25,933 research outputs found

    Dreaming and the dorsolateral frontal lobes : towards a better understanding of the mechanism of dreaming

    Get PDF
    Includes bibliographical references.The exact mechanism of dream production is still poorly understood. Based on exploratory findings that damage to the dorsolateral prefrontal cortex does not cause changes in these patients subjective experience of their dreams (Solms, 1997), a study was conducted in order to investigate the role of this area in dream production. The dreams of seven patients with damage to tile dorsolateral prefrontal cortex were compared with those of normal participants. A content analysis found no significant quantitative differences between the dreams of dorsolateral prefrontal patients and normal controls. In addition, none of the patients with damage to the dorsolateral prefrontal cortex reported any subjective changes in their dreams since falling ill. These findings are congruent with those or numerous neuro-imaging studies, which indicate that the dorsolateral prefrontal cortex is deactivated during dreaming, and provide support for the theory that deactivation of the dorsolateral prefrontal cortex during sleep accounts for many of the formal features of dreams

    The Role of the Dorsolateral Prefrontal Cortex during Sequence Learning is Specific for Spatial Information

    Get PDF
    Many studies have implicated the dorsolateral prefrontal cortex in the acquisition of skill, including procedural sequence learning. However, the specific role it performs in sequence learning has remained uncertain. This type of skill has been intensively studied using the serial reaction time task. We used three versions of this task: a standard task where the position of the stimulus cued the response; a non-standard task where the color of the stimulus was related to the correct response; and a combined task where both the color and position simultaneously cued the response. We refer to each of these tasks based upon the cues available for guiding learning as position, color and combined tasks. The combined task usually shows an enhancement of skill acquisition, a result of being driven by two simultaneous and congruent cues. Prior to the performance of each of these tasks the function of the dorsolateral prefrontal cortex was disrupted using repetitive transcranial magnetic stimulation. This completely prevented learning within the position task, while sequence learning occurred to a similar extent in both the color and combined tasks. So, following prefrontal stimulation the expected learning enhancement in the combined task was lost, consistent with only a color cue being available to guide sequence learning in the combined task. Neither of these effects was observed following stimulation at the parietal cortex. Hence the critical role played by the dorsolateral prefrontal cortex in sequence learning is related exclusively to spatial cues. We suggest that the dorsolateral prefrontal cortex operates over the short term to retain and manipulate spatial information to allow cortical and subcortical structures to learn a predictable sequence of actions. Such functions may emerge from the broader role the dorsolateral prefrontal cortex has in spatial working memory. These results argue against the dorsolateral prefrontal cortex constituting part of the neuronal substrate responsible for general aspects of implicit or explicit sequence learning.Medicin

    Ergastava transkraniaalse magnetstimulatsiooni mõju petukäitumisele

    Get PDF
    The present study investigated the effects of excitation of the dorsolateral prefrontal cortex (DLPFC) with repetitive transcranial magnetic stimulation (rTMS) on deceptive behaviour. The event-related potential (ERP) component P300 is well known as a neural marker of deception. P300 amplitude was examined in response to critical, familiar, and neutral stimuli in a task similar to the concealed information test. The electroencephalography (EEG) of 13 volunteers was recorded combined with rTMS. We did not find a difference in response to rTMS between right and left DLPFC as initially expected. However, TMS elicited a higher mean P300 amplitude to the critical stimulus compared to sham condition. Therefore, noninvasive prefrontal cortex excitation by rTMS can be used to increase the sensitivity of P300 to critical items in an analogue of the concealed information test

    Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain

    Get PDF
    The left dorsolateral prefrontal cortex (DLPFC) is involved in the experience and modulation of pain, and may be an important node linking pain and cognition. Repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC can reduce chronic and experimental pain. However, whether left DLPFC rTMS can influence the development of chronic pain is unknown. Using repeated intramuscular injection of nerve growth factor to induce the development of sustained muscle pain (lasting weeks), 30 healthy individuals were randomized to receive 5 consecutive daily treatments of active or sham left DLPFC rTMS, starting before the first nerve growth factor injection on day 0. Muscle soreness and pain severity were collected daily for 14 days and disability on every alternate day. Before the first and 1 day after the last rTMS session, anxiety, depression, affect, pain catastrophizing, and cognitive performance on the attention network test were assessed. Left DLPFC rTMS treatment compared with sham was associated with reduced muscle soreness, pain intensity, and painful area (P < 0.05), and a similar trend was observed for disability. These effects were most evident during the days rTMS was applied lasting up to 3 days after intervention. Depression, anxiety, pain catastrophizing, and affect were unchanged. There was a trend toward improved cognitive function with rTMS compared with sham (P = 0.057). These data indicate that repeated left DLPFC rTMS reduces the pain severity in a model of prolonged muscle pain. The findings may have implications for the development of sustained pain in clinical populations

