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Abstract—The recent advancements of power electronics are 
encouraging the development of the multiphase drives in both 
transport electrification and energy production applications. 
Among the multiphase solutions, the “multi-three-phase” drives 
are gaining impressive attention from the industry since they 
can be configured as multiple three-phase units operating in 
parallel. In this way, the three-phase technologies can be used, 
leading to a significant reduction in the costs and design time. 
Although the multi-three-phase drives possess natural 
modularity in terms of both machine winding and power 
converter, few control solutions able to implement a modular 
regulation of the torque are available in the literature. 
Therefore, this paper proposes a control scheme implementing 
an independent regulation of the stator flux amplitude and 
torque contribution belonging to each winding set of a multi-
three-phase induction machine. The proposed control solution 
can manage the voltage and current constraints introduced by 
each inverter unit. Besides, torque-sharing strategies among the 
three-phase sets of the machine can be implemented. 
Experimental results are provided for a modular power 
converter feeding a twelve-phase induction machine with a 
quadruple-three-phase configuration, thus demonstrating the 
effectiveness of the proposed solution. 

Keywords— direct flux vector control, induction motor drives, 
modular torque control, multiphase electrical machines. 

NOMENCLATURE 

p   Pole pairs number. 
n   Number of three-phase sets. 
k, z   Index of a generic set. 
   (k = 1,2,…,n) ; (z = 1,2,…,n). 
(abc)k   k-set phase coordinates. 
(αβ)   Stationary coordinates. 
(dqe)   Rotor electric coordinates. 
(dqsk)   k-set flux coordinates. 
(xy)   Generic coordinates (any of the 
   above). 
ask   First phase of set k. 
ϑsk   Magnetic position of the k-set 
   first phase to the α-axis. 
[TC,k]   General Clarke transformation. 
𝑣̅sk,xy = [vsk,x vsk,y]t   k-set voltage vector defined
   in (xy) coordinates. 
𝚤s̅k,xy = [isk,x isk,y]t   k-set current vector defined
   in (xy) coordinates. 
λതsk,xy = [λsk,x λsk,y]t   k-set flux linkage vector defined
   in (xy) coordinates. 
Rsk   k-set resistance. 
Llsk   k-set leakage inductance. 
ωxy   Synchronous speed of the (xy) 
   frame. 
Lm   Magnetizing inductance. 

j = ቂ0 െ1
1 0

ቃ  Matrix form of complex operator. 

𝚤r̅,xy = [ir,x ir,y]t   Rotor current vector defined
   in (xy) coordinates. 
λതr,xy = [λr,x λr,y]t   Rotor flux linkage vector defined
   in (xy) coordinates. 
Rr   Rotor resistance. 
Llr   Rotor leakage inductance. 
kr = Lm / (Lm + Llr) Rotor coupling factor. 
ksk = Lm / (Lm + Llsk) k-set coupling factor. 
τr  = (Lm + Llr) / Rr  Rotor time-constant. 
ϑm   Mechanical position of the rotor. 
ϑe = p ꞏ ϑm  Electrical position of the rotor to 
   the α-axis. 
ωm   Mechanical speed of the rotor. 
ωe  = p ꞏ ωm  Electrical speed of the rotor. 
Tk   k-set torque contribution. 
T = ∑ 𝑇௞

௡
௞ୀଵ   Machine torque. 

Pm   Mechanical power. 
xf,k , xf,z   Status of the generic unit k, z 
   (0-faulty/1-active). 
wz , ck   Coupling coefficients.  
Lk   k-set equivalent inductance. 
Rk   k-set equivalent resistance. 
Mk   k-set equivalent mutual  
   reactance in (xy) coordinates. 
Pz   Mutual resistance between the 
   set k and set z (k ≠ z). 
Qz   Mutual reactance between the 
   set k and set z (k ≠ z). 
Fsk,x , Fsk,y  Voltage forcings terms in (xy) 
   coordinates of the set k. 
vdc,k   k-unit dc-link voltage. 
Imax,k   Amplitude limit of the k-set 
   phase-currents. 
[isk,abc] = [isk-a isk-b isk-c]t k-set phase-currents. 
τ    Superscript – generic sampling 
   time instant. 
*    Superscript – reference variable. 
^    Superscript – observed variable. 
~    Superscript – estimated variable. 
[𝑑௞,௔௕௖

∗ ]=[𝑑௞,௔
∗  𝑑௞,௕

∗
  𝑑௞,௖

∗ ]t k-unit duty-cycles. 
λsk   Amplitude of the k-set flux vector. 
ϑλ-sk   Position of the k-set flux vector to 
   the α-axis. 
δsk   k-set load-angle. 
δmax,k   Limit of the k-set load-angle. 
𝐹തsk   Reference voltage forcings terms 
   of the set k in (dqsk) coordinates. 
ωc,k    Gain of the k-unit flux observer. 



ωsk    Synchronous speed of the (dqsk) 
    frame. 
ϑλ-r   Position of the rotor flux vector to 
   the α-axis. 
vsk-max   Amplitude limit of the k-unit 
    phase-voltages. 
λsk-max   Amplitude limit of the k-set flux 
   vector. 
𝑖௦௞,௤ೞೖି௠௔௫ ௜  Saturation limit of the k-set 
   torque current 𝑖௦௞,௤ೞೖ, due to Imax,k. 
λതmk,xy = [λmk,x λmk,y]t  k-set magnetizing flux vector 
   defined in (xy) coordinates. 
λmk   Amplitude of the k-set  
   magnetizing flux vector λതmk. 
ϑλ-mk   Position of the k-set magnetizing 
   flux vector λതmk to the α-axis. 
Lσk   k-set overall leakage inductance. 
𝑖௦௞,௤ೞೖି௟௜௠ ఋห௠௜௡  Low saturation limit of the k-set 

   torque current 𝑖௦௞,௤ೞೖ, due to δmax,k. 

𝑖௦௞,௤ೞೖି௟௜௠ ఋห
௠௔௫

  High saturation limit of the k-set 
   torque current 𝑖௦௞,௤ೞೖ, due to δmax,k. 
𝑣௦௞,௤ೞೖି௠௔௫  Operative range of the k-unit  
   qsk-axis voltage component.  
𝐶௦௞,௤ೞೖ
∗    k-unit combination of the  

   reference voltages of all sets 
   referred to the qsk-axis. 
s(k,k) , s(k,z)  Decoupling coefficients.   
Sc, Sk-k , Sk-z  Variables of the decoupling 
   algorithm.  
[𝑣௦௞,௔௕௖

∗ ]=[𝑣௦௞,௔
∗  𝑣௦௞,௕

∗
 𝑣௦௞,௖
∗ ]t k-unit reference phase-voltages. 

I. INTRODUCTION 

In recent years, multiphase drives have become a 
competitive solution for both transport electrifications and 
energy production from renewables [1], [2]. Compared to the 
three-phase counterparts, multiphase machines allow at 
reducing the current per phase without increasing the phase-
voltage, making possible the use of fast electronic devices also 
in high power applications. Besides, the reliability of the 
system increases, as fault-tolerant strategies can be 
implemented [3], [4]. Such advantages, together with a 
significant cost reduction of the power electronics devices, 
have made multiphase drives promising solutions for the 
future electrification processes. 

Based on the current technological trend [2], [5], [6], 
significant interest has been shown on multiphase machines 
having phases number multiple of three (e.g., 6, 9, 12,...). In 
this case, the machine stator can be configured as multiple 
three-phase winding sets with isolated neutral points, 
obtaining a so-called “multi-three-phase” machine. In this 
way, each three-phase set can be fed by an independent 
voltage source inverter (VSI), defining a multi-three-phase 
drive topology that is schematically shown in Fig. 1. The 
advantages of such a system are evident since the consolidated 
three-phase technologies can be used, reducing cost and 
design time. Another advantage of the multi-three-phase 
drives consists of extending the three-phase modularity also in 
terms of fault-tolerance. Indeed, if an open-phase fault event 
occurs on the machine side or the inverter side, the faulted 
three-phase unit (winding set plus VSI) is disconnected from 
its dc power supply, allowing a straightforward post-fault 
drive reconfiguration [2], [5], [7].  

