76 research outputs found

    Alkaline-assisted Microwave Pretreatment of Tetraselmis suecica Biomass for Fed-batch Enzymatic Hydrolysis

    Get PDF
    A two-part study on pretreatment and fed-batch enzymatic hydrolysis of pretreated Tetraselmis suecica using a high initial biomass concentration was conducted. First, the effect of different pretreatment processes, i.e. microwave (MC), dilute alkaline (AK), and microwave-alkaline assisted (MAK) pretreatment, on enzymatic hydrolysis of T. suecica biomass was evaluated. Furthermore, high initial biomass concentration enzymatic hydrolysis improvement via a fed-batch strategy was performed. Among the pretreatments tested, the MAK pretreatment produced the highest sugar concentration at 9.83 ± 0.24 mg/mL, corresponding to a conversion yield of up to 85.58% of carbohydrate content available in the pretreated biomass. The solid fraction generated after pretreatment was characterized using Fourier transform infrared (FTIR) spectroscopy. The FTIR analysis revealed a significant change in the functional hydroxyl and acetyl groups of the biomass, which is favorable for enzymatic hydrolysis. Introducing an initial microalgal biomass concentration beyond 15% (w/v) exhibited a low enzymatic hydrolysis yield. The fed-batch enzymatic hydrolysis strategy of the MAK pretreated T. suecica was further investigated by adding the substrate at different time intervals. The findings indicate that the fed-batch operation system could enhance sugar production and enzymatic hydrolysis yield one-fold

    Recycling of Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent Chemicals and Biomass Pretreatment Waste

    Get PDF
    Deacetylation/dilute alkaline pretreatment followed by mechanical refining (DMR) has been proven as an effective process for biomass sugar liberation without severe chemical modification to lignin. Previous research has been focused on optimizing deacetylation conditions, reducing energy consumptions in mechanical refining, and improving sugar yields and titers in enzymatic hydrolysis. To successfully commercialize this process, another critical challenge is to develop a robust process to balance water usage, recover spent chemicals, and utilize waste carbons from the dilute deacetylation waste liquor. In this work, a new process modification and strategy is pioneered to recycle and reuse the weak black liquor (WBL) in order to reduce water, chemical, and energy usage while increasing both inorganic and organic contents in the WBLto facilitate downstream processing. Results suggest that the accumulation did not lower acetyl and lignin removal in alkaline pretreatment, resulting in comparable sugar yields in enzymatic hydrolysis. Sodium and potassium were found to be the two most important inorganic compounds in the recycled WBL. Moreover, the accumulated sodium and phenolic compounds did not inhibit the downstream ethanol fermentation processes. Finally, techno-economic analysis (TEA) showed a decrease in the minimum ethanol selling price (MESP) by ~5 to 15 cents per gallon of ethanol resulting from the inclusion of the recycling of weak black liquor when compared to a conventional non-recycling process

    Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO)

    Get PDF
    The aim of this study was to evaluate for the first time the effect of a thermo-alkaline pretreatment with lime (CaO) on microalgae anaerobic digestion. The pretreatment was carried out by adding different CaO doses (4 and 10%) at different temperatures (room temperature (25 °C), 55 and 72 °C). The exposure time was 4 days for pretreatments at 25 °C, and 24 h for pretreatments at 55 and 72 °C. Following, a biochemical methane potential test was conducted with pretreated and untreated microalgae. According to the results, the pretreatment enhanced proteins solubilisation by 32.4% and carbohydrates solubilisation by 31.4% with the highest lime dose and temperature (10% CaO and 72 °C). Furthermore, anaerobic digestion kinetics were improved in all cases (from 0.08 to 0.14 day- 1 for untreated and pretreated microalgae, respectively). The maximum biochemical methane potential increase (25%) was achieved with 10% CaO at 72 °C, in accordance with the highest biomass solubilisation. Thus, lime pretreatment appears as a potential strategy to improve microalgae anaerobic digestion.Peer ReviewedPostprint (author's final draft

    preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning

    Get PDF
    Abstract Vineyard pruning is a potential lignocellulosic feedstock for bioethanol production from agricultural woody residues, due to its high sugar content and ready availability in whole Europe. Ethanol production from lignocellulosic biomass requires a pretreatment step and then enzymatic hydrolysis process to release sugars for fermentation to ethanol. In this work, alkaline pretreatment with NaOH on vineyard residues was investigated on laboratory scale. The raw material was firstly characterized in order to determine cellulose, hemicellulose and lignin content, using the standard laboratory analytical procedures for biomass analysis provided by the National Renewable Energy Laboratory (NREL). Then, based on Response Surface Methodology tool (RSM), a Box-Behnken model was chosen to define a design of experiments (DoE) in terms of the three independent variables that influence the process: the NaOH concentration, the reaction time and the temperature of the pretreatment process. According to the design, 15 samples of raw material were submitted to alkaline pretreatment and subsequent enzymatic hydrolysis and the glucose yield from whole process was calculated. The statistical optimization was carried out with Minitab 17 software, in order to determine the best operative pretreatment condition by maximizing the glucose yield from enzymatic hydrolysis. Results show that the best glucose yield was obtained at the highest sodium hydroxide concentration and temperature of the reaction; this condition allowed to achieve very significant glucose yield thanks to lignin removal performed with the pretreatment