    The effect of the interval-between-sessions on prefrontal transcranial direct current stimulation (tDCS) on cognitive outcomes: a systematic review and meta-analysis

    Get PDF
    Recently, there has been wide interest in the effects of transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) on cognitive functioning. However, many methodological questions remain unanswered. One of them is whether the time interval between active and sham-controlled stimulation sessions, i.e. the interval between sessions (IBS), influences DLPFC tDCS effects on cognitive functioning. Therefore, a systematic review and meta-analysis was performed of experimental studies published in PubMed, Science Direct, and other databases from the first data available to February 2016. Single session sham-controlled within-subject studies reporting the effects of tDCS of the DLPFC on cognitive functioning in healthy controls and neuropsychiatric patients were included. Cognitive tasks were categorized in tasks assessing memory, attention, and executive functioning. Evaluation of 188 trials showed that anodal vs. sham tDCS significantly decreased response times and increased accuracy, and specifically for the executive functioning tasks, in a sample of healthy participants and neuropsychiatric patients (although a slightly different pattern of improvement was found in analyses for both samples separately). The effects of cathodal vs. sham tDCS (45 trials), on the other hand, were not significant. IBS ranged from less than 1 h to up to 1 week (i.e. cathodal tDCS) or 2 weeks (i.e. anodal tDCS). This IBS length had no influence on the estimated effect size when performing a meta-regression of IBS on reaction time and accuracy outcomes in all three cognitive categories, both for anodal and cathodal stimulation. Practical recommendations and limitations of the study are further discussed

    Neuronal Distortions of Reward Probability without Choice

    Get PDF
    Reward probability crucially determines the value of outcomes. A basic phenomenon, defying explanation by traditional decision theories, is that people often overweigh small and underweigh large probabilities in choices under uncertainty. However, the neuronal basis of such reward probability distortions and their position in the decision process are largely unknown. We assessed individual probability distortions with behavioral pleasantness ratings and brain imaging in the absence of choice. Dorsolateral frontal cortex regions showed experience dependent overweighting of small, and underweighting of large, probabilities whereas ventral frontal regions showed the opposite pattern. These results demonstrate distorted neuronal coding of reward probabilities in the absence of choice, stress the importance of experience with probabilistic outcomes and contrast with linear probability coding in the striatum. Input of the distorted probability estimations to decision-making mechanisms are likely to contribute to well known inconsistencies in preferences formalized in theories of behavioral economics

    When planning fails: Individual differences and error-related brain activity in problem solving.

    Get PDF
    The neuronal processes underlying correct and erroneous problem solving were studied in strong and weak problem-solvers using functional magnetic resonance imaging (fMRI). During planning, the right dorsolateral prefrontal cortex was activated, and showed a linear relationship with the participants' performance level. A similar pattern emerged in right inferior parietal regions for all trials, and in anterior cingulate cortex for erroneously solved trials only. In the performance phase, when the pre-planned moves had to be executed by means of an fMRI-compatible computer mouse, the right dorsolateral prefrontal cortex was again activated jointly with right parahippocampal cortex, and displayed a similar positive relationship with the participants' performance level. Incorrectly solved problems elicited stronger bilateral prefrontal and left inferior parietal activations than correctly solved trials. For both individual ability and trial-specific performance, our results thus demonstrate the crucial involvement of right prefrontal cortex in efficient visuospatial planning

    High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain

    Get PDF
    Based on reciprocal connections between the dorsolateral prefrontal cortex (DLPFC) and basal-ganglia regions associated with sensorimotor cortical excitability, it was hypothesized that repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC would modulate sensorimotor cortical excitability induced by muscle pain. Muscle pain was provoked by injections of nerve growth factor (end of Day-0 and Day-2) into the right extensor carpi radialis brevis (ECRB) muscle in two groups of 15 healthy participants receiving 5 daily sessions (Day-0 to Day-4) of active or sham rTMS. Muscle pain scores and pressure pain thresholds (PPTs) were collected (Day-0, Day-3, Day-5). Assessment of motor cortical excitability using TMS (mapping cortical ECRB muscle representation) and somatosensory evoked potentials (SEPs) from electrical stimulation of the right radial nerve were recorded at Day-0 and Day-5. At Day-0 versus Day-5, the sham compared to active group showed: Higher muscle pain scores and reduced PPTs (P < 0.04); decreased frontal N30 SEP (P < 0.01); increased TMS map volume (P < 0.03). These results indicate that muscle pain exerts modulatory effects on the sensorimotor cortical excitability and left DLPFC rTMS has analgesic effects and modulates pain-induced sensorimotor cortical adaptations. These findings suggest an important role of prefrontal to basal-ganglia function in sensorimotor cortical excitability and pain processing
    corecore