 
Fig. 1. Multi-three-phase drive topology. 

The multi-three-phase machines are usually designed to 
operate with a balanced operation of the units [8]–[11]. 
However, the literature reports significant examples in which 
power-sharing strategies among the sets can be performed 
[12]–[14]. Although this operation leads to the reduction of 
the overall machine efficiency [15], it results quite useful in 
the “series/parallel” configurations [15], [16]. As an example, 
the solutions presented in [16], [17] employ multi-three-phase 
generators with the series-connection of the units’ dc-link, 
thus forming a high voltage dc (HVDC) transmission system. 
Such structures may have a great interest in the offshore wind 
farms where HVDC systems are usually employed [18]. 

Nevertheless, the literature reports a few drive control 
schemes able to implement direct and independent control of 
each three-phase unit. In detail, most of the presented 
solutions perform power-sharing indirect strategies among the 
sets through the current-sharing, i.e., regulation of the units’ 
currents using field-oriented control (FOC) schemes [12]–
[14]. Besides, since the multi-three-phase machines represent 
a specific multiphase configuration, the vector space 
decomposition (VSD) approach has often been applied [15], 
[19], [20].  

The VSD-based control schemes perform the energy 
conversion in an average (d,q) subspace, having the meaning 
of the time-fundamental model of the machine. The power- or 
current- sharing strategies among the sets are performed 
through the active control of the other subspaces [12], [14], 
[15], representing time-harmonic models of the machine. The 
advantages of such an approach are evident since the drive 
control can be performed as for the conventional three-phase 
machines, thus avoiding any coupling phenomena among the 
sets [21]. 

The literature also reports VSD-based direct torque control 
(DTC) algorithms using switching tables  [22], [23]. However, 
based on the authors’ best knowledge, the literature does not 
report DTC solutions performing the post-fault operation of 
the machine after an open-three-phase fault. Besides, the 
design of switching tables for machines having a number of 
phases higher than six becomes very complicated. 

The main alternative to the VSD approach is the multi-
stator (MS) modeling, which is particularly suitable for multi-
three-phase machines. The MS approach models the machine 
as multiple three-phase sets interacting with each other and 
with the rotor [2], [7], [24]. In this way, the modularity of the 
energy production is preserved since, for each three-phase set, 
a dedicated (d,q) subspace is defined. Therefore, compared to 
the VSD, the MS-based control schemes allow easy 
reconfiguration of the drive after the open-phase fault. Indeed, 
together with the conventional FOC algorithms [11], [13], 
[25], the literature also reports MS-based solutions performing 
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the control of both the flux amplitude and torque contribution 
of each healthy set after an open-phase fault. Most of them use 
the direct flux vector control (DFVC) algorithm [7], [8], [26]. 

The DFVC represents a competitive alternative to the 
DTC algorithms [10]. Indeed, pulse-width modulators (PWM) 
are used, overcoming the issues on the implementation of 
switching patterns for multiphase motor drives with a high 
number of phases. The advantages of the DFVC for multi-
three-phase induction motor drives have been demonstrated in 
[8], [26], showing the high-performance in deep flux-
weakening operation. 

However, all the MS-based schemes are affected by 
significant magnetic coupling among the three-phase sets [2], 
causing the potential instability of the control algorithm [21]. 
Besides, this issue gets worse for multi-three-phase machines 
with a high number of sets (e.g., 3, 4). One solution consists 
of limiting the dynamic performance of the control loops, as 
in [7], [8]. In [26], the issue was solved using deadbeat 
controllers, while in [27], the magnetic coupling among the 
three-phase sets has been removed using a specific decoupling 
transformation, so performing a decoupled torque regulation.  
Nevertheless, none of these solutions can address the 
instability issue if performing power-sharing strategies among 
the sets, making mandatory the implementation of a dedicated 
decoupling algorithm. 

The need for decoupling action is further emphasized in 
the MS-based DFVC schemes since the control of each set is 
performed in the own stator coordinates [26]. Therefore, the 
decoupling algorithm must also consider the angular shifts 
between the sets’ frames, these becoming significant if 
performing power-sharing operations. This issue is overcome 
when FOC algorithms are implemented since all sets are 
controlled in the rotor coordinates [25]. However, the linear 
torque regulation of each set at the flux-weakening operation 
requires calibrated machine maps [28]. Conversely, the DFVC 
linearizes the torque regulation over the whole speed range 
[26], [29]. 

Therefore, the goal of this work is to propose a modular 
MS-based DFVC scheme for multi-three-phase induction 
motor (IM) drives. For each three-phase unit, the direct-, 
independent-, and decoupled- regulation of the flux amplitude 
and torque contribution is performed. The proposed control 
solution can deal with the current and voltage constraints 
introduced by each unit’s VSI, ensuring high performance of 
the torque regulation in deep flux-weakening with MTPV 
operation (maximum load-angle). Besides, power-sharing 
strategies among the sets can be performed. 

Therefore, compared to the existing MS-based DFVC 
solutions [7], [8], [26], the contributions of the paper are listed 
in the following. 
 A new decoupling algorithm that allows power-sharing 

strategies among the sets without any instability issues 
is implemented. 

 The modularity is extended to the MTPV operation, as 
the load-angle of each set is independently limited. 

The proposed solution represents a competitive alternative 
to the existing FOC algorithms for multi-three-phase IM 
drives [12]–[15], [25]. Compared to them, the following 
features are introduced: 
 The torque regulation of each set is linearized over the 

whole speed range, avoiding the implementation of 
additional control modules in flux-weakening. 

 The power-sharing strategies among the sets are 
implemented straightforwardly through the torque-
sharing, thanks to the modular torque control. 

 
Fig. 2. Generic configuration of a multi-three-phase IM: angle 
displacement of the magnetic axes in one electrical revolution. 

Finally, compared to the VSD-based DTC schemes [22], 
[23], the choice of the MS approach leads to the following 
advantages: 
 The drive scheme can be easily configured after an 

open-three-phase fault.  
 The VSI units use PWM three-phase modulators, 

allowing the control of multi-three-phase machines 
with a high number of sets. 

The performance of the proposed solution has been 
validated on a twelve-phase IM prototype using a quadruple 
three-phase winding configuration and fed by a modular VSI. 

This paper is a revised version of the work presented in 
[30] and includes a modular limitation of the load-angles of 
the sets, avoiding the machine pull-out in deep flux-
weakening operation. Besides, together with the power-
sharing strategies among the sets, the fault ride-through 
capability of the drive are demonstrated experimentally. 

The paper is organized as follows. Section II reports the 
MS modeling of the multi-three-phase induction machine. The 
proposed control solution is described in Section III, while the 
experimental validation is given in Section IV. The paper 
conclusions are reported in Section V. 

II. MS MODELING OF A MULTI-THREE-PHASE IM  

The MS modeling aims at computing the state-space 
model of each set of the machine, which is essential for the 
design of the decoupling algorithm. In the following, a 
squirrel-cage IM with arbitrary numbers of pole pairs p and 
three-phase winding sets n is considered (Fig. 2). 

A sinusoidal distribution of the stator windings is 
assumed, interacting with each other and with the rotor only 
through the spatial-fundamental component of the airgap 
field. The rotor cage is modeled as an equivalent three-phase 
winding that is sinusoidally distributed [24], [31], whose 
variables and parameters refer to the stator, regardless of the 
considered winding set. In addition, it is assumed that the 
stator windings have the same number of turns. Finally, iron 
losses are not considered.  

