) Decompressed buffer for field, f , and time-step, t
~θm Vector of fixed parameters of the user-specified metrics function
U Set of feasible nonfixed compressor parameters
Ω Set of feasible fixed and nonfixed compressor parameters

Q
(
df,t, ˜df,t

(
~c; ~θc

)
; ~θm

)
data fidelity metric function

φ = Q
(
df,t, df,t; ~θm

)
data fidelity metric for lossless data

N The number of desired interesting points
Λ the list of all ”intresting points“ (~c) from smallest to largest. (see Algorithm 5)

ψ~c = Q
(
df,t, ˜df,t

(
~c; ~θc

)
; ~θm

)
data fidelity metric evaluated at ~c

τ some user-determined threshold
sp parallel speedup on p cores
bn the bandwidth of the network/storage
bc the decompression bandwidth
C the compression ratio (uncompressed/compressed)

(or analysis metric) given by users for some application they are interested in (i.e. the validation

accuracy for Candle-NT3).

We also adopt bn and bc to represent network or storage bandwidth and compression band-

width respectively. It is also useful to refer to the compression ratio, C, which indicates how much the

volume of data has been reduced. We introduce the remaining notation in the following subsections.

6.4.1 Finding Interesting Points

One key aspect of this work is to find “interesting points” for users. Since we do not

have an analytical representation of the relationship between the compressor configuration and the

application’s quality metric, we will have to invoke the application multiple times at different quality

levels to determine their relationship. However, within the domain of inputs to the compressor many

points are not interesting. Some error bounds are so small that they are indistinguishable from the

original or lossless values. They are not interesting because there is no meaningful impact on the

quality of the application. Some error bounds are so large that the user would not use them because

the quality falls too much. Therefore, we need a way to determine these points.

A set of interesting points (Λ) can be identified using Algorithm 5 when the greater the

values of some metric is, the better the analysis result or accuracy. There is a similar definition

where one wishes to minimize the quality metric (such as a maximum error). First, we determine

the value of the quality metric when evaluated on a lossless configuration – we call this φ the lossless

quality metric. Next, we need to determine a configuration of the lossy compressor which has the

108

greatest error bound which minimizes the difference from lossless quality metric – we call this value

~u the upper bound. After that, we determine a configuration of the lossy compressor which has the

greatest error bound which is still interesting to the user ψ~c < τ – we call this value ~l the lower

bound. We identified this points using a binary search like approach. With ~l and ~u determined, we

need to sample the space in between to construct a set of interesting points. The number of points

N presents a tradeoff: the larger N , the longer the process of measuring the points will take longer,

the smaller N , the less likely we are to capture the behavior between ~l and ~u faithfully. Users should

the maximum N that they can accept.

Input: Q, df,t, ˜df,t, U, ~θc, ~θm, τ,N
Output: the set of interesting points
begin find interesting points

φ← Q
(
df,t, df,t; ~θm

)
~u← argmin~c∈U |φ− ψ~c|
~l← argmin~c∈U ;ψ~c>τ

ψ~c ;

Λ← logspace
(
~l, ~u,N

)
// see numpy.logspace

return Λ
end

Algorithm 5: Finding Interesting Points

There are many possible ways to sample this space. We choose the evenly distributed points

on a logarithmic scale – what many libraries often call logspace. This is for a few reasons: First, prior

work has shown that uniform random sampling does not work well because the relationship between

a compressor error bound and even simple metrics tend to have spatial properties [2]. Second,

preliminary evaluations showed that there tended to be more interesting behavior at smaller error

bounds which the logscale samples.

We will use these interesting points in each of our experiments to examine the trade-offs

between the compressors.

6.4.2 Measuring Inconsistent Effects

Sometimes the effect of applying data reduction is not consistent effect as the error bound

for the compressor is increased. This represents an indication that types of errors induced by the

reduction technique make it such that it no longer represents the original dataset well. However to

compare the size of this effect, it is helpful to be able to measure it.

The metric we propose is ”sortedness“ and intuitively measures the maximum of how much

109

each observation would have to change in order to put the points into sorted order. Techniques whose

interesting points have a small ”sortedness“ value represent values which have relatively consistent

effects. However, techniques whose interesting points have large ”sortedness“ values would indicate

techniques who the user cannot reasonably predict what impact the technique may have of the metric

of interest. This metric is preferable over more classical measures for how sorted a dataset is because

it treats values adjacent values which are unsorted but have similar value as less significant than

those whose values are unsorted and are grossly different. This is useful because lossless methods

may have several entries which are unsorted, but are close in value; whereas lossy methods may be

more likely to be sorted, but have much larger adjacent differences.

To compute ”sortedness“, we propose the procedures outlined in Algorithms 6 and 7. Algo-

rithm 7 describes a O(N) merging procedure used to emulate the entries changing value by at most

ε. It works by sliding a window through the values and expanding the upper and lower threshold

for merging points as long as we find values within our existing window. We we encounter a point

that is outside of the window, we start a new window at that point.

Algorithm 6 uses this merge procedure to preform a binary search for the smallest threshold

that achieves a sorted order. We know to increase the lower bound of our search when we find a

sorted ordering, and we know to decrease our upper bound of our search when we no longer find a

sorted ordering. The total algorithm is O(N logN).

6.4.3 Measuring Threshold Effects

Sometimes the effect of applying data reduction techniques results is relatively consistent

up until a point and then rapidly deteriorates. We call this behavior “thresholding”. Measuring

this behavior is useful because it allows us to understand which kinds of techniques could have

unexpectedly poor performance within the range of interesting points. To measure this effect we

propose using the maximum of the adjacent differences of the interesting points.

Techniques that measure a large maximum adjacent difference of the interesting points

represent techniques that have a large drop of in the quality of the results. Techniques that measure

a small maximum adjacent difference of the interesting points represent techniques that are relatively

consistent over the interesting points. One may note that this does not account for sharp rises in

the quality metric, this is because such a change would be a non-monotonic and thus captured by

our ”sortedness“ measure.

110

Input: Λ, ψ~c
Output: the smallest epsilon that “sorts” the input
begin stability

ψ ← ψ~c,∀~c ∈ Λ
εlow ← mini,j∈ψ(i− j)
εhigh ← maxi,j∈ψ(i− j)
εcurrent ← midpoint(εlow, εhigh)
τ ← .001
εbest ← εhigh
while εhigh > εlow ∧ τ ≤ |εhigh − εlow| do

merged← merge(ψ, εcurrent)
if is sorted(merged) then

εbest ← min(εbest, εcurrent)
εlow ← εcurrent

else
εhigh ← εcurrent

end
εcurrent ← midpoint(εlow, εhigh)

end
return εbest

end
Algorithm 6: Stability

Input: ε, ψ~c ∀~c ∈ Λ
Output: The merged values
begin merge

merged ← []
for i ← 0 ; i ¡ length(ψ); i += step do

step ← 1
append(merged, ψi)
min epsilon ← ψi − ε
max epsilon ← ψi + ε
for j ← i+ 1; j < length(ψ); j ← j + 1 do

if min epsilon ≤ ψ ≤ max epsilon then
min epsilon ← min(min epsilon, ψj − ε)
max epsilon ← max(max epsilon, ψj + ε)
step ← step + 1

else
break

end

end

end
return merged

end
Algorithm 7: Merge

111

Additionally one may argue that the position of the drop matters: A sharp drop in the

middle of the set of the interesting points is more important than a drop near ~l. To account for

this concern we also recommend consulting the pareto front of the compression ratio and the quality

metric. Pareto fronts are the set of points for which one property (in this case the compression

ratio) cannot be improved without degrading another property (in this case the quality metric for

the application).

6.5 Experimental Results

In Section 6.5.1, we first demonstrate broad applicability of lossy compression on a several of

different problem classes with different kinds of solutions. This section is primarily concerned with

the quality of the compression and the results. Due to data and solution availability constraints, this

section will use many smaller problems. For this section we will consider variations on on layout,

compression principle, and the data being compressed (training/validation/both) before we scale to

larer problems.

Later in Section 6.5.2, we will show how this translates to larger problem sizes which benefit

more for compression.

For Section 6.5.1, we use problems, solutions, and datasets from the from the UCI datasets,

several datasets MLSVM application [113], as well as the current publicly available data from Candle

which had all had publicly available reproducible code and data.

6.5.1 Breadth of Applicability

6.5.1.1 Interesting Points

We begin by creating a pareto front for each of the applications and methods described

in this for each of the methods in Table 6.1. Instead of preparing these figures for the lossless

methods, we simply re-ran the application several times to measure the natural variation in the

quality. Figure 6.2 illustrates the results of finding ”interesting points“ for the Superconductor data

sets.

In this figure, x-axis corresponds to the configuration ID numbers that have increasing error

bounds (i.e. more lossy), and y-axis represents the analysis result (i.e., accuracy of the ML/DL

model after training: the higher the better). We selected the values that generated these bounds

112

(a) SZ (b) ZFP (c) Sample Sizes

Figure 6.2: Tuning the Superconductor Dataset

using a binary search-like algorithm to identify the error bound value that resulted in the greatest

compression with little to no loss in accuracy. Then we tuned the right error bound to be the value

at which the amount of error no longer increased or fell below a threshold of 30%.

We can observe some interesting properties of the compressors using this algorithm. First,

as shown in Figure 6.2a), SZ (ABS) or SZ(REL) has the most smooth transitions from lossless to

very lossy. This is a nice property when using these algorithms because it implies that users have

a fine-grained trade-off between level of error and compression ratio. This is not surprising given

that SZ uses a quantization-based method to bound its error such that the data distortion changes

gradually with the error bound. This kind of approach allows for fine-grain trade offs in error as

you can simply compress an increasing number of points losslessly.