    Effects of Sodium Hydroxide Pretreatment on Structural Components of Biomass

    Get PDF
    Pretreatment is a unit operation in the conversion of biomass to valuable products that utilizes various combinations of conditions, including chemicals, heat, pressure, and time, to reduce the recalcitrance of lignocellulose. Many such pretreatments have been developed over the years, as the operating conditions can be adapted so that lignocellulose is modified in ways unique to each pretreatment. By tailoring pretreatment conditions to achieve these modifications, the types of final products produced can be controlled. The purpose of this review is to provide a consolidated source of information for sodium hydroxide effects on lignocellulose. The structural characteristics of lignocellulose and the alterations that occur due to the application of sodium hydroxide are detailed. This review also includes a brief description of the chemical reaction mechanism that ensues during the pretreatment. Lastly, the results of studies that utilized sodium hydroxide pretreatment are discussed

    Influence of Soaking Time and Sodium Hydroxide Concentration on the Chemical Composition of Treated Mango Seed Shell Flour for Composite Application

    Get PDF
    Lignin and hemicelluloses are the major impurities to be removed in natural fibers for it to be suitable in composite application and other uses. This research is based on evaluating the influence of soaking time and sodium hydroxide concentration on the chemical composition of treated mango seed shell (MSSF) by immersing the MSSF in NaOH solution at concentration of 2.5 - 7.5 wt % and soaking time of 2-6 hr, in order to decrease the lignin and hemicellulose content while increasing its cellulose content. The optimum conditions obtained for concentration and soaking time of NaOH were 6.09 % and 5.22 hr, respectively. At these conditions, cellulose content was increased to 94.8002%, while the hemicelluloses and lignin content were reduced to 2.2779% and 0.508502%, respectively. Theprocess parameter of MSSF was optimized using central composite design (CCD) to predict the cellulose, hemicelluloses, and lignin content. The quadratic model of response surface model (RSM) was adopted for the prediction of cellulose, hemicelluloses, and lignin content. The maximum error between the predicted using CCD and experimental results was less 0.38%. These errors in variation for both the predicted by the RSM and the actual gave good alignment with both results. Therefore, at these treatment conditions, MSSF can be utilized for composite application and other industrial purpose.Keywords: NaOH, Chemical Modification, Mango Seed Shell Flour, Chemical Compositio

    Optimisation of the production of fermentable monosaccharides from algal biomass grown in photobioreactors treating wastewater

    Get PDF
    Producción CientíficaBiomass grown in wastewater treatment photobioreactors is a cheap raw material with high contents of carbohydrates, proteins and lipids. This work studies the production of fermentable monosaccharides from three biomasses grown in piggery wastewater (P), domestic wastewater (W) and synthetic medium (S) by applying chemical pretreatment and enzymatic hydrolysis, using a Taguchi design. ANOVA identified temperature, chemical reagent type and chemical reagent concentration as significant operational parameters. However, the biomass concentration, pretreatment time, enzyme dosage and enzymatic hydrolysis time had no remarkable effect. The bacterial content of the biomass had no relevant impact on carbohydrate and protein solubilisation but had a remarkable effect on the degradation of the released carbohydrates (57, 60 and 37% for P, W and S), while also affecting lipid solubilisation. Pretreatment with HCl 2 M at 120 °C resulted the optimal conditions, achieving a monosaccharide recovery of 53, 59 and 80% for P, W and S biomasses, respectively.Gobierno regional de Castilla y León (UIC 071, CLU 2017-09 and VA080G18)Ministerio de Ciencia, Innovación y Universidades (project CTQ2017-84006-C3-1-R)Unión Europea - FEDER (CLU 2017-09 and CTQ2017-84006-C3-1-R

    Microbial production of 2,3-butanediol from rice husk using anaerobic Clostridium species

    Get PDF
    Interest in the area of biomass based-product production is increasing all over the world due to the environmental challenges posed by fossil fuel and fear of its extinction. Production of biofuel and other compounds especially from agricultural waste can reduce these environmental problems because of its sustainability and environmentally friendliness. One of the major petrochemical product widely used in many industries is 2,3-butanediol and was found to be produced from agricultural wastes by microorganisms. Therefore, Microbial production of 2,3-butanediol from rice husk using Clostridium species was investigated in this research. Structural composition of the rice husk was determined before and after pretreatment. Hemicellulose and lignin content of rice husk was determined after extraction while cellulose was determined as the difference from the extractives, hemicelluloses and lignin. Dilute (2%) NaOH was used for the pretreatment of rice husk. Hydrolysis was carried out using Aspergillus niger and reducing sugar released was determined using standard method with UV-VIS spectrophotometer. Clostridium species was isolated from sugarcane bagasse, identified using basic morphological and molecular biology techniques. The fermentation of rice husk was performed using the Clostridium species. Fermentation by-product was determined using Gas Chromatography Mass-spectrometry. Cellulose content increased from 32% before pretreatment to 53.3% after pretreatment, lignin increased from 8.4% before pretreatment to 30.7% after pretreatmemt and hemicellulose decreased from 30% before pretreatment to 8% after pretreatment. A total of 1.05 g/l of reducing sugar was released after enzymatic hydrolysis of the rice husk with Aspergillus niger. Alcohol 2,3-butanediol (0.6%) and Furfuryl alcohol (0.45%) were detected in the by-product of fermentation. Other compounds detected are fatty acids that ranges from C16 to C25 with 9,12-Octadecanoic acid as the major fatty acid. From the results of this work, Rice husk was found to have substantial amount of sugar (cellulose and hemicelluce) that can be converted to valuable product including 2,3-butanediol. Keywords: Biofuel, Bio-refinary, Cellulose, Clostrudium, fermentation
    • …
    corecore