36,520 research outputs found

    Petrol Direct Injection

    Get PDF
    Tato bakalářská práce se zabývá přímým vstřikováním benzínu u osobních automobilů. V první kapitole se dozvíme o historii přímého vstřikování benzínu a vývoji jednotlivých automobilových koncepcí. Dále se zaměříme na vznik směsí paliva se vzduchem a podrobněji rozebereme celý vstřikovací systém. Obsahem mé práce je také seznam vybraných motorů využívajících přímého vstřikování benzínu. Poslední kapitola je zaměřena především na budoucí vývoj přímého vstřikování benzínu u vznětových motorů.This bachelor thesis is about the system of direct injection petrol engines within cars. The first chapter is designated to the history of the direct injection petrol system and the development of different concepts. The thesis then concentrates on the mixing of air with fuel and describes the injection system in detail. Within the content of my work is a list of specific engines, using the direct injection system. The last chapter is devoted to the future development of direct injection petrol system and those with the compression-ignition system.

    Gasoline Direct Injection

    Get PDF
    Non

    Controlled autoignition of hydrogen in a direct-injection optical engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ϕ = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate

    Hydrogen SI and HCCI Combustion in a Direct-Injection Optical Engine

    Get PDF
    Hydrogen has been largely proposed as a possible alternative fuel for internal combustion engines. Its wide flammability range allows higher engine efficiency with leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. Independently, Homogenous Charge Compression Ignition (HCCI) also allows higher thermal efficiency and lower fuel consumption with reduced NOX emissions when compared to Spark-Ignition (SI) engine operation. For HCCI combustion, a mixture of air and fuel is supplied to the cylinder and autoignition occurs from compression; engine is operated throttle-less and load is controlled by the quality of the mixture, avoiding the large fluid-dynamic losses in the intake manifold of SI engines. HCCI can be induced and controlled by varying the mixture temperature, either by Exhaust Gas Recirculation (EGR) or intake air pre-heating. A combination of HCCI combustion with hydrogen fuelling has great potential for virtually zero CO2 and NOX emissions. Nevertheless, combustion on such a fast burning fuel with wide flammability limits and high octane number implies many disadvantages, such as control of backfiring and speed of autoignition and there is almost no literature on the subject, particularly in optical engines. Experiments were conducted in a single-cylinder research engine equipped with both Port Fuel Injection (PFI) and Direct Injection (DI) systems running at 1000 RPM. Optical access to in-cylinder phenomena was enabled through an extended piston and optical crown. Combustion images were acquired by a high-speed camera at 1°or 2°crank angle resolution for a series of engine cycles. Spark-ignition tests were initially carried out to benchmark the operation of the engine with hydrogen against gasoline. DI of hydrogen after intake valve closure was found to be preferable in order to overcome problems related to backfiring and air displacement from hydrogens low density. HCCI combustion of hydrogen was initially enabled by means of a pilot port injection of n-heptane preceding the main direct injection of hydrogen, along with intake air preheating. Sole hydrogen fuelling HCCI was finally achieved and made sustainable, even at the low compression ratio of the optical engine by means of closed-valve DI, in synergy with air-pre-heating and negative valve overlap to promote internal EGR. Various operating conditions were analysed, such as fuelling in the range of air excess ratio 1.2-3.0 and intake air temperatures of 200-400°C. Finally, both single and double injections per cycle were compared to identify their effects on combustion development. Copyright © 2009 SAE International

    The effect of piston bowl temperature on diesel exhaust emissions

    Get PDF
    In modern, high-speed, direct injection diesel engines for passenger vehicles, there is extensive impingement of the fuel sprays on to the piston bowl walls. Recent trends towards smaller engine sizes, equipped with high-pressure common-rail fuel injection systems, have tended to increase the spray/piston wall interaction. This paper describes tests carried out in a high-speed direct injection automotive diesel engine, during which the temperature of the piston was increased in a controlled manner between 189 and 227 degrees C while being continuously monitored. The aim of the work was to quantify the effects of piston temperature on pollutant exhaust emissions. The results show a significant reduction in unburned hydrocarbon emission, a significant increase in smoke emission, and no significant change in the emission of oxides of nitrogen. The increase in smoke emission cannot be ascribed to changes in the engine volumetric efficiency or air-fuel ratio. The paper demonstrates that fuel spray deposition on the piston surface was in the form of a thin film that did not experience bulk boiling. A number of suggestions are put forward to help explain the observed changes in exhaust emissions with increasing piston temperature

    Ocean Carbon Sequestration by Direct Injection

    Get PDF
    corecore