8,171 research outputs found

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods

    Get PDF
    We present here a domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by a discontinuous Galerkin method. In order to allow the treatment of irregularly shaped geometries, the discontinuous Galerkin method is formulated on unstructured tetrahedral meshes. The domain decomposition strategy takes the form of a Schwarz-type algorithm where a continuity condition on the incoming characteristic variables is imposed at the interfaces between neighboring subdomains. A multifrontal sparse direct solver is used at the subdomain level. The resulting domain decomposition strategy can be viewed as a hybrid iterative/direct solution method for the large, sparse and complex coefficients algebraic system resulting from the discretization of the time-harmonic Maxwell equations by a discontinuous Galerkin method

    Well-balanced rr-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

    Get PDF
    In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on rr-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed meshes is nontrivial and has been a topic of much research. In [S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys. 227 (2008) 1887–1922] we introduced a well-balanced discontinuous Galerkin method using the theory of weak solutions for nonconservative products introduced in [G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995) 483–548]. In this article we continue this approach and prove well-balancedness of a discontinuous Galerkin method for the shallow water equations on moving meshes. Numerical simulations are then performed to verify the rr-adaptive method in combination with the space-time discontinuous Galerkin method against analytical solutions and showing its robustness on more complex problems
    corecore