Second, we note that ZFP (Figure 6.2b) has more of a thresholding effect. ZFP experiences

very little loss in accuracy for a given increase in an error bound until it reaches a given level

and falls rapidly. This too is not particularly surprising given how ZFP operates. Basically, ZFP

chooses accuracy levels by selecting a number of bits to preserve. This threshold therefore is likely

comparable to the amount of entropy in the uncompressed data. This property is nice in that it

allows much higher levels of accuracy to be for higher levels of compression, but it does have a

worrying aspect. The value of the threshold is non trivially related to the dataset and properties of

ZFP and difficult to predict without running the compressor multiple times. This means that users

may have a rapid loss in accuracy just by subtlety increasing the error bound.

Finally, we see that Sampling (Figure 6.2c) is sort of a half way between ZFP and SZ. It

has a smoother transition that ZFP does from lossless to lossy, but still features that thresholding

effect. It is also interesting to note that the curves are much more “noisy” than either ZFP or SZ.

113

Figure 6.3: Consistency Metrics

6.5.1.2 Threshold and Sortedness Metrics

Now we attempt to quantify our intuitions from the previous sections with the metrics that

presented in Section 6.4.2 and 6.4.3. For this section we again consider the results from Supercon-

ductor we considered in the previous section for sake of space. We present our results in Figure 6.3.

We note that consistent with our expectations, the lossless methods perform well on both

metrics with small sortedness and thresholding effects. If this were not true, it would indicate a

significant flaw in our approach.

Additionally we observe for sortedness, there are 3 distinct clusters: the lossless methods and

SZ PW REL mode, the rest of the lossy compressors, and finally the sampling based methods. There

is a large difference between the lossy methods that we consider and the sampling based approaches.

This is a strong reason to adopt lossy compression methods over sampling based approaches.

When considering thresholding, there are some similarities for the grouping of methods,

but also some important differences. First, SZ PW REL and ZFP PREC has are now among the

worst performers. This is because they both experience a significant drop in performance: PW REL

towards the middle of its range and ZFP PREC towards the end of its range. While these values are

indicative of inconsistent performance, a different choice about what the user considers acceptable

as the upper bound for loss will effect this decision, and the users should also consider the Pareto

114

0 10 20 30 40 50
Compression Ratio

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(a) Airfoil

0 10 20 30 40 50 60
Compression Ratio

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(b) Superconductor

0 5 10 15 20
Compression Ratio

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(c) RealEstate

0 10 20 30 40 50
Compression Ratio

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(d) Concrete

0 10 20 30 40 50
Compression Ratio

70

75

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(e) haberman

0 10 20 30 40 50 60
Compression Ratio

70

75

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(f) Musk

0 10 20 30 40 50
Compression Ratio

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE
ZSTD

(g) Nonskin

0 10 20 30 40 50
Compression Ratio

80

85

90

95

100

Ac
cu

ra
cy

Methods
GZIP
LZ4
SZ ABS
SZ PSNR
SZ PW_REL
SZ REL
ZFP ACC
ZFP PREC
ZFP RATE

(h) Candle NT-3 (small)

Figure 6.4: Pareto Optimal Points Compression Ratio and Quality for Various Applications

plots.

6.5.1.3 Pareto Optimal Points

After preforming the analysis in each of the previous subsections for the remaining applica-

tions, We consider pareto optimal points for each of the smaller applications. We present the results

of this consideration in Figures 6.4 and 6.5. In these figures, points that are best are to the upper

right.

The results in Figure 6.4, applied error bounded lossy compression independently to each

column. Where as the results in Figure 6.5 applied error bounded lossy compression to the entire

data as a matrix. We did this in part because of differences in the design of MLSVM that made

integration challenging, but also to study the impacts of different data layouts.

For some datasets, the ZSTD lossless compressor also performed well, but this was very

dataset dependent. Datasets with many identical values performed well with ZSTD, those with

more true floating point values did poorly. Additionally only achieved this level of compression ratio

but this also required highest compression level setting which has significant run time on most data

sets, often 4 times the next closest compressor. GZIP also required substantial time to run, but

tended to preform worse than ZSTD.

Of the lossy compressors, SZ’s value range relative mode and ZFP’s precision modes con-

sistently preformed well on many datasets. At higher allowed drops in quality, the SZ PW REL

compressor also performed well.

115

0 20 40 60 80 100
Compression Ratio

80

85

90

95

100

Ge
om

et
ric

 M
ea

n

Methods
SZ PW_REL
SZ REL
ZFP ACC
SZ ABS
NONE
ZLIB
LZ
FPZIP
ZSTD
ZFP PREC
LZ4

(a) MLSVM Advertise-
ment

0 2 4 6 8
Compression Ratio

80

85

90

95

100

Ge
om

et
ric

 M
ea

n

Methods
ZFP ACC
SZ REL
SZ ABS
FPZIP
ZSTD
ZLIB
LZ
NONE
SZ PW_REL
ZFP PREC
LZ4

(b) MLSVM Clean

0 20 40 60
Compression Ratio

80

85

90

95

100

Ge
om

et
ric

 M
ea

n

Methods
ZFP PREC
ZLIB
SZ REL
SZ ABS
SZ PW_REL
FPZIP
NONE
LZ
ZFP ACC
ZSTD
LZ4

(c) MLSVM Buzz

Figure 6.5: Pareto Optimal Points for MLSVM

6.5.1.4 What compression approaches were the most effective at preserving quality at

a given compression ratio?

We have found that independent column based lossy compression is most effective for

ML/DL problems when the inputs are formulated as tables where rows are observations and columns

are features. This is because the values in each column are more likely to be spatially correlated

with each other where as the contributions of rows are likely to reduce the accuracy of transforms

and predictions. This does come at some slight overhead for some compressors such as SZ where

redundant huffman trees are stored for each row regardless of input size and runtime performance

overheads due to repeated memory allocation latency when columns are small. In the future, a

specialized compressor could alleviate these overheads.

We have found that prediction based error bounded lossy compression was generally the

most effective. Even though the compressor modes in SZ share substantial amounts of code, the

value range relative mode was most effective when compressing by column or column, and all modes

were similarly effective when compressing as a matrix. This is because using value range relative

mode effectively set distinct error bounds for each column or row. Figure 6.6 shows the distribution

of the value ranges by column for Candle NT-3. We expect that ZFP would have similar benefits

if an adapter was made for ZFP to preserve a value-range relative bound. Sampling methods were

too erratic in terms of both non-monotonities and sharp drops to be recommendable.

6.5.2 Performance Evaluation

To evaluate the performance implications of using lossy compression, there are in principle

two possible slow downs. One possibility is that training time would change, we found this was not

true for the applications we tested. The other possibility is the impact on IO time, this is the focus

of the remainder of this section.

116

Figure 6.6: Distribution of the value Ranges for Candle NT-3

To evaluate scalability of using error bounded lossy compression, we will use larger scientific

data sets. We have two such larger data sets: Candle-NT3 and PtychoDNN. For each application,

we generated a 4GB binary input file 1 using the tools provided by the applications. Note that this

generalizes to even larger datasets that are processed in chunks; this is to overcome maximum input

sizes for some compressors such as LZ4 and ZSTD [25], [104]

The runtime without compression as the time to read the entire data over the network:

||df,t||
bn

One can model the time used to perform read the data with compression can be modeled

as the sum of the transfer time in compressed format + the parallel decompression time:

||df,t||
spbc

+
||df,t||
Cbn

1Candle NT-3’s native input format is CSV, however to mitigate the large overheads of parsing the CSV into a
binary form for the compressors and processing by Candle. All input sizes reported for Candle assume this binary
format instead of the native CSV format; Our results are even stronger when compared against CSV with parsing
due to this overhead. PtychoDNN uses numpy format which is a binary format with a small header and thus did not
require conversion

117

Thus the speedup is:

Cspbc
Cbn + spbc

We can then compute the number of cores required to achieve a parallel speedup:

sp >
Cbn

bc (C − 1)

Network bandwidth can very widely from site to site, and across different times of day.

Therefore, we compute the number of parallel compression required to achieve a speedup with

varying IO latency. We consider 3 speeds for the literature:

• 3.75 GB/s – this is the speed of the dedicated link between the Advanced Photon Source and

Argonne Leadership Computing Facility at Argonne National Laboratory [122].

• 1 GB/s – this is the typical speed that users can transfer data using Globus [94] 2

• 125 MB/s – this is the typical speed for broadband internet at remote locations [93]

Now we must determine the bandwidth of the compressors. The bandwidth of the com-

pressors depends on the dataset and the configuration of the compressors. In Tables 6.5 and 6.6,

we show the bandwidth achieved using the SZ compressor in value-range-relative mode – one of the

compressors which performed the best in Section 6.5.1 for the Candle-NT3 and Ptychonn datasets.

6.6 Related Work

In this section, we discuss the related work in two facets: widely prevalent compression

techniques and the lossy compression designed for convolutional deep neural network.

6.6.1 Widely Prevalent Techniques

There have been several attempts to apply lossy compression to data mining in the past.

