13,613 research outputs found

    Ion-Cyclotron Double Resonance

    Get PDF
    A charged particle in a uniform moving magnetic field H describes a circular orbit in a plance perpendicular to H with an angular frequency or "cyclotron frequency" omagae. When an alternating electric field E(t) is applied normal to H at omegae, the ions absorb energy from the alternating electric field, and are accelerated to larger velocities and orbital radii. [1] The absorption of energy from E(t) at the cyclotron resonance frequency can be conveniently detected using a marginal oscillator detector. When the ions accelerated by E(t) collide with other particles, they lose some of their excess energy. A mixture of ions and neutral molecules in the presence of H and E(t) then reaches a steady-state condition in which the energy gained by the ions from E(t) between collisions is lost to the neutral molecules in collisions

    Double Resonance in Dalitz Plot of M(pLambda)-M(KLambda) in DISTO Data on p+p rightarrow p+Lambda+K+ at 2.85 GeV

    Full text link
    The X(2265) resonance was previously observed in DISTO data of p+p rightarrow p+Lambda+K+ at 2.85 GeV on an attempt of searching for the kaonic nuclear state K-pp rightarrow p + Lambda. In the present paper we report an additional finding, namely, a double resonance type phenomena, not only with a peak at M(pLambda) = 2265 MeV/c2 but also a broad bump at M(K+ Lambda) ~ 1700 MeV/c2. This "double-resonance" zone is expressed as XY(2265, 1700). The latter bump may result from nearby nucleon resonances, typically N*(1710), as well as by attractive K - Lambda final-state interaction. We point out that this double resonance XY(2265, 1700) as seen in DISTO at 2.85 GeV cannot be populated kinematically in a HADES experiment at 3.5 GeV.Comment: 4 pages, 3 figures, HYP2015 conferenc

    Sensitivity of double resonance alignment magnetometers

    Get PDF
    We present an experimental study of the intrinsic magnetometric sensitivity of an optical/rf-frequency double resonance magnetometer in which linearly polarized laser light is used in the optical pumping and detection processes. We show that a semi-empirical model of the magnetometer can be used to describe the magnetic resonance spectra. Then, we present an efficient method to predict the optimum operating point of the magnetometer, i.e., the light power and rf Rabi frequency providing maximum magnetometric sensitivity. Finally, we apply the method to investigate the evolution of the optimum operating point with temperature. The method is very efficient to determine relaxation rates and thus allowed us to determine the three collisional disalignment cross sections for the components of the alignment tensor. Both first and second harmonic signals from the magnetometer are considered and compared

    Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk

    Full text link
    Several methods have been proposed recently to achieve switchable coupling between superconducting qubits. We discuss some of the main considerations regarding the feasibility of implementing one of those proposals: the double-resonance method. We analyze mainly issues related to the achievable effective coupling strength and the effects of crosstalk on this coupling approach. We also find a new, crosstalk-assisted coupling channel that can be an attractive alternative when implementing the double-resonance coupling proposal.Comment: 4 pages, 3 figure

    Multiplicity of nontrivial solutions for elliptic equations with nonsmooth potential and resonance at higher eigenvalues

    Full text link
    We consider a semilinear elliptic equation with a nonsmooth, locally \hbox{Lipschitz} potential function (hemivariational inequality). Our hypotheses permit double resonance at infinity and at zero (double-double resonance situation). Our approach is based on the nonsmooth critical point theory for locally Lipschitz functionals and uses an abstract multiplicity result under local linking and an extension of the Castro--Lazer--Thews reduction method to a nonsmooth setting, which we develop here using tools from nonsmooth analysis.Comment: 23 page

    Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks

    Get PDF
    Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency >4.4×10−4 mW−1> 4.4\times10^{-4}\, \text{mW}^{-1} is demonstrated in a gallium phosphide microdisk cavity supporting high-QQ modes at visible (Q∼104Q \sim 10^4) and infrared (Q∼105Q \sim 10^5) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using ∼360 μ\sim 360\,\muW of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.Comment: 6 pages, 4 figure

    A study of trace contaminant identification by microwave double resonance spectroscopy

    Get PDF
    Trace contaminant identification using microwave double resonance spectroscop
    • …
    corecore