The MS approach considers the machine as multiple three-
phase sets operating in parallel, highlighting the flux and 
torque contributions produced by each of them [2], [24]. For 
each generic set k (k=1,2,…,n), the general Clarke 
transformation is applied [31], thus preserving the modularity 
of the energy conversion. Therefore, each variable defined in 
the k-set phase-coordinates (abc)k is computed in terms of 
stationary (αβ) components using the following amplitude-
invariant transformation: 
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     
     ,

cos cos 2 3 cos 4 32
sin sin 2 3 sin 4 33

sk sk sk
C k

sk sk sk

T
       

              
(1) 

The angle ϑsk is defined as the position of the k-set first 
phase ask to the α-axis; the latter is assumed coincident with 
the first phase of the first set as1, a shown in Fig. 2. Therefore, 
MS modeling leads to n overlapped stationary models, and 
each of them can be defined in generic rotating coordinates 
(xy), using the well-known transformation [31]. 

A. Electromagnetic Model in Rotating Coordinates  

The MS modeling of a multi-three-phase IM is analyzed 
in detail in [26]. In the following, the main results of [26] are 
reported, making easier the understanding of the proposed 
control solution. In summary, the electromagnetic model of a 
generic set k (k=1,2,…,n) in rotating (xy) coordinates is 
computed as: 

 , , , ,sk xy sk sk xy sk xy xy sk xy

d
v R i j

dt
        (2) 

 , , , ,
1

n

sk xy lsk sk xy m sz xy m r xy
z

L i L i L i


        (3) 

where: 

- , , ,

t

sk xy sk x sk yx x x     is a k-set vector that can assume the 

meaning of voltage v, current i, or flux-linkage λ; 
- Rsk and Llsk are the k-set parameters of resistance and leakage 

inductance, respectively; 
- ωxy is the synchronous speed of the (xy) frame; 

- , , ,

t

r xy r x r yi i i     is the rotor current vector; 

- Lm is the magnetizing inductance; 

- j is the complex operator defined as 0 1
1 0
 

  
. 

All the stator sets interact with the rotor cage, modeled as 
an equivalent three-phase winding, and whose equations are 
computed as [26]: 

    , , ,0 0
t

r r xy r xy xy e r xy
d

R i j
dt

          (4) 

 , , , ,
1

n

r xy lr r xy m sz xy m r xy
z

L i L i L i


        (5) 

where: 
- Rr and Llr are the rotor parameters of resistance and leakage 

inductance, respectively; 

- , , ,

t

r xy r x r y       is the rotor flux linkage vector; 

- ωe is the electrical speed of the rotor, computed as p times 
that the mechanical ωm. 

For a rotor cage, the equivalent three-phase currents 
cannot be measured or directly controlled. Therefore, the 
currents-to-fluxes relationships (3) and (5) are combined in a 
single vector equation as: 

 , , , ,
1

n

sk xy r r xy lsk sk xy r lr sz xy
z

k L i k L i


         (6)

where kr =Lm / (Lm + Llr) stands for the rotor coupling factor. 
Finally, by performing the power balance of the machine, 

the k-set torque contribution Tk is computed as [26]: 

   , , , , , ,

3 3

2 2k sk xy sk xy sk x sk y sk y sk xT p i p i i             (7) 

More details about the computation of (7) are reported in 
the Appendix. 

 
Fig. 3. Equivalent MS circuit of a generic multi-three-phase squirrel-cage 
IM in stationary (αβ) coordinates. 

It is noted how the k-set torque contribution is given by the 
cross-product (∧) between the k-set flux-linkage vector and 
the k-set current vector. Further confirmation of the MS 
modularity is provided in Fig. 3, showing the equivalent 
circuit of the machine. 

B. State-Space Model in Rotating Coordinates 

The MS model of the machine (2)-(7) demonstrates how 
the coupling among the sets has a massive impact on control 
performance. However, the design of a modular drive scheme 
requires the computation of the state-space model associated 
with each set. Some preliminary variables are defined in (8), 
simplifying the interpretation of the state-space equations.                   

 ,
1,

n
lr m

z r f z k z sk
lsz m lskz z k

L L
w k x c w k

L L L 

    
  (8)

The variable xf,z represents the status of the generic set z (0-
faulty/1-active), thus adapting the state-space models of the 
healthy sets after an open-phase fault. Based on the proposed 
control solution, the (xy) components of the stator current 
vectors are chosen as state-space variables.  

However, the state-equation of the rotor flux vector is also 
presented, thus reporting the complete state-space model of 
the machine. Such an equation is computed by combining (4) 
with (5) as: 

 1
, , ,

1

n

r xy r xy e r xy r r sz xy
z

d
j k R i

dt




                (9) 

where τr = (Lm + Llr) / Rr is the rotor time-constant. The state-
space equation of the k-set current vector is computed as: 
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 Based on (10), the following considerations for the generic 
set k can be made: 

i) the set is characterized by an own equivalent 
inductance, valid for both (xy) axes, and computed as: 
  1k k lsk r lrL c L k L      (11) 

ii) the self-coupling of the set, consisting of how the k-set 
currents affect their time-derivatives, depends on the 
following parameters: 

 
   

 
1k sk k r r sk

k e k lsk xy e k

R R c R k k

M c L L

    

       
 (12) 

iii) each mutual coupling of the set, consisting of how the  
z-set currents (z=1,2,…,n, z ≠ k) affect the time-
derivatives of the k-set currents, depends on the 
following parameters: 
 z r r z sz z e z lszP k R w R Q w L         (13) 

iv) the back-electromotive-force (back-emf) of the set 
depends on the k-set flux, together with the values of 
rotor time-constant τr and rotor electrical speed ωe;        

v) the time-derivatives of the k-set currents are controlled 
through the variables Fsk,x, and Fsk,y. These forcing 
terms, having the meaning of voltages, are defined as: 
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The state-space model of the machine (2), (10) shows how 
the currents of each set also depend on the voltages applied by 
the other units (14), leading to a “voltage-coupling” 
phenomenon. The potential instability of the MS-based 
control schemes [21] is caused by this effect, making 
necessary the implementation of a decoupling algorithm. 
Otherwise, the control performance must be limited [7], [8], 
[21], [25], hindering the implementation of power-sharing 
strategies among the sets. 

In the following, superscripts *, ^, ~ denote a reference-, 
observed- and estimated- variable, respectively. 

III. MODULAR FLUX AND TORQUE CONTROL SCHEME 

The proposed control solution is designed for multi-three-
phase IM drives having an arbitrary number of units n. The 
generic unit k (k=1,2,…,n) is controlled regardless of the 
others, thus considering its values of dc-link voltage vdc,k, and 
amplitude limit of the phase-currents Imax,k. The current limit 
is usually related to the overload capability of the VSI, 
although in some cases, it can correspond with the thermal 
limit of the machine [32]. Since each winding set has an 
isolated neutral point (Fig. 1), the drive can be configured as 
modular units operating in parallel. Therefore, the generic unit 
k can be considered regardless of the others. 

The control of the generic unit k is performed using the 
drive scheme proposed in Fig. 4. It corresponds to the 
configuration of a three-phase drive, thus requiring the 
measurements of the phase currents [isk,abc]=[isk-a isk-b isk-c]t,  
dc-link voltage vdc,k, and VSI unit status xf,k. 

In this work, a “sensored” control algorithm is proposed, 
thus requiring the feedback of the rotor mechanical position 
ϑm. Since a digital controller is used, the measurements above 
mentioned are sampled and converted in time-discrete values. 
In the following, the discrete samples are denoted with the 
superscript τ, representing the considered sample time instant.  

 
Fig. 4. Drive configuration of a generic unit k (k=1,2,…,n). 

 
Fig. 5. Modular DFVC scheme for multi-three-phase IM drives. 