Most of these attempts have been in the case of images. One common method is to convert

images to gray scale by normalizing the color channels together. A difference approach is to convert

2Greater speeds are possible as described in this paper, but requires cooperation with the Internet Service Providers
and other optimizations not available to typical users

118

the image to a reduced color gamut by truncation. Another technique is to down-sample images

by averaging the color of either adjacent or related pixels. A final technique is to use lossy images

compression methods such as JPEG [14], JPEG-2000 [123], BPG [124], or WEBP [125] and increase

the parameters that control loss[126]. However, there are three major short comings in these classes

of work as applied to general numeric data. First, there is no quantification of what information was

lost during compression or if it was important to the classification or regression. Second, there is no

knowledge a priori of how much error will be incurred in the raw data before compression. Third –

and perhaps most importantly – general numeric data may not be represented well as an image.

The paper by [99] considers the related domain of compressive sensing. They argue that for

some lossy compressors such as JPEG with a given rate distortion, it is possible to approximately

lower bound the number of observations required to ”successfully” reconstruct the original signal.

Thus approximately ”bounding”, certain classes of traditional lossy compressors commonly used in

image storage.

There are some papers that use very early forms [127] of lossy compression in pattern mining

[128]. Essentially, the authors construct a decision tree for a subset of columns called predicted

columns, if these tree accurately predicts within the error bound and the decision tree is smaller, it

is stored instead. However, these techniques were expensive to execute and have a chance of failing

to compress at all because of the error bound. They also don’t attempt to quantify the effect of the

loss on the decisions made on the decompressed data.

Our approach differs from all of these previous approaches in that it is the first to consider

error bounded lossy compression. Second, our approach differs in that it the first approach that

is reasonable high performing and generally applicable to both balanced and imbalanced numeric

features.

6.6.2 Lossy Compression for Convolutional Deep Neural Networks

There have been a few papers which have looked at particular aspects of applying lossy

compression to ML/DL applications.

One application area where lossy compression has been used with ML/DL in in pedestrian

detection [93]. This work used lossy H.264 with HVEC video compression to compress traffic footage

to reduce bandwidth on rural networks. However, the training was performed on lossless data and

only validated on lossy data. This work goes beyond the work by Mizanur et al to consider a wider

119

array of compressors as well as different ways that they can be applied such as different data layouts

and the effect of training/validation on lossy data.

Another example, the paper [129] considers the effect of compressing activation data for

deep neural networks using JPEG image compression as well as Precision Reduction, Run Length

encoding, and Zero Value Compression compression. Like this paper, ours considers the application

of lossy compression, but the focus is different: they focused on activation data for deep neural

networks whereas we focus on the compression of training and validation data for a greater variety

of methods with the goal of providing a method for evaluating the impacts of lossy compression on

ML/DL applications. Additionally, the paper by Evans et al considers only two lossy compressors

and neither of them are particularly modern of designed for scientific applications.

For that we, we need to consider the paper [130] which studies the impacts of cuSZ’s –

the gpu implementation of the SZ version 1.4 compressor – on the gradients used in convolutional

deep neural networks. Unlike the paper [129] which was primarily empirical, the paper by Jin et al

uses an analytical approach which makes a number of simplifying assumptions which are true for

the applications they consider and cuSZ compressor specifically. One of these assumptions is that

the error distribution imposed by the compressor is uniform; however, this is not true of many of

the leading lossy compressors including newer versions of SZ [24]. Further their formulation is also

limited in that applies only to networks whose gradient is just sum of the product of the activation

data and loss – i.e. not containing any dropout or other more complex operators. Where as this

work considers many more classes of models and compressors which do not hold these properties.

6.7 Conclusions and Future Work

Error bounded lossy compression offers a high performing option for storing and transporting

training and validation data for a variety of different ML/DL applications – especially value range

relative bounds on compressed independently by feature data.

Some areas of future work include considering a greater variety of applications as well as

considering a specialized compressor which can apply different error bounds to different columns.

120

D
at

as
et

S
iz

e

O
b

se
rv

at
io

n
s

F
ea

tu
re

s

D
at

a
T

y
p

e

P
ro

b
le

m
S

o
lv

ed

A
p

p
ro

ac
h

Haberman
[114]

13K 306 3 Integer Binary
Classification

Random
Forest

Nonskin [115] 9.4 Mb 245057 3 Integer Binary
Classification

Stochastic
Gradient
Descent

Musk [116] 635Kb 476 167 Integer Binary
Classification

Random
Forest

Real Estate
[117]

27Kb 414 6 Real Regression Random
Forest

Concrete [118] 82Kb 1030 8 Real Regression Random
Forest

Airfoil [119] 84Kb 1503 5 Real Regression Random
Forest

Superconductor
[120]

14Mb 21263 82 Real Regression Random
Forest

MLSVM-
Clean [113]

13MB 6598 166 Real Binary
Classification

MLSVM
(SVM)

MLSVM-
Advertisement
[113]

59MB 3279 1558 Real Binary
Classification

MLSVM
(SVM)

MLSVM-Buzz
[113]

125MB 140707 77 Real Binary
Classification

MLSVM
(SVM)

Candle-NT3
[87] (Small)

518Mb 1120 60483 Real Binary
Classification

Neural
Network

Candle-NT3
[87] (Large)

4Gb 8960 60483 Real Binary
Classification

Neural
Network

Ptychonn [121]
(Large)

4Gb 8100 131072 Real Autoencoder Neural
Network

Table 6.4: Overview of the Applications

Table 6.5: Cores for a parallel speedup with SZ-REL: Candle NT-3

psnr bound (~c) C bc cores for a speedup
3.75 GB/s 1GB/s 125 MB/s

164.7 1e-8 5.4 0.17 27 8 1
144.7 1e-7 7.6 0.28 16 5 1
124.7 1e-6 13.1 0.40 11 3 1
104.1 1e-5 35.2 0.71 6 2 1
93.0 1e-4 201.5 1.28 3 1 1
83.8 1e-3 1476.6 1.44 3 1 1

121

Table 6.6: Cores for a parallel speedup with SZ-REL: Ptychonn

psnr bound (~c) C bc cores for a speedup
3.75 GB/s 1GB/s 125 MB/s

164.90 1e-08 2.22 0.06 122 33 5
144.80 1e-07 3.05 0.08 69 19 3
124.87 1e-06 4.61 0.13 38 11 2
105.93 1e-05 10.67 0.21 21 6 1
90.71 1e-04 40.46 0.38 11 3 1

122

Chapter 7

Conclusions

This dissertation tackles three areas designed to improve the approach-ability of error

bounded lossy compression. First, this work provided a generic interface for error bounded lossy

compression that enabled productive, high performance, and parallel lossy compression unifying the

host of different incompatible interfaces that came before. Second, this work demonstrated how to

automatically configure error bounded lossy compression in a variety of circumstances using black

box optimization techniques that improved over the performance of prior approaches. Finally, it

applied these techniques and developed a methodology for validating the use of EBLC in ML and

AI workflows.

In the first work, I demonstrated that using a unified and well-defined interface for loss

compression could reduce code volumes for client code by over 50% even when supporting only

a single compressor. It reduced the costs of switching compressors unlocking the benefits of im-

provements from advances in compressor designs without client code changes. I demonstrated that

this could consistently be done with statistically insignificant overhead. I also looked at how this

could enable productive, high-performance, portable and parallel compression workloads. I demon-

strated with less code that I could develop parallel compression techniques that maintained nearly as

much of the both run-time performance and scalability as well as compression ratio as two bespoke

implementations.

In the second and third works, I demonstrate the effectiveness of using black-box optimiza-

tion techniques to automatically configure compressors first to bound the compression ratio, and

then to bound general metrics that a user might provide. I show how this tuning process for fixed

123

compression ratio compression with low overhead of ≈ 2 when amortized over a large dataset. I then

substantially improve the run-time by 56× while solving the more general problem of bounding de-

terministic metrics provided by users. I also demonstrate performance advantages of this approach

over specialized compressors with tighter control of the metric which yielded higher compression

ratios, over the approach used by MGARD-QOI with even more substantial performance improve-

ments, and over systematic approaches which were previously used by complex metrics showing an

improvement of 27× while using 4× less hardware.

In the final work, I apply these techniques to ML/AI workflows generalizing my approach

again to data-sets where multiple buffers contribute to the analysis. I propose a methodology to

investigate the effects of adoption of error bounded lossy compression and apply it to a collection of

ML/AI applications that will reasonably need to adopt a strategy such as EBLC to accommodate for

their growing dataset sizes. I show that EBLC performs among the best at compressing data while

also being less vulnerable to threshold or inconsistent effects than traditionally adopted techniques

such as lossless compression, sampling, and truncation.

Together, these techniques will aid researches as they consider the use of techniques of error

bounded lossy compression.

124

Appendices

125

Appendix A

LibPressio Usage Example

A basic example of using LibPressio with error handling omitted for conciseness. Adapted

from the example on [60]. It takes a buffer in memory, and compresses it with the SZ compressor us-

ing an absolute error bound of 0.5. To adapt this example for ZFP or another supported compressor,

only lines 10, 22, and 23 would need to be changed.

