14,712 research outputs found
GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging
Tomography has made a radical impact on diverse fields ranging from the study
of 3D atomic arrangements in matter to the study of human health in medicine.
Despite its very diverse applications, the core of tomography remains the same,
that is, a mathematical method must be implemented to reconstruct the 3D
structure of an object from a number of 2D projections. In many scientific
applications, however, the number of projections that can be measured is
limited due to geometric constraints, tolerable radiation dose and/or
acquisition speed. Thus it becomes an important problem to obtain the
best-possible reconstruction from a limited number of projections. Here, we
present the mathematical implementation of a tomographic algorithm, termed
GENeralized Fourier Iterative REconstruction (GENFIRE). By iterating between
real and reciprocal space, GENFIRE searches for a global solution that is
concurrently consistent with the measured data and general physical
constraints. The algorithm requires minimal human intervention and also
incorporates angular refinement to reduce the tilt angle error. We demonstrate
that GENFIRE can produce superior results relative to several other popular
tomographic reconstruction techniques by numerical simulations, and by
experimentally by reconstructing the 3D structure of a porous material and a
frozen-hydrated marine cyanobacterium. Equipped with a graphical user
interface, GENFIRE is freely available from our website and is expected to find
broad applications across different disciplines.Comment: 18 pages, 6 figure
Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing
We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionaly, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS
Geometric reconstruction methods for electron tomography
Electron tomography is becoming an increasingly important tool in materials
science for studying the three-dimensional morphologies and chemical
compositions of nanostructures. The image quality obtained by many current
algorithms is seriously affected by the problems of missing wedge artefacts and
nonlinear projection intensities due to diffraction effects. The former refers
to the fact that data cannot be acquired over the full tilt range;
the latter implies that for some orientations, crystalline structures can show
strong contrast changes. To overcome these problems we introduce and discuss
several algorithms from the mathematical fields of geometric and discrete
tomography. The algorithms incorporate geometric prior knowledge (mainly
convexity and homogeneity), which also in principle considerably reduces the
number of tilt angles required. Results are discussed for the reconstruction of
an InAs nanowire
Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping
Galvanic replacement reactions on metal nanoparticles are often used for the
preparation of hollow nanostructures with tunable porosity and chemical
composition, leading to tailored optical and catalytic properties. However, the
precise interplay between the three-dimensional (3D) morphology and chemical
composition of nanostructures during Galvanic replacement is not always well
understood as the 3D chemical imaging of nanoscale materials is still
challenging. It is especially far from straightforward to obtain detailed
information from the inside of hollow nanostructures using electron microscopy
techniques such as SEM or TEM. We demonstrate here that a combination of
state-of-the-art EDX mapping with electron tomography results in the
unambiguous determination of both morphology transformation and elemental
composition of nanostructures in 3D, during Galvanic replacement of Ag
nanocubes. This work provides direct and unambiguous experimental evidence
leading to new insights in the understanding of the galvanic replacement
reaction. In addition, the powerful approach presented here can be applied to a
wide range of nanoscale transformation processes, which will undoubtedly guide
the development of novel nanostructures
Electrostatic charging artefacts in Lorentz electron tomography of MFM tip stray fields
Using the technique of differential phase contrast (DPC) Lorentz electron microscopy, the magnetic stray field distribution from magnetic force microscopy (MFM) tips can be calculated in a plane in front of the tip using tomographic reconstruction techniques. Electrostatic charging of the tip during DPC imaging can significantly distort these field reconstructions. Using a simple point charge model, this paper illustrates the effect of electrostatic charging of the sample on the accuracy of tomographic field reconstructions. A procedure for separating electrostatic and magnetic effects is described, and is demonstrated using experimental tomographic data obtained from a modified MFM tip
3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes
- …