Finally, the outputs of the k-unit control algorithm consist 
of the k-unit duty-cycles ൣ𝑑௞,௔௕௖

∗ ൧. Concerning Fig. 4, the duty-
cycles are denoted with the superscript (τ+1) to highlight their 
application for the next sample time instant, thus considering 
the execution delay of the digital controller. 

The proposed modular control scheme can perform power-
sharing strategies among the sets, leading to a drive solution 
suitable for the “series/parallel” configurations (e.g., wind 
energy conversion systems) [15]. The proposed drive scheme 
is shown in Fig. 5, and it consists of multiple DFVC schemes 
operating in parallel. Therefore, the generic unit k has its 
references in terms of flux amplitude λsk

* and torque 
contribution Tk

*. 
The torque reference of each set can be provided by an 

outer controller, not considered here since it is beyond the 
scope of this work. Regarding the flux amplitudes of the sets, 
these can be imposed different from each other if significant 
unbalances between the stator leakage inductances (Lls,k) exist. 
Such a condition can happen if the machine has been built 
using an off-the-shelf stator core for three-phase motors, 
reducing cost [11], [33]. Apart from this case, there is no 
reason for keeping the flux amplitudes of the sets different 
from each other. A standard solution consists of using the 
rated flux value of the machine for all sets [7], [8]. In the 
alternative, the maximum-torque per ampere (MTPA) 
operation can be performed [34], minimizing the overall Joule 
losses.  

As shown in Fig. 5, the k-unit DFVC performs the 
regulation of the k-set flux amplitude λsk and k-set torque Tk 
considering the limits of the k-unit VSI in terms of voltage vdc,k 
and current Imax,k. 
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Fig. 6. Rotating k-set flux frame (dqsk). 

Also, the limitation of the k-set load-angle δmax,k is 
performed, allowing the implementation of modular MTPV 
strategies that avoid the machine pull-out. Therefore, this 
angle has a similar meaning to that defined for three-phase 
machines [29]. 

The output of each DFVC scheme consists of the reference 
forcing term skF (k=1,2,…,n), having a similar meaning of 
(14). Therefore, the decoupling algorithm is applied, leading 
to the computation of the duty-cycles of the inverters. 

All the details are provided in the next subsections, 
reporting a description of the proposed control solution. 

A. DFVC Equations 

The k-unit DFVC scheme is implemented in the rotating 
k-set flux-coordinates (dqsk), as shown in Fig. 6. The position 
of the dsk-axis corresponds with that of the k-set flux vector  
ϑλ-sk, while the k-set load-angle δsk is defined as the position of 
the k-set flux vector to the rotor flux vector. Finally, the 
synchronous speed ωsk of the (dqsk) frame is defined as the 
speed of the dsk-axis to the stationary α-axis. 

Therefore, the electric- and torque- equations of the 
generic set k (2), (7) are computed in (dqsk) coordinates as: 

 , ,sk sksk d sk sk d sk
d

v R i
dt

     (15) 

 ,3 2
skk sk sk qT p i   

 (16) 

According to (15), the k-set flux amplitude is regulated 
directly using the k-set dsk-axis voltage component , sksk dv , 

while (16) shows how the k-set torque contribution can be 
regulated using the k-set qsk-axis current component , sksk qi . 

Therefore, the DFVC of each unit performs the torque 
regulation through the direct control of torque-producing 
current component, obtaining a high level of decoupling 
among the (dqsk) axes.  

B. Stator Flux Observer 

For each k-unit DFVC scheme (k=1,2,…,n), a flux-
observer is implemented, obtaining the amplitude λsk and the 
position ϑλ-sk of the k-set flux vector. The k-unit observer 
structure is shown in Fig. 7. It consists of a reduced-order 
observer [35] to keep the modularity of the proposed control 
solution. 

The k-unit observer is obtained as a combination of two 
model-based estimators, both implemented in stationary (αβ) 
coordinates. At high speed, the observer is based on back-emf 
integration (Voltage Model - VI). Conversely, the low-speed 
operation is based on the k-set current-to-flux relationships 
(Current Model - Iϑ).  

 
Fig. 7. Flux observer of a generic unit k (k=1,2,…,n). 

The Current Model - Iϑ estimates the k-set flux vector 
using the k-set magnetic equation (6). The rotor flux vector is 
estimated by implementing (9) in rotor electrical coordinates 
(dqe), making necessary the computation of the electrical 
angle ϑe from that mechanical ϑm (Fig. 7). Since the k-set flux 
estimation does not require the reconstruction of the k-set 
phase-voltages, the Current Model - Iϑ is immune to the dead-
time (DT) voltage errors introduced by the k-unit VSI. 

The Voltage Model - VI performs the estimation of the k-
set flux vector through the Euler integration of the k-set 
electric equation (2). The estimation of the DT errors is 
recommended, allowing an accurate reconstruction of the  
k-set voltages [36]. The Voltage Model - VI guarantees high 
observation performance in both medium- and high- speed 
ranges of the machine, resulting in robust against detuning 
errors of the machine parameters (e.g., stator resistance). 
Besides, due to the execution delay of the digital controller, 
the Euler integration of the k-set back-emf corresponds to the 
k-set flux vector for the next sample time instant (τ+1). 
Therefore, the predicted position of the (dqsk) frame is 
computed (Fig. 7) since its use allows full stability of the 
control scheme in the high-speed operation of the machine, as 
shown in the next subsections. 

The transition frequency (rad/s) between the two 
estimators corresponds to the observer gain ωc,k , as the transfer 
function of the k-unit flux observer is computed as: 
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where L is the Laplace variable. According to (17), the flux 
estimate obtained with the Current Model - Iϑ (6) corresponds 
with the observer output when the synchronous speed of the 
machine is lower than the transition frequency ωc,k (rad/s). 
Conversely, the back-emf integration, consisting of the flux 
estimate obtained with the Voltage Model - VI, prevails when 
the synchronous speed of the IM is higher than ωc,k. The design 
procedure of the observer gain is reported in [35].  
 In this work, the value of ωc,k = 125 rad/s (20 Hz), has been 
chosen for all units (k =1,2,3,4), obtaining a good dynamic 
performance. 

Finally, the components of the k-set flux vector are used to 
compute the related values of amplitude λsk, position ϑλ-sk, and 
synchronous speed ωsk, as shown in Fig. 7. 
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Fig. 8. DFVC scheme of a generic unit k. 

C. DFVC Scheme 

The DFVC scheme of a generic unit k is shown in Fig. 8. 
The primary inputs of the k-unit DFVC scheme are the 
references of k-set flux amplitude λsk

* and k-set torque 
contribution Tk

* (Fig. 5).  
Besides, the k-unit constraints in terms of dc-link voltage 

vdc,k, and amplitude limit of the phase-currents Imax,k are 
considered. Finally, the limitation of the k-set load-angle δmax,k 
is included. 

Therefore, after computing the k-set currents in (dqsk) 
coordinates (Fig. 8), the following actions are performed: 

1) Flux amplitude limitation 
2) Torque-producing current limitation 
3) Load-angle limitation 
4) Flux and torque-producing current regulations 

1) Flux amplitude limitation 
The voltage control of the k-unit VSI is performed using a 

PWM three-phase modulator, allowing the adoption of the 
well-known modulation techniques [37]. Therefore, the 
amplitude limit of the k-unit phase-voltages is computed as: 

 , 3sk -max dc kv v   (18) 

The k-unit voltage limit (18) is then combined with the  
k-set electric equation (2) computed in (dqsk) coordinates, 
obtaining to the limit of the k-set flux amplitude reference: 
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In this way, a model-based flux-weakening law is 
implemented, avoiding the use of an outer voltage controller. 

Based on (16), the k-set flux amplitude reference λsk
*, 

together with the k-set reference torque Tk
*, defines the 

reference of the k-set torque-producing current *
, sksk qi (Fig. 8). 