1 #include <libpressio.h>

2

3 float* make_input_data();

4

5 int

6 main(int argc, char* argv[])

7 {

8 // get a handle to a compressor

9 struct pressio* library = pressio_instance();

10 struct pressio_compressor* compressor = pressio_get_compressor(library, "sz");

11

12 // configure metrics

13 const char* metrics[] = { "size" };

14 struct pressio_metrics* metrics_plugin = pressio_new_metrics(library, metrics,

1);↪→

15 pressio_compressor_set_metrics(compressor, metrics_plugin);

16

17 // configure the compressor

18 struct pressio_options* sz_options = pressio_compressor_get_options(

compressor);↪→

19

20 pressio_options_set_string(sz_options, "sz:error_bound_mode_str", "abs");

21 pressio_options_set_double(sz_options, "sz:abs_err_bound", 0.5);

22 pressio_compressor_check_options(compressor, sz_options);

23 pressio_compressor_set_options(compressor, sz_options);

24

126

25 // load a 300x300x300 dataset into data created with malloc

26 double* rawinput_data = make_input_data();

27 size_t dims[] = { 300, 300, 300 };

28 struct pressio_data* input_data = pressio_data_new_move(pressio_double_dtype,

rawinput_data, 3, dims, pressio_data_libc_free_fn, NULL);↪→

29 // setup compressed and decompressed data buffers

30 struct pressio_data* compressed_data = pressio_data_new_empty(

pressio_byte_dtype, 0, NULL);↪→

31 struct pressio_data* decompressed_data = pressio_data_new_empty(

pressio_double_dtype, 3, dims);↪→

32

33 // compress and decompress the data

34 pressio_compressor_compress(compressor, input_data, compressed_data);

35 pressio_compressor_decompress(compressor, compressed_data, decompressed_data);

36

37 // get the compression ratio

38 struct pressio_options* metric_results = pressio_compressor_get_metrics_results(

compressor);↪→

39 double compression_ratio = 0;

40 pressio_options_get_double(metric_results, "size:compression_ratio",

&compression_ratio);↪→

41 printf("compression ratio: %lf\n", compression_ratio);

42

43 // free the input, decompressed, and compressed data

44 pressio_data_free(decompressed_data);

45 pressio_data_free(compressed_data);

46 pressio_data_free(input_data);

47

48 // free options and the library

49 pressio_options_free(sz_options);

50 pressio_options_free(metric_results);

51 pressio_compressor_release(compressor);

52 pressio_release(library);

53 return 0;

54 }

127

128

[Page 128 is blank]

Appendix B

Glossary

kth order error Metrics module that computes The size of kth largest absolute value of the differ-

ences observed between the uncompressed and decompressed data.

ADIOS2 A parallel IO, data movement, and data processing framework.

auto-correlation Metrics module that computes the Pearson’s correlation coefficient between the

data and itself shifted by one or more “lags”. For example for the points ~v = {1, 2, 3, 4, 5}

with a lag of 2 would compute the correlation between ~v1 = {1, 2, 3} and ~v2 = {3, 4, 5}.

AutoSFX An automated crystallography analysis and processing framework being developed at

the Stanford Linear Accelerator Center.

Bit Grooming Compressor that applies various manipulation techniques to increase comparability

of IEEE floating point numbers.

BLOSC A family of lossless compressors that have been optimized for performance.

chunking a meta-compressor which divides a dataset into contiguous chunks dispatching each of

them to a another meta-compressor. This is useful for automatic parallelization.

CSV IO plugin that consumes Comma Seperated Values and other related formats such as tab

seperated values.

129

delta encoding Meta-compressor that applies a delta encoding a preprocessing step. Delta encod-

ing encodes values encodes the values using adjacent differences. For example ~v = {1, 2, 3, 4, 5}

would be encoded as ~v = {1, 1, 1, 1, 1}.

dense tensor a multi-dimensional generalization of an array with a large number of non-zero values

often stored contiguously in memory. In C/C++, these are stored in row-major order which

has indicies that advance from slowest to fastest. In Fortran, column major order is used where

indicies advance from fastest to slowest.

differences-probabilities densities function (pdf) Metrics module that generates an empirical

probability density function of the differences between the uncompressed and decompressed

values.

Digit Rounding Compressor that applies various rounding techniques to increase comparability

of IEEE floating point numbers.

endomorphism A transformation where the set of values allowed as input (i.e. the domain) and

the set of values produced as output (i.e. the co-domain) are the same, for example, addition

on the integers..

error statistics Metrics module that computes basic descriptive statistics using algorithms that

can be computed in a single pass.

Fault Injector Meta-compressor that applies a sequence of single bit errors into the compressed

data. Useful for implementing fuzz testing.

fpzip A specialized lossless and lossy compressor for IEEE floating point values.

HDF5 IO plugin that uses the HDF5 parallel IO library and file format.

HDF5 Filter A feature of the HDF5 IO library that allows compression to be preformed inline to

dataset access. Supports plugins to support different compressors.

Image Magick A extensive library for image manipulation and compression.

Iota A IO plugin that generates synthetic data using C++’s std::iota which fills a buffer with

sequentially increasing values.

130

isomorphism a pair of structure preserving transformations where one reverses the other. Lossless

compression is an isomorphism, but lossy compression is not because it is not because not all

– in fact most – lossy compression is not reversible.

Kolmogorov-Smirnov (KS) Test for Goodness of Fit Metrics module that compute a non-

parametric statistical hypothesis test which test the hypothesis that two distributions are

two samples are drawn from the same distribution that operates by determining the largest

difference between the empirical cumulative density function.

Kullback-Liebler (KL) Divergence A metrics module that computes A measure of relative en-

tropy from one distribution to another. It is defined as D(P ||Q)kl =
∑
x∈X P (x) log

(
P (x)
Q(x)

)
.

It is used in information theory and machine learning.

Levenshtein’s distance The minimum numbers of characters that need to be inserted, deleted,

or changed to make two strings the same. For example, ”bad” and ”bed” have a distance of 1

while ”bed” and ”bread” have a distance of 2.

LibPressio-Fuzz A Fuzzer developed for this paper that use LibPressio and Clang/LLVM’s lib-

fuzzer.

LibPressio-Opt A meta-compressor that implements an optimizer that can be used to determine

an optimal configuration. Previous version of this were named FRaZ and OptZConfig..

LibPressio-Tools A set of tools developed for this paper that use LibPressio to implement a

command line interface for LibPressio compressors and meta-compressors.

linear quantization Meta-compressor that preforms linear quantization. Quantization is a trans-

formation that maps a contiguous domain (i.e. floats) to a countable domain (i.e. integers).

Linear Quanitization, does so with a mapping like Q(x) = bx−m∆ c where x is the value, Q(x)

is the quantized value, ∆ is a scaling factor, and m is some centering term. Quantizization

is often used in lossy compression because coutable domains often have lower entropy than

contiguous domains and are thereby more compress-able.

Many Dependent A Meta-compressor that implements a parallel pipeline that does the following.

The first buffer is operated upon and metrics are gathered from it. Metrics from the first buffer

131

are passed to one or more compression that are done in parallel as configuration options. As

each buffer finishes, the value of the latest indexed buffer to complete is stored to be passed to

future invocations. This is useful for passing along a guess for an optimal configuration when

working on data buffers that are contigious in time..

Many Independent A meta-compressor that implements a embarrassingly parallel compression

of multiple data-sets.

masked Metrics module that removes specified data points from a data set prior to computing

some other statistic.

Meta-Compressor A concept within LibPressio. Meta-Compressors implement the compressor

interface, but are not compressors. Examples may include pre/post processing steps, parallel

run-times, optimizer, etc....

MGARD A error bounded lossy compressor based on multi-grid methods.

mmap IO plugin that uses the UNIX system call mmap that maps the contents of a file or memory

of a device into memory via the virtual memory of a process.

NumPY IO plugin for the custom file format used by the python numeric library NumPY for

storing n-dimensional arrays.

Pearson’s Correlation Metrics module that computes Pearson’s Correlation Coefficient (often

denoted r) measures the strength of a linear relationship between two values .

PETSc A IO plugin that reads file created by PETSC, the “Portable, Extensible Toolkit for Sci-

entific Computation”.

posix IO plugin that uses the POSIX functions read and write to read in an array in a native

data format.

R Metrics module that uses the scripting language R that is specialized in statistical analysis.

Random Error Injector A meta compressor that applies randomly generated noise to each ele-

ment of the input dataset according to some specified distribution.

132

Region of Interest Metrics module that Computes the arithmetic mean of a region of interest

within a dataset.

resize A meta-compressor which modifies the dimensions of the data without modifying the values.

This is useful for compressors which sometimes benefit from being told the data shape is

different than it actually is – i.e. ZFP if you have a 3d dataset that is A × B × 1 so you can

treat it as 2D.

sample A meta-compressor which applies data-sampling techniques such as uniform sampling with

and without replacement prior to compression.

select IO plugin that selects a sub-region of an input dataset read in by another IO plugin for

compression/analysis.

Spatial Error The percentage of elements of a dataset that exceed some specified threshold.

switch A meta-compressor which allows runtime switching between different compressors based

on a configuration setting. This is useful because it allow tools like LibPressio-Opt to select

between multiple different compressors types dynamically.

SZ SZ is a prediction based error bounded lossy compressor.

SZ-OMP the parallel CPU version of the SZ prediction based error bounded lossy compressor.

SZ-Threadsafe the threadsafe serial version of the SZ prediction based error bounded lossy com-

pressor.

the Feature Detection Toolkit (FTK) Metrics module that uses the library FTK that tracks

features such as maxima, minima, an saddle points in data between time-steps of a simulation.

transpose A meta-compressor which applies a multi-dimensional abstraction of a transpose to the

data prior to compression.

tthresh A compressor that uses the principles of singular value decomposition to compress data.

vecSZ A version of SZ optimized to leverage SIMD vector instructions.

ZFP A transform based error bounded lossy compressor.

133

Bibliography

[1] R. Underwood, V. Malvoso, J. C. Calhoun, S. Di, A. Apon, and F. Cappello, “Productive,
performant, and parallel generic lossy data compression with libpressio.”

