3 research outputs found

    The ALHAMBRA survey : Estimation of the clustering signal encoded in the cosmic variance

    Full text link
    The relative cosmic variance (σv\sigma_v) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv\sigma_v measured in the ALHAMBRA survey. We measure the cosmic variance of several galaxy populations selected with BB-band luminosity at 0.35z<1.050.35 \leq z < 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv\sigma_v with the cosmic variance of the dark matter expected from the theory, σv,dm\sigma_{v,{\rm dm}}. This provides an estimation of the galaxy bias bb. The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several BB-band luminosity selections. We find that bb increases with the BB-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel=1.4±0.2b_{\rm rel} = 1.4 \pm 0.2. Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv\sigma_v affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias bb from a method independent of correlation functions.Comment: Astronomy and Astrophysics, in press. 9 pages, 4 figures, 3 table

    The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance

    Get PDF
    [Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory, σv,dm. This provides an estimation of the galaxy bias b. [Results]: The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several B-band luminosity selections. We find that b increases with the B-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel = 1.4 ± 0.2. [Conclusions]: Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias b from a method independent of correlation functions.This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2012-30789, AYA2006-14056, and CSD2007-00060. We also acknowledge support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, AYA2011-29517-C03-01, AYA2012-39620, AYA2013-40611-P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA2013-48623-C2-2, ESP2013-48274, AYA2014-58861-C3-1, Aragon Government Research Group E103, Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, Junta de Andalucia grants TIC114, JA2828, P10-FQM-6444, and Generalitat de Catalunya project SGR-1398. A.J.C. and C.H.-M. are Ramon y Cajal fellows of the Spanish government. A. M. acknowledges the financial support of the Brazilian funding agency FAPESP (Post-doc fellowship - process number 2014/11806-9). M.P. acknowledges financial support from JAE-Doc program of the Spanish National Research Council (CSIC), co-funded by the European Social Fund.Peer Reviewe
    corecore