2) Torque-producing current limitation 
The reference of the k-set torque-producing current must 

be limited to respect the amplitude limit of the k-unit phase-
currents Imax,k. Therefore, according to the k-unit dsk-axis 
current, the following saturation limit is computed: 

 
Fig. 9. Vector diagram of the k-set magnetic model. 

 
Fig. 10. Execution scheme for computing the k-set magnetizing flux vector 
and the position of the rotor flux vector. 

 2 2
, max ,sk sksk q i max,k sk di I i 

    (20) 

This limitation is applied regardless of the sign of the k-set 
torque-producing current reference, as shown in Fig. 8. 

3) Load-angle limitation 
 The DFVC scheme for three-phase drives limits the 
machine load-angle through an outer controller [29], thus 
considering all the magnetic non-linearities. However, this 
solution requires tricky tuning procedures and does not 
guarantee high control performance in deep flux-weakening. 
For this reason, this work proposes the limitation of the k-set 
load-angle using a model-based regulation law. In this way, 
no outer controllers are implemented, reducing the complexity 
of the control algorithm. 

 The k-set magnetic equation (6) in (dqsk) coordinates is 
considered, expressed in the following form: 

 , , ,sk sk sksk dq mk dq k sk dqL i      (21) 

where the k-set magnetizing flux vector λത௠௞,ௗ௤ೞೖ  and the k-set 
overall leakage inductance Lσk are defined as: 
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The vector diagram of (21) is depicted in Fig. 9, 
highlighting the relationship between the k-set current vector 
and the k-set load-angle δsk. After performing some 
geometrical considerations, the following equation is 
computed: 

  , sin
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sk q sk mk r

k

i
L  
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
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where the amplitude λmk and position ϑλ-mk of the k-set 
magnetizing flux vector (21), (22), and the position of the 
rotor flux vector ϑλ-r are computed using the execution scheme 
shown in Fig. 10. 

(18)
Max Voltage

Eq. 
,dc kv

(19)
Max Flux

Eq. 



skdq

ˆ sk


,ski 
 , sksk dqi 

ˆ
-sk




*
sk

,sk max



*
kT

3
2 p

sk -maxv

(20)
Max Current

Eq. 
,max kI

(25)
Max Load - Angle

Eq. 

*
sk

, maxsksk q - ii

,max k , limsk

max

sk q - min
i 

ˆ
sk


,ski 


ˆ
-r


,

ˆ
sk




*
, sksk qi

, sksk qi

2 2
1 2u u

1

2

Flux
Controller

Torque
Current

Controller

*
, sksk qF

*
skF

1
, sksk q -maxv

*
, sksk dv

DFVC
Scheme

1 2 k = , , ... ,n

skd - axis

sk

r rk 

mk
k skL i 

 
1

n

r lr sz
z
z k

k L i



 

mk

sk

r

- axis

Magnetic
Model
1 2k = , ,...,n

,
ˆ

sk


 
_

,ski 


lskL

1
rk  

lrL
,

1

n

sz
z

i 





_
,

ˆ
r



ˆ
-r




ˆ
-mk




ˆ
mk


rk lrL

_

 ,
ˆ

mk




1 2k = , , ... ,n



The limitation of the k-set load-angle is performed 
regardless of the sign of the latter. Therefore, based on the  
k-set load-angle limit δmax,k, the following regulation law is 
implemented (Fig. 8): 

 *
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where the saturation limits are computed as: 
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 (25) 

The proposed solution allows at setting arbitrary values of 
the k-set load-angle limit δmax,k, obtaining the maximum 
degree of modularity in the control of each unit, and 
representing an absolute novelty over the existing literature. If 
this limit is set at 45 electrical degrees for all sets, modular 
MTPV strategies that avoid the machine pull-out are 
performed. 

4) Flux and torque-producing current regulations 
The k-unit control consists of the regulation of the k-unit 

stator flux amplitude and the k-unit torque-producing current, 
using proportional-integral (PI) controllers (Fig. 8). 

The k-set flux amplitude can be directly regulated using 
the k-unit dsk-axis voltage component (15), without requiring 
any decoupling action. Besides, based on the k-unit voltage 

limit (18), the operative range 1
, sksk q maxv  of the k-unit qsk-axis 

voltage component is computed, as shown in Fig. 8. 
The k-unit torque-producing current controller must be 

designed according to the state-space equation (10) computed 
in (dqsk) coordinates. In detail, the qsk-axis component is 
considered, obtaining the following equation: 
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The voltage coupling among the sets is noted. Therefore, the 
output of the k-unit torque-producing current controller should 
not be considered as the k-unit qsk-axis reference voltage. 
Otherwise, significant conflicts with the controllers of the 
other units arise, leading to the potential instability of the 
control scheme [21]. 
 In this work, the instability issue is solved by considering 
the output of each torque-producing current controller as a 
linear combination of the voltage references belonging to all 
units. Referring to (14), this combination is defined as: 

    * * *
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F c v w v
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 Regarding the design of the k-unit controller gains, the 
same tuning procedures of the DFVC scheme for three-phase 
drives can be adopted, considering the k-set parameters of 
inductance (11) and resistance (12). Besides, the performance 
can be further improved if the mutual couplings among the 
sets (13) are compensated, using dedicated feed-forwards. 
Indeed, the current-couplings act as additive disturbances that 
are in any case compensated by the qsk-axis current controller. 

D. Voltage Decoupling Algorithm 

The output of the k-unit torque-producing current control 
consists of a reference combination of all units’ voltages, 
evaluated along the qsk-axis. 

 
Fig. 11. Rotating frames of the generic units k and z. 

 
Fig. 12. Computation of the duty-cycles for the VSI units. 

Therefore, a decoupling algorithm to extrapolate the k-unit 
qsk-axis reference voltage must be implemented. Compared to 
[26], the proposed decoupling solution can consider load-
angle values of the sets different from each other, allowing the 
implementation of torque-sharing strategies. 

Two generic unit k and z are initially considered. Based on 
the vector diagram shown in Fig. 11, the z-unit reference 
voltage along the qsk-axis can be expressed in terms of (dqsz) 
coordinates as: 
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Therefore, by replacing (28) in (27), the following equation is 
obtained: 
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  (29) 
where all the known components have been grouped as: 
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By merging (29) for all sets (k=1,2,…,n), and after 
performing several mathematical manipulations, the k-unit  
qsk-axis reference voltage is extrapolated as follows: 
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More details about the decoupling equation (31) are 
reported in the Appendix, together with the description of the 
decoupling coefficients s(k,k), s(k,z). Using (31), the reference 
voltages combination required by each DFVC scheme is 
satisfied, ensuring the direct and decoupled control of each set. 

λr

λsz

szd - axis

δsz
skd - axis

δsk

λsk

*
szv

sndq
*

,sn abcv  
*
,n abcd  

*
, snsn dqv

skdq
*

,sk abcv  
*
,k abcd  

*
, sksk dqv

1s

1sdq

1
1

ˆ
s




*
1,s abcv  

1PWM

*
1,abcd  1

*
1, ss dqv

1
1

ˆ
-s n


 

*
snF

*
skF

*
1sF

,dc nv

,dc kv

,1dcv
1abc

kabc

nabc

sk1ˆ
sk




sn1ˆ
sn




PWM k

PWM n

D
E
C
O
U
P
L
I
N
G

V
O
L
T
A
G
E

(31)Eq.