[2] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “FRaZ: A Generic High-Fidelity
Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data,” presented at
the 34th IEEE International Parallel and Distributed Processing Symposium, New Orleans:
IEEE, May 18, 2020.

[3] R. Underwood, J. C. Calhoun, S. Di, A. Apon, and F. Cappello, “OptZConfig: Fast parallel
optimization of lossy compressor configuration.”

[4] ——, “Understanding the effectiveness of applying lossy compression in machine/deep learn-
ing applications.”

[5] S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Compression with SZ,” in
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2016,
pp. 730–739. doi: 10.1109/IPDPS.2016.11.

[6] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 20, no. 12, pp. 2674–2683, Dec. 2014, issn: 1077-2626.
doi: 10.1109/TVCG.2014.2346458.

[7] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel techniques for compres-
sion and reduction of scientific data—the univariate case,” Computing and Visualization
in Science, vol. 19, no. 5-6, pp. 65–76, Dec. 2018, issn: 1432-9360, 1433-0369. (visited on
10/03/2019).

[8] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques. Elsevier, 2011.

[9] A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, “Toward a Multi-method
Approach: Lossy Data Compression for Climate Simulation Data,” in High Performance
Computing, ser. Lecture Notes in Computer Science, J. M. Kunkel, R. Yokota, M. Taufer,
and J. Shalf, Eds., vol. 10524, Cham: Springer International Publishing, 2017, pp. 30–42. doi:
10.1007/978-3-319-67630-2_3. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-67630-2_3 (visited on 04/21/2020).

[10] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna, and
Y. Yao, “A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” in Pro-
ceedings of the 24th International Symposium on High-Performance Parallel and Distributed
Computing, (Portland, Oregon, USA), ser. HPDC ’15, New York, NY, USA: ACM, 2015,
pp. 33–44, isbn: 978-1-4503-3550-8. doi: 10.1145/2749246.2749269. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749269 (visited on 08/15/2019).

[11] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, V.
Vishwanath, T. Peterka, J. Insley, et al., “HACC: Extreme scaling and performance across
diverse architectures,” Communications of the ACM, vol. 60, no. 1, pp. 97–104, 2016.

[12] S. supercomputer at ORNL, https://www.olcf.ornl.gov/summit/, Online.

134

https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1007/978-3-319-67630-2_3
http://link.springer.com/10.1007/978-3-319-67630-2_3
http://link.springer.com/10.1007/978-3-319-67630-2_3
https://doi.org/10.1145/2749246.2749269
http://doi.acm.org/10.1145/2749246.2749269
https://www.olcf.ornl.gov/summit/

[13] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-C. Wu, Y. Alexeev,
and F. T. Chong, “Use cases of lossy compression for floating-point data in scientific data
sets,” The International Journal of High Performance Computing Applications, vol. 33, no. 6,
pp. 1201–1220, Nov. 2019, issn: 1094-3420, 1741-2846. doi: 10.1177/1094342019853336.
[Online]. Available: http://journals.sagepub.com/doi/10.1177/1094342019853336

(visited on 06/02/2020).

[14] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Transactions on Con-
sumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992, issn: 0098-3063. doi: 10.1109/
30.125072.

[15] A. H. Baker, D. M. Hammerling, and T. L. Turton, “Evaluating image quality measures to
assess the impact of lossy data compression applied to climate simulation data,” Computer
Graphics Forum, vol. 38, no. 3, pp. 517–528, Jun. 2019. doi: 10.1111/cgf.13707. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13707 (visited on
09/03/2019).

[16] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello, “Improving Performance
of Data Dumping with Lossy Compression for Scientific Simulation,” p. 11, 2019.

[17] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D. Gropp, “Exploring the feasibility
of lossy compression for pde simulations,” The International Journal of High Performance
Computing Applications, vol. 33, no. 2, pp. 397–410, 2019. doi: 10.1177/1094342018762036.

[18] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, Y. Alexeev, H. Finkel, and F. T. Chong,
“Full state quantum circuit simulation by using data compression,” in IEEE/ACM 30th The
International Conference for High Performance computing, Networking, Storage and Analysis
(IEEE/ACM SC2019), 2019, pp. 1–12.

[19] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and F. Cappello, “PaSTRI:
Error-Bounded Lossy Compression for Two-Electron Integrals in Quantum Chemistry,” in
2018 IEEE International Conference on Cluster Computing (CLUSTER), Sep. 2018, pp. 1–
11. doi: 10.1109/CLUSTER.2018.00013.

[20] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly Improving Lossy Compression for
Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantiza-
tion,” in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
May 2017, pp. 1129–1139. doi: 10.1109/IPDPS.2017.115.

[21] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An Efficient Transformation Scheme for
Lossy Data Compression with Point-Wise Relative Error Bound,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2018, pp. 179–189. doi: 10.1109/

CLUSTER.2018.00036.

[22] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Fixed-PSNR Lossy Compression for
Scientific Data,” in 2018 IEEE International Conference on Cluster Computing (CLUSTER),
Sep. 2018, pp. 314–318. doi: 10.1109/CLUSTER.2018.00048.

[23] S. Li, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing Lossy Compression with
Adjacent Snapshots for N-body Simulation Data,” in 2018 IEEE International Conference
on Big Data (Big Data), Dec. 2018, pp. 428–437. doi: 10.1109/BigData.2018.8622101.

[24] P. Lindstrom, “Error Distributions of Lossy Floating-Point Compressors,” Joint Statistical
Meetings, 2017.

[25] I. Facebook. (). “Zstandard - Real-time data compression algorithm,” [Online]. Available:
https://facebook.github.io/zstd/ (visited on 06/25/2019).

135

https://doi.org/10.1177/1094342019853336
http://journals.sagepub.com/doi/10.1177/1094342019853336
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/30.125072
https://doi.org/10.1111/cgf.13707
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13707
https://doi.org/10.1177/1094342018762036
https://doi.org/10.1109/CLUSTER.2018.00013
https://doi.org/10.1109/IPDPS.2017.115
https://doi.org/10.1109/CLUSTER.2018.00036
https://doi.org/10.1109/CLUSTER.2018.00036
https://doi.org/10.1109/CLUSTER.2018.00048
https://doi.org/10.1109/BigData.2018.8622101
https://facebook.github.io/zstd/

[26] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel techniques for compression
and reduction of scientific data—quantitative control of accuracy inderived quantities,” SIAM
Journal on Scientific Computing, vol. 41, no. 4, A2146–A2171, Jan. 2019, issn: 1064-8275,
1095-7197. (visited on 10/03/2019).

[27] ——, “Multilevel techniques for compression and reduction of scientific data—the multivari-
ate case,” SIAM Journal on Scientific Computing, vol. 41, A1278–A1303, Jan. 2019, issn:
1064-8275, 1095-7197. doi: 10.1137/18M1166651. (visited on 10/03/2019).

[28] U. Trottenberg and A. Schuller, Multigrid. Orlando, FL: Academic Press, Inc., 2001, isbn:
0-12-701070-X.

[29] P. Grosset, C. M. Biwer, J. Pulido, A. T. Mohan, A. Biswas, J. Patchett, T. L. Turton, D. H.
Rogers, D. Livescu, and J. Ahrens, “Foresight: Analysis That Matters for Data Reduction,”
in SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis, Nov. 2020, pp. 1–15. doi: 10.1109/SC41405.2020.00087.

[30] J. Kunkel, A. Novikova, E. Betke, and A. Schaare, “Toward Decoupling the Selection of Com-
pression Algorithms from Quality Constraints,” en, in High Performance Computing, J. M.
Kunkel, R. Yokota, M. Taufer, and J. Shalf, Eds., vol. 10524, Cham: Springer International
Publishing, 2017, pp. 3–14. doi: 10.1007/978-3-319-67630-2_1.

[31] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello, “Error-Controlled
Lossy Compression Optimized for High Compression Ratios of Scientific Datasets,” in 2018
IEEE International Conference on Big Data (Big Data), Seattle, WA, USA: IEEE, Dec.
2018, pp. 438–447, isbn: 978-1-5386-5035-6. doi: 10.1109/BigData.2018.8622520. [Online].
Available: https://ieeexplore.ieee.org/document/8622520/ (visited on 06/17/2019).

[32] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[33] M. Schulz, W. Gropp, R. Rabenseifner, R. L. Graham, J. M. Squyres, D. Holmes, G. Bosilca,
T. Hoefler, P. Balaji, J. Hammond, D. Solt, Q. Koziol, K. Mohror, and R. Thakur, Eds.,
MPI: A Message-Passing Interface Standard, en, Jun. 2015.

[34] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin, X. Liang, J. Calhoun,
D. Tao, and F. Cappello, “cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression
Framework for Scientific Data,” en, in Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques, Virtual Event GA USA: ACM, Sep. 2020,
pp. 3–15, isbn: 978-1-4503-8075-1. doi: 10.1145/3410463.3414624.

[35] J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao, and F. Cappello, “waveSZ: A
hardware-algorithm co-design of efficient lossy compression for scientific data,” in Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
San Diego California: ACM, Feb. 19, 2020, pp. 74–88, isbn: 978-1-4503-6818-6. doi: 10.

1145/3332466.3374525. [Online]. Available: https://dl.acm.org/doi/10.1145/3332466.
3374525 (visited on 06/02/2020).

[36] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J. Choi, K.
Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G.
Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi, N. Thompson,
S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky, “Adios 2: The adaptable input output
system. a framework for high-performance data management,” SoftwareX, vol. 12, p. 100 561,
2020, issn: 2352-7110. doi: https://doi.org/10.1016/j.softx.2020.100561. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2352711019302560.

