162 research outputs found

    Unified Direct-Flux Vector Control for AC Motor Drives

    Get PDF
    The paper introduces a Unified Direct-Flux Vector Control scheme suitable for sinusoidal AC motor drives. The AC drives considered here are Induction Motor, Synchronous Reluctance and synchronous Permanent Magnet motor drives, including Interior and Surface-mounted Permanent Magnet types. The proposed controller operates in stator flux coordinates: the stator flux amplitude is directly controlled by the direct voltage component, while the torque is controlled by regulating the quadrature current component. The unified direct-flux control is particularly convenient when flux-weakening is required, since it easily guarantees maximum torque production under current and voltage limitations. The hardware for control is standard and the control firmware is the same for all the motors under test with the only exception of the magnetic model used for flux estimation at low speed. Experimental results on four different drives are provided, showing the validity of the proposed unified control approac

    Impact of the motor magnetic model on direct flux vector control of interior PM motors

    Get PDF
    The stator-field-oriented, direct-flux vector control has been proven to be effective in terms of linear torque control and model independent performance at limited voltage and current (i.e. in flux weakening) for AC drives of various types. The performance of the direct-flux vector control relies on the accuracy of the flux estimation, as for any field oriented control. The knowledge of the motor magnetic model is critical for flux estimation when the operating at low speed. This paper addresses the effects of a limited knowledge of the motor model on the performance of the control at low speed, for an Interior Permanent Magnet motor drive. Experimental results are give

    Modular Stator Flux and Torque Control of Multi-Three-Phase Induction Motor Drives

    Get PDF
    direct flux vector control, induction motor drives, modular torque control, multiphase electrical machine

    Virtual Signal Injection-Based Direct Flux Vector Control of IPMSM Drives

    Get PDF
    This paper describes a novel virtual signal injection-based direct flux vector control for the maximum torque per ampere (MTPA) operation of the interior permanent magnet synchronous motor (IPMSM) in the constant torque region. The proposed method virtually injects a small high-frequency current angle signal for tracking the optimal flux amplitude of the MTPA operation. This control scheme is not affected by the accuracy of the flux observer and is independent of machine parameters in tracking the MTPA points and will not cause additional iron loss, copper loss, and torque ripple as a result of real signal injection. Moreover, by employing a bandpass filter with a narrow frequency range the proposed control scheme is also robust to current and voltage harmonics, and load torque disturbances. The proposed method is verified by simulations and experiments under various operating conditions on a prototype IPMSM drive system

    Plug-in, Direct Flux Vector Control of PM Synchronous Machine Drives

    Get PDF
    A general-purpose control algorithm is proposed for permanent-magnet (PM) synchronous machine drives based on the principle of direct-flux vector control. The algorithm does not require regulator tuning, and it is tailored to different machines automatically via identification of the stator resistance and flux linkage tables. The model parameters are identified via a preliminary self-commissioning procedure that can be integrated into the standard drive firmware with no need for extra hardware or offline manipulation. The combination of the control and self-commissioning algorithms forms a “plug-in” controller, which pertains to a controller that is capable of exploiting the full drive capabilities with no prior knowledge of the PM machine in use. Experimental results are reported for two prototype concentrated-winding PM machines designed for traction applications, i.e., one with a surface-mounted PM rotor and another with an interior PM rotor

    Self-learning Direct Flux Vector Control of Interior Permanent Magnet Machine Drives

    Get PDF
    This paper proposes a novel self-learning control scheme for interior permanent magnet synchronous machine (IPMSM) drives to achieve maximum torque per ampere (MTPA) operation in constant torque region and voltage constraint maximum torque per ampere (VCMTPA) operation in field weakening region. The proposed self-learning control scheme (SLC) is based on the newly reported virtual signal injection aided direct flux vector control. However, other searching based optimal control schemes in the flux-torque (f-t) reference frame are also possible. Initially the reference flux amplitudes for MTPA operations are tracked by virtual signal injection and the data are used by the proposed self-learning control scheme to train the reference flux map online. After training, the proposed control scheme generates the optimal reference flux amplitude with fast dynamic response. The proposed control scheme can achieve MTPA or VCMTPA control fast and accurately without accurate prior knowledge of machine parameters and can adapt to machine parameter changes during operation. The proposed control scheme is verified by experiments under various operation conditions on a prototype 10 kW IPMSM drive

    Model Based, Direct Flux Vector Control of Permanent Magnet Synchronous Motor Drives

    Get PDF
    This paper proposes a direct flux vector control strategy with no need for regulators tuning, suitable for permanent-magnet (PM) synchronous machine drives. The controller operates in stator flux coordinates and calculates the inverter reference voltages in a model-based fashion, taking advantage of a novel equation for the explicit evaluation of the torque angle error. The inverter current and voltage limits are exploited in a parameter-independent way. The method segregates the machine parameters into a single block, to make it very easy to switch from one machine to another. Experimental results are reported for a PM-assisted synchronous reluctance motor drive example, characterized by significant saturation and cross-saturation. State-of-the-art control techniques such as current vector control and non-model-based direct flux vector control are also considered, for the sake of comparison, in simulations and experiments

    Model predictive Direct Flux Vector Control of multi three-phase induction motor drives

    Get PDF
    A model predictive control scheme for multiphase induction machines, configured as multi three-phase structures, is proposed in this paper. The predictive algorithm uses a Direct Flux Vector Control scheme based on a multi three-phase approach, where each three-phase winding set is independently controlled. In this way, the fault tolerant behavior of the drive system is improved. The proposed solution has been tested with a multi-modular power converter feeding a six-phase asymmetrical induction machine (10kW, 6000 rpm). Complete details about the predictive control scheme and adopted flux observer are included. The experimental validation in both generation and motoring mode is reported, including post open-winding fault operations. The experimental results demonstrate the feasibility of the proposed drive solution

    Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA and Flux Weakening

    Get PDF
    This paper proposes a sensorless direct flux vector control scheme for synchronous reluctance motor drives. Torque is controlled at constant switching frequency, via the closed loop regulation of the stator flux linkage vector and of the current component in quadrature with it, using the stator flux oriented reference frame. A hybrid flux and position observer combines back-electromotive force integration with pulsating voltage injection around zero speed. Around zero speed, the position observer takes advantage of injected pulsating voltage. Instead of the commonly used current demodulation, the position error feedback is extracted here at the output of the observer’s flux maps, thus resulting in immunity towards the cross-saturation position error. The Maximum Torque per Ampere (MTPA) strategy is used. A detailed analysis puts in evidence the key advantages and disadvantages related to the use of the MTPA in the sensorless control of the Synchronous Reluctance machine, for both the saliency based and the back-EMF based sensorless methods. Extensive experimental results are reported for a 2.2 kW synchronous reluctance motor prototype, showing the feasibility of the proposed method. These include speed response to step and sinusoidal load disturbances at standstill, up to 121% of rated torque, and speed response tests covering the flux weakening speed region
    corecore