1
, sksk q -maxv

1
, sksn q -maxv

1
1, sks q -maxv



Besides, since the coefficients of (31) consider the status 
of each unit (8), the proposed decoupling algorithm is 
automatically configured after an open-three-phase fault. 
Finally, the k-unit qsk-axis reference voltage could be limited 
to the value 

1
, sksk q maxv   (Fig. 12), thus respecting the k-unit 

voltage limit (18). 
Once the k-unit reference voltages in (dqsk) coordinates are 

obtained, the inverse rotational- and Clarke- transformations 
(1) are applied, as shown in Fig. 12. However, to consider the 
application of the reference voltages in the next sample time 
instant (τ+1), the predicted position of the (dqsk) frame is used 
(Fig. 7). In this way, the execution delay of the digital 
controller is fully compensated, allowing high control 
performance over the whole speed range of the machine. 

E. Pulse-Width Modulation 

The VSI of each unit has its own PWM modulator, 
performing the energy conversion at a constant switching 
frequency. Therefore, starting from the k-unit reference 
voltages in (abc)k coordinates ൣ𝑣௦௞,௔௕௖

∗ ൧, the k-unit duty-cycles 
ൣ𝑑௞,௔௕௖

∗ ൧  are computed using the three-phase modulation 
techniques [37], [38], as shown in Fig. 12. In this work, the 
“MinMax” modulation has been implemented for all units. 

IV. EXPERIMENTAL VALIDATION 

The proposed control solution has been validated on a 
twelve-phase asymmetrical IM (Fig. 13), rated 10 kW at 200 
Hz (4 poles). The stator consists of four sets using full-pitch, 
1 slot/phase/pole windings, obtaining a quadruple-three-phase 
configuration [39]. The magnetic phase-shift between two 
consecutive sets is 15 electrical degrees, as shown in Fig. 14. 
The winding sets have identical stator parameters, as shown in 
Table I, listing the primary machine data. The coupling 
coefficients (8) and the parameters of the state-space model 
(10) are reported in Table II and Table III, respectively.  

 
Fig. 13. Twelve-phase IM prototype. 

 
Fig. 14. Asymmetrical quadruple-three-phase winding configuration. 

TABLE I.  DATA OF THE MACHINE UNDER TEST 

Electrical Data 

Phase number 12 (n = 4) 

Pole pairs p 2 

Rated power Pm,rated 10 kW 

Rated phase-voltage 115 V (rms) 

Rated current 10 A (rms) 

Rated frequency 200 Hz 

Machine Parameters 

Stator resistance Rsk (k=1,2,3,4) 145 mΩ 

Stator leakage inductance Llsk (k=1,2,3,4) 940 μH 

Rated magnetizing inductance Lm,rated 4.3 mH 

Rotor resistance Rr 45 mΩ 

Rotor leakage inductance Llr 235 μH 

Stator coupling factor ksk (k=1,2,3,4) 0.821 

Rotor coupling factor kr 0.948 

Overall leakage inductance Lσk (k=1,2,3,4) 1.16 mH 

Rated stator flux amplitude λs,rated 115 mVs 

TABLE II.  COUPLING COEFFICIENTS OF THE WINDING SETS 

Single set coefficient wz 

Unit z ON   (xf,z = 1) 0.237 

Unit z OFF (xf,z = 0) 0 

Coupling coefficient ck – Unit k ON (xf,k = 1) 

4 units ON (xf,z = 1, z =1,2,3,4) 0.711 

3 units ON 0.474 

2 units ON 0.237 

Only unit k ON (xf,z = 0, z ≠ k) 0 

TABLE III.  PARAMETERS OF THE K-SET STATE-SPACE MODEL 

Equivalent inductance Lk – Unit k ON (xf,k = 1) 

4 units ON (xf,z = 1, z =1,2,3,4) 1.83 mH 

3 units ON 1.61 mH 

2 units ON 1.39 mH 

Only unit k ON (xf,z = 0, z ≠ k) 1.16 mH 

Equivalent resistance Rk – Unit k ON (xf,k = 1) 

4 units ON (xf,z = 1, z =1,2,3,4) 300 mΩ 

3 units ON 266 mΩ 

2 units ON 231 mΩ 

Only unit k ON (xf,z = 0, z ≠ k) 197 mΩ 

Equivalent mutual reactance Mk – Unit k ON (xf,k = 1) 

4 units ON (xf,z = 1, z =1,2,3,4) (1.83ꞏωxy – 1.16ꞏωe) mΩ 

3 units ON (1.61ꞏωxy – 1.16ꞏωe) mΩ 

2 units ON (1.39ꞏωxy – 1.16ꞏωe) mΩ 

Only unit k ON (xf,z = 0, z ≠ k) (1.16ꞏωxy – 1.16ꞏωe) mΩ 

Mutual resistance of set k due to set z (z ≠ k) Pz 

Unit z ON   (xf,z = 1) 8.3 mΩ 

Unit z OFF (xf,z = 0) 0 mΩ 

Mutual reactance of set k due to set z (z ≠ k) Qz 

Unit z ON   (xf,z = 1) (-0.22ꞏωe) mΩ 

Unit z OFF (xf,z = 0) 0 mΩ 

 

A. Test Rig 

The machine has been mounted on a test rig for validation 
purposes. The rotor shaft has been coupled to a driving 
machine acting as a prime mover, as shown in Fig. 15. Due to 
the mechanical limitations of the test rig, the machine speed 
has been limited at 6000 r/m. The rotor mechanical position 
has been measured with an incremental encoder having a 
resolution of 1024 pulses/r. 
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Fig. 15. View of the machine under test (right) and driving machine (left). 

The power converter consists of custom-made power 
electronics building blocks (PEBBs) [40]. Each of these is a 
three-phase VSI based on the insulated-gate bipolar transistor 
(IGBT) modules (100 A, 1200 V). The VSIs are fed by a 
single dc source at 270 V. The switching frequency has been 
set at 4 kHz (dead-time of 1.5 μs), providing a scenario that is 
compatible with the industrial implementations. 

The digital controller is the dSPACE® DS1103 PPC 
Controller Board, using 4 kHz of sampling frequency (single-
edge PWM modulation). The control algorithm has been 
developed in the C-code environment. 

B. Experimental Results 

The experimental results are provided for the drive 
operation with both torque and speed control modes. The latter 
has been implemented using an outer PI controller, which 
provides the machine reference torque T*, while the driving 
machine behaves an inertial load. The balanced operation of 
the sets has been preliminarily tested, followed by the 
execution of the torque-sharing strategies. Experimental 
results are provided for the following tests: 

1) Torque control in generation mode 
2) Torque reversal 
3) Fault ride-through capability 
4) MTPV operation at deep flux-weakening 
5) Steady-state torque-sharing 
6) Sinusoidal torque-sharing 

 The dc-link voltage has been reduced at 100 V for the tests 
4) and 6). In this way, the flux-weakening operation with 
MTPV has been performed below the speed limit of the test 
rig. Finally, the amplitude limit of the units’ phase-currents 
has been set at Imax,k = 24 A (k=1,2,3,4), allowing a machine 
overload torque of 200 %. 

1) Torque in generation mode 
 The machine speed has been set at -6000 r/m, while the 
flux reference of the units has been set at the rated value (115 
mVs). The no-load condition has been initially tested. From a 
specific time instant onwards, the fast torque transient (10 
Nm/ms) from 0 to + 24 Nm (150 % of the rated torque in 
generation mode) has been performed, obtaining the results 
shown in Figs. 16 – 17.  
 Due to some asymmetries introduced from the process of 
machine manufacturing, the currents of the set 2 are more 
distorted compared to those of the other units. However, the 
decoupling algorithm mitigates this phenomenon without 
significant issues, as confirmed by Fig. 17.  
 The benefits of the proposed decoupling algorithm are 
highlighted by showing the results obtained with the 
conventional MS-based DFVC, whose execution scheme is 
shown in Fig. 18. Here, the output of the k-unit torque current 
controller is set equal to the qsk-axis reference voltage of the 
unit k, thus avoiding the implementation of the decoupling 
algorithm (Fig. 12). 