136

https://doi.org/10.1137/18M1166651
https://doi.org/10.1109/SC41405.2020.00087
https://doi.org/10.1007/978-3-319-67630-2_1
https://doi.org/10.1109/BigData.2018.8622520
https://ieeexplore.ieee.org/document/8622520/
https://doi.org/10.1145/3410463.3414624
https://doi.org/10.1145/3332466.3374525
https://doi.org/10.1145/3332466.3374525
https://dl.acm.org/doi/10.1145/3332466.3374525
https://dl.acm.org/doi/10.1145/3332466.3374525
https://doi.org/https://doi.org/10.1016/j.softx.2020.100561
https://www.sciencedirect.com/science/article/pii/S2352711019302560

[37] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-Checker: A framework for assessing lossy
compression of scientific data,” The International Journal of High Performance Computing
Applications, vol. 33, no. 2, pp. 285–303, Mar. 2019, issn: 1094-3420, 1741-2846. doi: 10.
1177/1094342017737147. [Online]. Available: http://journals.sagepub.com/doi/10.
1177/1094342017737147 (visited on 06/25/2019).

[38] S. Di, Error-bounded Lossy Data Compressor (for floating-point/integer datasets): Disheng222/SZ,
Jun. 26, 2019. [Online]. Available: https : / / github . com / disheng222 / SZ (visited on
06/27/2019).

[39] A. Sengupta, Zfp jll · JuliaHub, https://juliahub.com/ui/Packages/zfp jll/DIPUA/0.5.5+0.

[40] N. Kukreja, T. Greaves, G. Gorman, and D. Wade, Pyzfp, 2018.

[41] C. Zapart, Zfp-sys - crates.io: Rust Package Registry, https://crates.io/crates/zfp-sys.

[42] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello, “Significantly Improving
Lossy Compression for HPC Datasets with Second-Order Prediction and Parameter Op-
timization,” en, in Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, Stockholm Sweden: ACM, Jun. 2020, pp. 89–100, isbn:
978-1-4503-7052-3. doi: 10.1145/3369583.3392688.

[43] T. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. SE-
2, no. 4, pp. 308–320, Dec. 1976, issn: 1939-3520. doi: 10.1109/TSE.1976.233837.

[44] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,”
Soviet physics doklady, vol. 10, no. 8, pp. 707–710, 1966.

[45] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski, and
S. Futral, “The Spack package manager: Bringing order to HPC software chaos,” en, in
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, Austin Texas: ACM, Nov. 2015, pp. 1–12, isbn: 978-1-4503-3723-6.
doi: 10.1145/2807591.2807623.

[46] Scientific Data Reduction Benchmark, https://sdrbench.github.io/, Online.

[47] NYX simulation, https://amrex-astro.github.io/Nyx, Online.

[48] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. Arblaster, S. Bates, G. Dan-
abasoglu, J. Edwards, et al., “The community earth system model (CESM), large ensemble
project: A community resource for studying climate change in the presence of internal climate
variability,” Bulletin of the American Meteorological Society, vol. 96, no. 8, pp. 1333–1349,
2015.

[49] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi, E. Constantinescu,
P. E. Davis, S. Di, W. Di, et al., “Computing just what you need: Online data analysis and
reduction at extreme scales,” in European Conference on Parallel Processing, 2017, pp. 3–19.

[50] Zstd, https://github.com/facebook/zstd/releases, Online.

[51] Gzip, https://www.gzip.org/, Online.

[52] D. King. (Mar. 6, 2018). “Dlib C++ Library - Optimization,” [Online]. Available: http:
//dlib.net/optimization.html#global_function_search (visited on 09/03/2019).

[53] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing Lossy Compression Rate-
Distortion from Automatic Online Selection between SZ and ZFP,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 8, pp. 1857–1871, Aug. 2019, issn: 1045-9219.
doi: 10.1109/TPDS.2019.2894404.

[54] Bebop, https://www.lcrc.anl.gov/systems/resources/bebop, Online.

137

https://doi.org/10.1177/1094342017737147
https://doi.org/10.1177/1094342017737147
http://journals.sagepub.com/doi/10.1177/1094342017737147
http://journals.sagepub.com/doi/10.1177/1094342017737147
https://github.com/disheng222/SZ
https://doi.org/10.1145/3369583.3392688
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/2807591.2807623
https://sdrbench.github.io/
https://amrex-astro.github.io/Nyx
https://github.com/facebook/zstd/releases
https://www.gzip.org/
http://dlib.net/optimization.html#global_function_search
http://dlib.net/optimization.html#global_function_search
https://doi.org/10.1109/TPDS.2019.2894404
https://www.lcrc.anl.gov/systems/resources/bebop

[55] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy compression for application-
level checkpoint/restart,” in Proceedings of the 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, ser. IPDPS ’15, Washington, DC, USA: IEEE Computer
Society, 2015, pp. 914–922, isbn: 978-1-4799-8649-1. doi: 10.1109/IPDPS.2015.67. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2015.67.

[56] P. Triantafyllides, T. Reza, and J. C. Calhoun, “Analyzing the impact of lossy compressor
variability on checkpointing scientific simulations,” in In the Proceedings of the 2019 IEEE
International Conference on Cluster Computing, ser. Cluster ’19, Washington, DC, USA:
IEEE Computer Society, 2019.

[57] Spring8, http://www.spring8.or.jp/en/, Online, 2019.

[58] S. Kim, M. Kim, J. Kim, and H. Lee, “Fixed-Ratio Compression of an RGBW Image and Its
Hardware Implementation,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 6, no. 4, pp. 484–496, Dec. 2016.

[59] C. A. Andrews, J. M. Davies, and G. R. Schwarz, “Adaptive data compression,” Proceedings
of the IEEE, vol. 55, no. 3, pp. 267–277, Mar. 1967. doi: 10.1109/PROC.1967.5481.

[60] Libpressio, Codesign Center for Online Data Analysis and Reduction, Sep. 20, 2019. [Online].
Available: https://github.com/CODARcode/libpressio (visited on 09/26/2019).

[61] A. Fischer, “A special Newton-type optimization method,” Optimization, vol. 24, no. 3-4,
pp. 269–284, 1992.

[62] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 22, 2014.
arXiv: 1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.6980 (visited on
10/11/2019).

[63] M. J. Powell, “The BOBYQA algorithm for bound constrained optimization without deriva-
tives,” Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, pp. 26–46,
2009.

[64] M. J. Saltzman, “COIN-OR: An open-source library for optimization,” in Programming lan-
guages and systems in computational economics and finance, Springer, 2002, pp. 3–32.

[65] G. Gabriele and K. Ragsdell, “OPTLIB: An optimization program library,” Mechanical En-
gineering Modern Design Series, vol. 4, 1977.

[66] C. Malherbe and N. Vayatis, “Global optimization of Lipschitz functions,” Mar. 7, 2017.
arXiv: 1703.02628 [stat]. [Online]. Available: http://arxiv.org/abs/1703.02628

(visited on 09/26/2019).

[67] M. J. D. Powell, “The NEWUOA software for unconstrained optimization without deriva-
tives,” in Large-Scale Nonlinear Optimization, G. Di Pillo and M. Roma, Eds., red. by P.
Pardalos, vol. 83, Boston, MA: Springer US, 2006, pp. 255–297. doi: 10.1007/0- 387-

30065-1_16. [Online]. Available: http://link.springer.com/10.1007/0-387-30065-
1_16 (visited on 09/26/2019).

[68] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, Apr. 2004, issn: 1941-0042. doi: 10.1109/TIP.2003.819861.

[69] L. P. Deutsch, “RFC 1952 GZIP File Format Specification version 4.3,” 1996. [Online]. Avail-
able: http://www.zlib.org/rfc-gzip.html (visited on 06/25/2019).

[70] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor for double-precision
floating-point data,” IEEE Transactions on Computers, vol. 58, no. 1, pp. 18–31, Jan. 2009,
issn: 1557-9956. doi: 10.1109/TC.2008.131.

138

https://doi.org/10.1109/IPDPS.2015.67
http://dx.doi.org/10.1109/IPDPS.2015.67
http://www.spring8.or.jp/en/
https://doi.org/10.1109/PROC.1967.5481
https://github.com/CODARcode/libpressio
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1703.02628
http://arxiv.org/abs/1703.02628
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1007/0-387-30065-1_16
http://link.springer.com/10.1007/0-387-30065-1_16
http://link.springer.com/10.1007/0-387-30065-1_16
https://doi.org/10.1109/TIP.2003.819861
http://www.zlib.org/rfc-gzip.html
https://doi.org/10.1109/TC.2008.131

[71] S. F. Shandarin and N. S. Ramachandra, “Topology and geometry of the dark matter web:
a multistream view,” Monthly Notices of the Royal Astronomical Society, vol. 467, no. 2,
pp. 1748–1762, Jan. 2017.

[72] ——, “Dark matter haloes: a multistream view,” Monthly Notices of the Royal Astronomical
Society, vol. 470, no. 3, pp. 3359–3373, Jun. 2017.

[73] J. L. H. Jr., The Signifigance Probablity of the Smirnov Two Sample Test, 43. Arkiv fiur
Matematik, 1958, vol. 3, pp. 469–486.

[74] F. Cappello, M. Ainsworth, J. Bessac, M. Burtscher, J. Y. Choi, E. Constantinescu, S. Di, H.
Guo, P. Lindstrom, and O. Tugluk. (Jun. 18, 2018). “Scientific Data Reduction Benchmarks,”
[Online]. Available: https://sdrbench.github.io/ (visited on 06/02/2020).