 
Fig. 16. Fast torque transient from no-load up to 150 % of the rated torque in 
the generation, at -6000 r/m. Ch1: is1-a (10 A/div), Ch2: is2-a (10 A/div), Ch3: 
is3-a (10 A/div), Ch4: is4-a (10 A/div). Time resolution: 5 ms/div. 

 

 
Fig. 17. Fast torque transient from no-load up to 150 % of the rated torque in 
the generation, at -6000 r/m. 

 
Fig. 18. Conventional MS-based DFVC scheme: the output of the k-unit 
torque controller is considered as the qsk-axis reference voltage of the unit k. 

 The phase-currents waveforms obtained with this control 
approach have been presented in [7], and shown here in  
Fig. 19. It is noted how the phase-currents of unit 2 are not 
sinusoidal. 
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Fig. 19. Phase-currents obtained by performing test 1) with the conventional 
MS-based DFVC scheme [7]. Ch1: is1-a (20 A/div), Ch2: is2-a (20 A/div), Ch3: 
is3-a (20 A/div), Ch4: is4-a (20 A/div). Time resolution: 5 ms/div. 

 Also, unbalances among the sets are noted since the 
amplitudes of the phase-currents are significantly different 
from each other. Compared to results obtained with the 
implementation of the decoupling algorithm (Fig. 16), a 
significant derating in the quality of the waveforms in no-load 
conditions is noted too. Finally, it is highlighted that such 
results were obtained by limiting the dynamic performance of 
the control loops, avoiding instability [21]. 

2) Torque reversal 
The machine speed has been kept at -6000 r/m. The fast 

torque reversal (10 Nm/ms) from – 24 Nm to + 24 Nm (150 
% of the rated torque) has been performed, obtaining the 
results of Fig. 20. Like the previous test, the flux reference of 
the units has been set at the rated value (115 mVs).  

In the motoring mode, the drive has operated under both 
the voltage and current constraints of the units. Indeed, the 
flux amplitudes have been controlled at a value of about 110 
mVs. Besides, the torque produced by each set has not 
satisfied the target (- 6 Nm), as zoomed in Fig. 21. However, 
in the generation mode, the voltages limit of the units has not 
been reached. Therefore, the DFVC scheme of each unit has 
been able to increase the flux amplitude of its set, allowing the 
satisfaction of the reference torque (6 Nm). 

Finally, it is noted the fast torque response of all units since 
the reversal has been performed in just 5 ms using only 4 kHz 
of switching/sampling frequency.  

3) Fault ride-through capability 
The drive has been operated with inverter 2 already 

turned-off. The same settings of the previous test in terms of 
machine speed and flux references have been used. The torque 
has been controlled at 10 Nm. From a specific time instant 
onwards, the inverter 3 has been turned-off, emulating the 
fault of a power module. The experimental results are shown 
in Figs. 22 – 23. 

It is noted how the healthy units exhibit sinusoidal currents 
(Fig. 22) that must increase to keep the machine torque 
constant. The healthy units compensate for the torque loss 
caused by the shut-off of the inverter 3 in about 3 ms. The 
torque-producing currents of the healthy sets exhibit a slight 
overshoot due to the turn-off dynamic of the inverter 3. This 
effect also causes a temporary increase in machine torque T, 
as shown in Fig. 23. 

Finally, thanks to the application of the decoupling 
algorithm, the current waveforms are less distorted than those 
obtained with the conventional MS-based DFVC scheme [7], 
as demonstrated in Fig. 24. 

 

 
Fig. 20. Torque reversal from 150 % rated torque in motoring to 150 % rated 
torque in the generation, at -6000 r/m. 

 
Fig. 21. Torque reversal from 150 % rated torque in motoring to 150 % rated 
torque in the generation, at -6000 r/m. Magnification of Fig. 20. 

4) MTPV operation at deep flux-weakening 
The deep flux-weakening operation with MTPV has been 

tested in closed-loop speed operation, and by reducing the dc-
link voltage (100 V) of the inverters. The flux references of 
the DFVC units have been set at the MTPA limit (154 mVs) 
[34], allowing at reaching the maximum machine torque (32 
Nm –  200 % overload). 

The experimental results for a step speed-reference from 0 
to 6000 r/m are shown in Fig. 25. Below the base speed, the 
torque limit of each set (8 Nm) depends only on the related 
inverter current limit (24 A).  

The flux-weakening operation starts at a speed of about 
1200 r/m, thus testing the quasi-constant power range of the 
machine [41]. The MTPV operation corresponds to the 
reaching of the load-angle limit for all sets. For safety, this 
limit has been set at 40 electric degrees (δmax,k, k=1,2,3,4) 
instead of the theoretical 45, avoid the machine pull-out. 

The MTPV operation starts at a speed of about 2300 r/m, 
thus testing the decreasing-power range of the machine [41]. 



 
Fig. 22. Shut-off of unit 3 with unit 2 already OFF at -6000 r/m with 10 Nm. 
Ch1: is1-a (10 A/div), Ch2: is2-a (10 A/div), Ch3: is3-a (10 A/div), Ch4: is4-a  
(10 A/div). Time resolution: 5 ms/div. 

 

 
Fig. 23. Shut-off of unit 3 with unit 2 already OFF at -6000 r/m with 10 Nm. 

Despite the high flux-weakening ratio (about 1/5), both the 
flux amplitude and load-angle values of each set are 
appropriately limited. Therefore, through this test, the 
maximum-torque per speed has been obtained, validating the 
machine controllability over the whole speed range. 

5) Steady-state torque-sharing 
The multi-three-phase machines are often employed in 

applications where power levels approach the megawatt. In 
these contexts, the full-load-tests of the machine become very 
hard to be performed since the prime mover is often not 
available. For this reason, regenerative tests can be performed, 
using back-to-back configurations [42]. Such configurations 
consist of operating some units in motoring and others in the 
generation, keeping the machine torque at zero. 

 
Fig. 24. Phase-currents obtained by performing test 3) with the conventional 
MS-based DFVC scheme [7]. Ch1: is1-a (20 A/div), Ch2: is2-a (20 A/div), Ch3: 
is3-a (20 A/div), Ch4: is4-a (20 A/div). Time resolution: 10 ms/div. 

 

 
Fig. 25. Closed-loop speed control with inertial load from 0 to 6000 r/m. 

In this way, if the units operate at their maximum power, 
only machine- and converter- losses are produced. In this 
work, the back-to-back configuration has been tested by 
performing torque-sharing strategies among the sets, as shown 
in Figs. 26 - 27. 

The same conditions of test 1) in terms of dc-link voltage 
and machine speed have been employed. The torque reference 
of the units 1 and 4 has been set at 6 Nm (150% rated torque 
in generation). Conversely, the torque reference of the units 2 
and 3 has been set at – 6 Nm (150% rated torque in motoring). 
It is noted how, although the electromagnetic power of each 
set is about 3.8 kW (absolute value), the machine 
torque/power is kept at zero. 



 
Fig. 26. Back-to-back configuration with overload 150 % at -6000 r/m.  
Ch1: is1-a (7.5 A/div), Ch2: is2-a (7.5 A/div), Ch3: is3-a (7.5 A/div), Ch4: is4-a  
(7.5 A/div). Time resolution: 5 ms/div. 

 

 
Fig. 27. Back-to-back configuration with overload 150 % at -6000 r/m. 

Compared to the previous tests, it is noted a derating of the 
quality of the waveforms, as confirmed in Figs. 26-27. Indeed, 
the back-to-back configurations lead to relevant distortion 
effects on the magnetomotive force at the machine airgap. 
However, through this test, the torque-sharing operation 
among the sets in steady-state conditions has been validated. 

6) Sinusoidal torque-sharing 
The full validation of the decoupling algorithm has been 

carried out through sinusoidal torque-sharing tests performed 
in deep flux-weakening. The dc-link voltage has been reduced 
at 100 V, while the mechanical speed has been initially set at 
-4000 r/m to avoid the MTPV.  