[75] A. Fox, J. Diffenderfer, J. Hittinger, G. Sanders, and P. Lindstrom, “Stability Analysis of
Inline ZFP Compression for Floating-Point Data in Iterative Methods,” SIAM Journal on
Scientific Computing, vol. 42, no. 5, A2701–A2730, Jan. 2020, issn: 1064-8275, 1095-7197.
doi: 10.1137/19M126904X. [Online]. Available: https://epubs.siam.org/doi/10.1137/
19M126904X (visited on 01/23/2021).

[76] R. Underwood, CODARcode/libpressio, Codesign Center for Online Data Analysis and Re-
duction, Sep. 20, 2019. [Online]. Available: https://github.com/CODARcode/libpressio
(visited on 09/26/2019).

[77] A. Zhigljavsky, A. Zilinskas, and J. Birge, Stochastic Global Optimization. New York, NY,
UNITED STATES: Springer, 2007, isbn: 978-0-387-74740-8.

[78] “Covering methods,” en, in Global Optimization, ser. Lecture Notes in Computer Science, A.
Törn and A. Žilinskas, Eds., Berlin, Heidelberg: Springer, 1989, pp. 25–52, isbn: 978-3-540-
46103-6. doi: 10.1007/3-540-50871-6_2.

[79] A. Malakhov, “Composable multi-threading for Python libraries,” presented at the Python
in Science Conference, Austin, Texas, 2016, pp. 15–19. (visited on 10/17/2020).

[80] M. P. Matijkiw and M. M. K. Martin, “Exploring coordination of threads in multi-core
libraries,” p. 8, 2010.

[81] H. Ribic and Y. D. Liu, “AEQUITAS: Coordinated energy management across parallel appli-
cations,” in Proceedings of the 2016 International Conference on Supercomputing - ICS ’16,
Istanbul, Turkey: ACM Press, 2016, pp. 1–12. (visited on 10/17/2020).

[82] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance evaluation of OpenMP appli-
cations with nested parallelism,” 5th International Workshop on Languages, Compilers, and
Run-Time Systems for Scalable Computers, p. 14, May 1, 2000.

[83] C. lMaxr Jiang, S. Esmaeilzadeh, K. Azizzadenesheli, K. Kashinath, M. Mustafa, H. A.
Tchelepi, P. Marcus, M. Prabhat, and A. Anandkumar, “MESHFREEFLOWNET: A Physics-
Constrained Deep Continuous Space-Time Super-Resolution Framework,” en, in SC20: In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis,
Atlanta, GA, USA: IEEE, Nov. 2020, pp. 1–15, isbn: 978-1-72819-998-6. doi: 10.1109/

SC41405.2020.00013.

[84] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, E. Weinan, and L. Zhang, “Pushing
the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Ma-
chine Learning,” en, in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, Atlanta, GA, USA: IEEE, Nov. 2020, pp. 1–14, isbn:
978-1-72819-998-6. doi: 10.1109/SC41405.2020.00009.

[85] S. Babu, M. Garofalakis, and B. Laboratories, “Model-Based Semantic Compression for
Network-Data Tables,” p. 7,

139

https://sdrbench.github.io/
https://doi.org/10.1137/19M126904X
https://epubs.siam.org/doi/10.1137/19M126904X
https://epubs.siam.org/doi/10.1137/19M126904X
https://github.com/CODARcode/libpressio
https://doi.org/10.1007/3-540-50871-6_2
https://doi.org/10.1109/SC41405.2020.00013
https://doi.org/10.1109/SC41405.2020.00013
https://doi.org/10.1109/SC41405.2020.00009

[86] A. Srivastava, S. P. Chockalingam, and S. Aluru, “A Parallel Framework for Constraint-
Based Bayesian Network Learning via Markov Blanket Discovery,” en, in SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta,
GA, USA: IEEE, Nov. 2020, pp. 1–15, isbn: 978-1-72819-998-6. doi: 10.1109/SC41405.
2020.00011.

[87] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier, J. Bauer, F. Xia, T. Bret-
tin, R. Stevens, J. Mohd-Yusof, C. G. Cardona, B. V. Essen, and M. Baughman, “CAN-
DLE/Supervisor: A workflow framework for machine learning applied to cancer research,”
BMC Bioinformatics, vol. 19, no. S18, p. 491, Dec. 2018, issn: 1471-2105. doi: 10.1186/
s12859-018-2508-4. [Online]. Available: https://bmcbioinformatics.biomedcentral.
com/articles/10.1186/s12859-018-2508-4 (visited on 06/25/2019).

[88] M. Isakov, E. del Rosario, S. Madireddy, P. Balaprakash, P. Carns, R. B. Ross, and M. A.
Kinsy, “HPC I/O Throughput Bottleneck Analysis with Explainable Local Models,” en,
in SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis, Atlanta, GA, USA: IEEE, Nov. 2020, pp. 1–13, isbn: 978-1-72819-998-6. doi:
10.1109/SC41405.2020.00037.

[89] G. Marcus, Y. Ding, P. Emma, Z. Huang, J. Qiang, T. Raubenheimer, M. Venturini, and L.
Wang, “High Fidelity Start-to-end Numerical Particle Simulations and Performance Studies
for LCLS-II,” in Proceedings, 37th International Free Electron Laser Conference (FEL 2015):
Daejeon, Korea, August 23-28, 2015, 2015.

[90] T. E. Fornek, “Advanced photon source upgrade project preliminary design report,” Sep.
2017. doi: 10.2172/1423830.

[91] Globus, http://globus.org.

[92] W. Locke, J. Sybrandt, L. Redmond, I. Safro, and S. Atamturktur, “Using drive-by health
monitoring to detect bridge damage considering environmental and operational effects,” en,
Journal of Sound and Vibration, vol. 468, p. 115 088, Mar. 2020, issn: 0022460X. doi: 10.
1016/j.jsv.2019.115088.

[93] M. Rahman, M. Islam, J. C. Calhoun, and M. Chowdhury, “Dynamic Error-bounded Lossy
Compression (EBLC) to Reduce the Bandwidth Requirement for Real-time Vision- based
Pedestrian Safety Applications,” en, IEEE TRANSACTIONS ON INTELLIGENT TRANS-
PORTATION SYSTEMS, p. 10,

[94] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cappello, “Transferring
a petabyte in a day,” en, Future Generation Computer Systems, vol. 88, pp. 191–198, Nov.
2018, issn: 0167-739X. doi: 10.1016/j.future.2018.05.051.

[95] The Cost of Hard Drives Over Time, en-US, Jul. 2017.

[96] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel, V. Morozov, G.
Zagaris, T. Peterka, V. Vishwanath, Z. Lukić, S. Sehrish, and W.-k. Liao, “HACC: Simulating
sky surveys on state-of-the-art supercomputing architectures,” en, New Astronomy, vol. 42,
pp. 49–65, Jan. 2016, issn: 1384-1076. doi: 10.1016/j.newast.2015.06.003.

[97] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel, “Nyx: A MASSIVELY
PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY,” en, The Astrophysical
Journal, vol. 765, no. 1, p. 39, Feb. 2013, issn: 0004-637X, 1538-4357. doi: 10.1088/0004-
637X/765/1/39.

[98] S. Plimpton, A. Thompson, S. Moore, A. Kohlmeyer, and R. Berger, LAMMPS Molecular
Dynamics Simulator, Sandia National Labs and Temple University, 2004.

[99] S. Jalali and A. Maleki, “From compression to compressed sensing,” Dec. 17, 2012. arXiv:
1212.4210 [cs, math]. [Online]. Available: http://arxiv.org/abs/1212.4210 (visited on
07/03/2019).

140

https://doi.org/10.1109/SC41405.2020.00011
https://doi.org/10.1109/SC41405.2020.00011
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2508-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2508-4
https://doi.org/10.1109/SC41405.2020.00037
https://doi.org/10.2172/1423830
https://doi.org/10.1016/j.jsv.2019.115088
https://doi.org/10.1016/j.jsv.2019.115088
https://doi.org/10.1016/j.future.2018.05.051
https://doi.org/10.1016/j.newast.2015.06.003
https://doi.org/10.1088/0004-637X/765/1/39
https://doi.org/10.1088/0004-637X/765/1/39
https://arxiv.org/abs/1212.4210
http://arxiv.org/abs/1212.4210

[100] L. P. Deutsch, “RFC 1951 DEFLATE Compressed Data Format Specification ver 1.3,” 1996.
[Online]. Available: https://www.w3.org/Graphics/PNG/RFC-1951 (visited on 06/25/2019).

[101] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An overview of the HDF5
technology suite and its applications,” in Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases, ser. AD ’11, New York, NY, USA: Association for Computing Machinery,
Mar. 2011, pp. 36–47, isbn: 978-1-4503-0614-0. doi: 10.1145/1966895.1966900.

[102] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J. Choi,
K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K.
Mehta, G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi, N.
Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky, “ADIOS 2: The Adaptable
Input Output System. A framework for high-performance data management,” en, SoftwareX,
vol. 12, p. 100 561, Jul. 2020, issn: 2352-7110. doi: 10.1016/j.softx.2020.100561.

[103] C. Shannon and W. Weaver, “The Mathematical Theory of Communication,” p. 131, 1948.

[104] Y. Collet. (). “LZ4 - Extremely fast compression,” [Online]. Available: https://lz4.github.
io/lz4/ (visited on 06/25/2019).