For each unit, a base reference torque of 1.5 Nm has been 
set. Besides, an oscillation having an amplitude of 3 Nm, and 
a frequency of 10 Hz has been added.  

 
Fig. 28. Sinusoidal torque-sharing in flux-weakening at -4000 r/m, 6 Nm. 
Ch1: is1-a (7.5 A/div), Ch2: is2-a (7.5 A/div), Ch3: is3-a (7.5 A/div),  
Ch4: is4-a (7.5 A/div). Time resolution: 50 ms/div. 

 

 
Fig. 29. Sinusoidal torque-sharing in flux-weakening at -4000 r/m, 6 Nm. 

The torque oscillations among the sets have been shifted 
each other in time, emulating a symmetrical four-phase 
system. In this way, while the sets’ torques have always been 
kept different from each other, their sum was constant (6 Nm). 
The obtained experimental results are shown in Figs. 28 - 29. 

It is noted how, at any moment, some units have been 
operated in generation mode, while the others have been 
operated in motoring mode. Although this test does not have 
a direct application, it has demonstrated the torque-sharing 
capability of the proposed solution in dynamic conditions. 
Indeed, the variables of each set in terms of flux amplitude, 
currents, and load-angle change sinusoidally. In detail, the 
flux amplitude oscillation of each set is generated by the 
DFVC scheme controlling it, allowing the respect of the 
voltage limit at any moment. 



 
Fig. 30. Sinusoidal torque-sharing with modular MTPV at -6000 r/m, 5 Nm. 
Ch1: is1-a (7.5 A/div), Ch2: is2-a (7.5 A/div), Ch3: is3-a (7.5 A/div),  
Ch4: is4-a (7.5 A/div). Time resolution: 50 ms/div. 

 

 
Fig. 31. Sinusoidal torque-sharing with modular MTPV at -6000 r/m, 5 Nm. 

Concerning Fig. 28, the oscillations of the phase-currents 
are similar to those of the radio waves using amplitude 
modulation. However, for each set, this oscillation (10 Hz) 
corresponds to a power of 1.2 kW (average value of -600 W). 

The torque-sharing capability has also been tested in 
MTPV operation. The machine speed has been set at  
-6000 r/m, while the overall torque reference has been initially 
kept at zero, performing the no-load operation. From a specific 
time instant onwards, the torque reference of the machine has 
been suddenly set to 5 Nm (-3.1 kW). Therefore, for each unit, 
a base reference torque of 1.25 Nm has been set. However, the 
sinusoidal torque-sharing operation has been enabled too. The 
torque oscillation of each unit has been set at  
2.5 Nm (1.6 kW) with a frequency of 10 Hz. The experimental 
results are shown in Figs. 30 - 31. 

It is noted how the torque reference of each set has not 
been fulfilled continuously. Indeed, the DFVC scheme of each 
unit has performed a proper saturation of its torque-producing 
current reference, thus limiting the load-angle to the MTPV 
value (δmax,k = 45 electrical degrees, k=1,2,3,4).  

It is highlighted the wide oscillation range of each set’s 
load-angle, from about 0 up to 45 electrical degrees. Besides, 
a significant angular difference among the stator frames of the 
units is obtained, up to 45 degrees (Fig. 31). Therefore, 
through this last test, the effectiveness of the proposed 
decoupling algorithm has been fully demonstrated. 

V. CONCLUSION 

The paper proposes a control scheme for the modular 
regulation of the stator flux and torque of a multi-three-phase 
induction machine (IM). Through the direct control of the 
torque contribution of each set, the proposed solution allows 
the implementation of power-sharing strategies. Besides, the 
application of an innovative decoupling algorithm solves any 
instability issue introduced by the modular approach (multi-
stator). The proposed control scheme can deal with the voltage 
and current constraints of voltage source inverters feeding the 
sets, allowing the deep flux-weakening operation. Also, the 
direct limitation of each set’s load-angle allows the 
implementation of modular maximum-torque per voltage 
(MTPV) strategies, avoiding the machine pull-out. 

The performance of the proposed control solution has been 
validated on a twelve-phase squirrel-cage IM prototype, using 
a quadruple-three-phase configuration of the stator winding. 
The experimental results demonstrate the feasibility of the 
proposed control scheme both in regular and faulty operation 
(open-winding faults), as well as the torque-sharing capability 
in deep flux-weakening operation with MTPV. Therefore, the 
adding value of this paper to the existing literature can be 
summarized as follows: 

 A new decoupling algorithm has been introduced, 
allowing control stability and high regulation 
performance if power-sharing strategies among the 
sets are performed. 

 A control solution performing a direct and independent 
limitation of the load-angle of each set has been 
implemented, allowing modular MTPV strategies at 
flux-weakening. 

 The power-sharing strategies among the units are 
performed through the modular torque control, where 
the torque produced by each set is linearly controlled. 

APPENDIX 

1) Computation of the k-set torque contribution Tk 
The torque contribution of each three-phase winding set is 

computed by performing the power balance of the machine. 
The IM model (2), (4)-(6) in stationary coordinates (αβ) is 
considered, leading to as follows: 
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Based on (32), (33), the electric power Pe of the machine 
(instantaneous) is computed as: 
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  (36) 
where the coefficient 3/2 derives from the amplitude-invariant 
propriety of the Clarke transformation (1), while the Joule 
losses PJ, the magnetizing power Pmag, and mechanical power 
Pm are computed as: 
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 From the mechanical power Pm (37), the machine torque T 
is obtained as: 
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where, as for a 3-phase IM, it is noted how it depends on the 
cross-product (∧) between the rotor vectors of current and flux 
linkage. By replacing (34) in (38), the torque expression 
becomes: 
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  (39) 
where the summation index has been formally changed from 
z to k. However, according to (35), the first term of the outer 
product can be written as: 
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Therefore, by replacing (40) in (39), the machine torque is 
computed as follows: 
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where the expression of the k-set torque contribution Tk  
(k = 1,2,..,n) is extracted directly as: 
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2k sk skT p i       (42) 

 Finally, since the cross-product does not depend on the 
frame in which the vectors are referred, the k-set torque 
contribution (42) can be also expressed as in (43), thus 
proving (7). 
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2) Decoupling equation 
The coefficients of the decoupling equation (31) are 

computed as follows: 
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where: 
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It is highlighted how the computation of the decoupling 
coefficients (46)-(48) does not require the evaluation of the 
load-angles of the sets for the next sample time instant τ+1. 
Indeed, if considering two generic sets k and z, the difference 
of the related load-angles in terms of sine and cosine can be 
computed as: 
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where it is shown how the decoupling coefficients can be 
computed using the trigonometric coordinates of the positions 
of the stator flux vectors for the next sample time instant τ+1, 
and thus obtained from the flux observers of the units directly 
(Fig. 7). In the following, the computation of the decoupling 
equation (31) for some practical cases is shown, facilitating 
the understanding. 

a) Balanced operation of units 
 Multi-three-phase machines are often operated without 
performing torque-sharing operations among the units. In this 
case, the load-angles of the sets are equal to each other, 
leading to the following decoupling equation: 
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that correspond to the solution implemented in [26]. Indeed, 
the decoupling coefficients (44)-(48) and the variables in 
(30) are simplified as: 
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 * *
, ,sk sksk q sk qC F  (52) 

b) Dual-three-phase configuration 
Based on the literature [1]–[3], the most employed multi-

three-phase configuration in the industry is the dual-three-
phase (n = 2). By denoting with δ the difference between the 
load-angle of set 1 to that of set 2 (δs2 - δs1), the qsk-axis 
reference voltage of each unit k (k =1,2) is computed as: 
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where: 
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The decoupling coefficients (44), (45) are computed as: 
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since (46)-(48) becomes: 
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