[105] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans-
actions on Information Theory, vol. 23, no. 3, pp. 337–343, May 1977, issn: 0018-9448. doi:
10.1109/TIT.1977.1055714.

[106] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” Proceed-
ings of the IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952, issn: 0096-8390. doi: 10.1109/
JRPROC.1952.273898.

[107] Y. Collet, Finite State Entropy.

[108] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass, D. Bhandarkar, M.
Bhat, D. Bindel, S. Boldo, et al., “IEEE standard for floating-point arithmetic,” IEEE Std
754-2008, pp. 1–70, 2008.

[109] P. Lindstrom, Library for compressed numerical arrays that support high throughput read and
write random access: LLNL/zfp, Lawrence Livermore National Laboratory, Jun. 27, 2019.
[Online]. Available: https://github.com/LLNL/zfp (visited on 06/27/2019).

[110] B. Shan, A. Shamji, J. Tian, G. Li, and D. Tao, “LCFI: A Fault Injection Tool for Studying
Lossy Compression Error Propagation in HPC Programs,” en, arXiv:2010.12746 [cs], Nov.
2020. arXiv: 2010.12746 [cs].

[111] C. Bradley, N. Emamy, T. Ertl, D. Göddeke, A. Hessenthaler, T. Klotz, A. Krämer, M. Krone,
B. Maier, M. Mehl, T. Rau, and O. Röhrle, “Towards realistic HPC models of the neuromus-
cular system,” en, arXiv:1802.03211 [physics], Feb. 2018. arXiv: 1802.03211 [physics].

[112] J. Zhang, X. Zhuo, A. Moon, H. Liu, and S. W. Son, “Efficient Encoding and Reconstruction
of HPC Datasets for Checkpoint/Restart,” in 2019 35th Symposium on Mass Storage Systems
and Technologies (MSST), May 2019, pp. 79–91. doi: 10.1109/MSST.2019.00-14.

[113] E. Sadrfaridpour, T. Razzaghi, and I. Safro, “Engineering fast multilevel support vector ma-
chines,” Machine Learning, vol. 108, no. 11, pp. 1879–1917, Nov. 2019, issn: 0885-6125, 1573-
0565. doi: 10.1007/s10994-019-05800-7. [Online]. Available: http://link.springer.
com/10.1007/s10994-019-05800-7 (visited on 03/02/2020).

[114] S. Haberman, “Generalized residuals for log-linear models,” presented at the Proceedings of
the 9th International Biometrics Conference, 1976, pp. 104–122.

[115] R. B. Bhatt, G. Sharma, A. Dhall, and S. Chaudhury, “Efficient Skin Region Segmentation
Using Low Complexity Fuzzy Decision Tree Model,” in 2009 Annual IEEE India Conference,
Dec. 2009, pp. 1–4. doi: 10.1109/INDCON.2009.5409447.

141

https://www.w3.org/Graphics/PNG/RFC-1951
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1016/j.softx.2020.100561
https://lz4.github.io/lz4/
https://lz4.github.io/lz4/
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://github.com/LLNL/zfp
https://arxiv.org/abs/2010.12746
https://arxiv.org/abs/1802.03211
https://doi.org/10.1109/MSST.2019.00-14
https://doi.org/10.1007/s10994-019-05800-7
http://link.springer.com/10.1007/s10994-019-05800-7
http://link.springer.com/10.1007/s10994-019-05800-7
https://doi.org/10.1109/INDCON.2009.5409447

[116] T. Dietterich, Musk (Clean 1) Database. 1994.

[117] I.-C. Yeh, Real Estate Valuation Dataset. 2018.

[118] ——, Concrete Compressive Dataset. 2007.

[119] F. Brooks, D. Stuart, and A. Marcolini, “Airfoil Self-Noise and Prediction,” p. 146,

[120] K. Hamidieh, “A Data Driven Statistical Model to Predict Critical Temperature of Super-
conducting Material,” in APS Meeting Abstracts, 2018, p. X34.013.

[121] M. J. Cherukara, T. Zhou, Y. Nashed, P. Enfedaque, A. Hexemer, R. J. Harder, and M. V.
Holt, “AI-enabled high-resolution scanning coherent diffraction imaging,” Applied Physics
Letters, vol. 117, no. 4, p. 044 103, Jul. 2020, issn: 0003-6951. doi: 10.1063/5.0013065.

[122] M. Salim, T. Uram, J. T. Childers, V. Vishwanath, and M. Papka, “Balsam: Near Real-Time
Experimental Data Analysis on Supercomputers,” in 2019 IEEE/ACM 1st Annual Workshop
on Large-Scale Experiment-in-the-Loop Computing (XLOOP), Nov. 2019, pp. 26–31. doi:
10.1109/XLOOP49562.2019.00010.

[123] M. Rabbani and R. Joshi, “An overview of the JPEG 2000 still image compression standard,”
Signal Processing: Image Communication, vol. 17, no. 1, pp. 3–48, Jan. 2002, issn: 09235965.
doi: 10 . 1016 / S0923 - 5965(01) 00024 - 8. [Online]. Available: https : / / linkinghub .

elsevier.com/retrieve/pii/S0923596501000248 (visited on 06/17/2019).

[124] (). “BPG Image format,” [Online]. Available: https : / / bellard . org / bpg/ (visited on
07/03/2019).

[125] (). “Compression Techniques — WebP,” [Online]. Available: https://developers.google.
com/speed/webp/docs/compression (visited on 07/03/2019).

[126] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry, “Unsupervised segmentation of natural im-
ages via lossy data compression,” Computer Vision and Image Understanding, vol. 110, no. 2,
pp. 212–225, May 2008, issn: 10773142. doi: 10.1016/j.cviu.2007.07.005. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S1077314207001300 (visited on
07/03/2019).

[127] H. Jagadish, J. Madar, and R. T. Ng, “Semantic Compression and Pattern Extraction with
Fascicles,” in Proceedings of the 25th VLDB Conference, 1999. [Online]. Available: https:
//www.researchgate.net/profile/Raymond_Ng3/publication/221309718_Semantic_

Compression_and_Pattern_Extraction_with_Fascicles/links/00b495228937de512e000000.

pdf (visited on 07/03/2019).

[128] M. Garofalakis and R. Rastogi, “Data Mining Meets Network Management: The NEMESIS
Project,” p. 6,

[129] R. D. Evans, L. Liu, and T. M. Aamodt, “JPEG-ACT: Accelerating Deep Learning via
Transform-based Lossy Compression,” in 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), May 2020, pp. 860–873. doi: 10.1109/ISCA45697.
2020.00075.

[130] S. Jin, G. Li, S. L. Song, and D. Tao, “A Novel Memory-Efficient Deep Learning Training
Framework via Error-Bounded Lossy Compression,” en, arXiv:2011.09017 [cs], Nov. 2020.
arXiv: 2011.09017 [cs].

142

https://doi.org/10.1063/5.0013065
https://doi.org/10.1109/XLOOP49562.2019.00010
https://doi.org/10.1016/S0923-5965(01)00024-8
https://linkinghub.elsevier.com/retrieve/pii/S0923596501000248
https://linkinghub.elsevier.com/retrieve/pii/S0923596501000248
https://bellard.org/bpg/
https://developers.google.com/speed/webp/docs/compression
https://developers.google.com/speed/webp/docs/compression
https://doi.org/10.1016/j.cviu.2007.07.005
https://linkinghub.elsevier.com/retrieve/pii/S1077314207001300
https://www.researchgate.net/profile/Raymond_Ng3/publication/221309718_Semantic_Compression_and_Pattern_Extraction_with_Fascicles/links/00b495228937de512e000000.pdf
https://www.researchgate.net/profile/Raymond_Ng3/publication/221309718_Semantic_Compression_and_Pattern_Extraction_with_Fascicles/links/00b495228937de512e000000.pdf
https://www.researchgate.net/profile/Raymond_Ng3/publication/221309718_Semantic_Compression_and_Pattern_Extraction_with_Fascicles/links/00b495228937de512e000000.pdf
https://www.researchgate.net/profile/Raymond_Ng3/publication/221309718_Semantic_Compression_and_Pattern_Extraction_with_Fascicles/links/00b495228937de512e000000.pdf
https://doi.org/10.1109/ISCA45697.2020.00075
https://doi.org/10.1109/ISCA45697.2020.00075
https://arxiv.org/abs/2011.09017

	Approachable Error Bounded Lossy Compression
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Data Reduction Techniques
	Big Data Applications and Use Cases
	Error-Bounded Lossy Compression

	Productive, Performant, and Parallel Generic Lossy Data Compression with LibPressio
	Introduction
	Background
	Related Work
	Design Overview
	Example Applications and Effectiveness
	Quantifying Overhead
	Performance Portability
	Conclusions and Future Work

	FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data
	Introduction
	Background
	Related Work
	Problem Formulation
	Design and Optimization
	Performance and Quality Evaluation
	Conclusions and Future Work

	OptZConfig: Fast Parallel Optimization of Lossy Compression Configuration
	Introduction
	Research Background and Related Work
	Problem Formulation
	Overall System Design
	Computing Metrics
	Optimizating FMFS and OptZConfig
	Experimental Evaluation
	Conclusions

	Understanding The Effectiveness of Applying Lossy Compression in Machine/Deep Learning Applications
	Introduction
	Data Reduction Techniques Studied
	Experimental Overview
	Problem Formalization and Methodology
	Experimental Results
	Related Work
	Conclusions and Future Work

	Conclusions
	Appendices
	LibPressio Usage Example
	Glossary
	Bibliography

