1,888 research outputs found

    Press Dewatering of Sludge with Applications of an Electric Field

    Get PDF
    In the paper industry today, there is a rising concern over the question of what to do with the paper mill sludge. Although in the past most of the sludge was sent to a landfill, this disposal method is becoming less and less acceptable due to increasing environmental concerns, decreasing landfill space and increasing costs. Since sludge contains a large fraction of water, one of the alternatives is to increase the dewaterability of the sludge through the use of electrokinetic forces. Increased dewatering of the sludge would allow for more economical alternatives to sludge disposal, such as incineration, as well as decrease the sludge handling, transportation, and disposal costs by reducing both volume and weight. The main objective of this thesis was to determine if the application of an electric current through a sludge press would increase the amount of dewatering in the sludge. A simulated press that allowed for the sludge to be pressed in-between two charged screens and water to be collected from both the top and bottom of the press was designed and constructed. During experimentation, drainage amounts and final sludge consistency was collected under varying voltage applications and compared to a control run with no voltage. From the results, it could be concluded that the application of an electric field did indeed help increase the dewaterability of the sludge. The results also show that ion migration does take place in the sludge with positively charged particles carrying water molecules towards the negatively charged screen. Further studies in applying this concept at higher pressing consistencies as well as other applications is recommended

    The Impact of Phosphorous Species on Dewaterability of Wastewater Solids

    Get PDF
    Phosphorus regulations are causing Water Resource Recovery Facilities (WRRFs) to implement new technologies to remove phosphorus (P) before they discharge liquid effluent. Enhanced Biological Phosphorus Removal (EBPR) is often employed to remove P from water. However, sludges from EBPR plants have shown decreases in dewaterability soon after EBPR was initiated. This decline in dewaterability is not well understood, nor is the best way to improve the dewatering EBPR sludge. Specifically, the role of different P species on sludge dewaterability is not well understood. Several laboratory experiments were conducted at the Marquette University Water Quality Center with the following objectives: i) determine the impact of P speciation on dewaterability of various sludges, ii) determine an effective method for converting non-reactive P to reactive P in sludge, and iii) determine the impact of acid treatment and decanting on anaerobic digester dewaterability. P speciation and capillary suction time (a measurement of dewaterability) of sludge were the main characteristics measured in this research. A survey of various sludges from full-scale WRRFs was conducted and revealed that particulate P correlated to poor dewaterability in undigested sludges. Lab-scale anaerobic digesters were fed acid pretreated sludge to determine the impact of pretreatment and P species on the dewaterability of anaerobic digester biosolids. Acid pretreatment did not significantly affect dewaterability relative to control digesters that received untreated sludge. Centrate reactive P, which would contain orthophosphate, was correlated to poor dewaterability in anaerobic digester biosolids. It was suspected that orthophosphate reacted with divalent cations and increased the monovalent to divalent (M/D) cation ratio. The M/D ratio was previously suggested to correlate to dewaterability. Indeed, results from these lab-scale studied revealed that an increase in M/D ratio correlated with higher CST values, i.e. worse dewaterability

    The Sludge Dewaterability in Advanced Wastewater Treatment: A Survey of Four Different Membrane BioReactor Pilot Plants

    Get PDF
    The wasted activated sludge dewaterability represents a major concern for Wastewater Treatment Plants (WWTPs) managers. Indeed, whereas the dewatered sludge could represents a re-usable matrix, the principal drawback related to the wasted sludge dewaterability is the high water content due to the presence of extracellular polymeric substances (EPS) that allow the trapping of water molecules within the bio sludge flocs. In order to provide an outlook of the dewaterability features of activated sludge derived from advanced WWTP, the present research reports a long term survey (over two years) aimed at assessing the principal dewaterability parameters of the sludge wasted from different Membrane BioReactor pilot plants

    Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing

    Get PDF
    Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features

    Waste activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems

    Get PDF
    Sludge dewatering represents, nowadays, one of the greatest operational cost to wastewater treatment cycle. Physical\u2013chemical and biological parameters are recognized to influence the sludge dewaterability. However, many authors agree in identifying the sludge origin as one of the main aspect involved in sludge dewaterability. Indeed, the sludge origin such as the processes involved in liquid\u2013solid separation, seriously affect the sludge features. In order to elucidate the key factors influencing the dewaterability process, the present work is aimed to investigate the influence of the treatment plant lay-out on sludge dewaterability. The analyzed sludge samples were derived from four conventional activated sludge and two membrane bioreactor wastewater treatment plants. Experimental investigation was focused to highlight difference in sludge dewaterability derived from the application of European Standards adopted for sludge characterization. The achieved results confirmed the complexity of the inter-relationships between many factors affecting the sludge dewaterability

    The sludge dewaterability in membrane bioreactors

    Get PDF
    The influence of the sludge origin on the dewaterability features has been investigated by comparing the experimental results of six membrane bioreactor pilot plants with different configurations. The capillary suction time (CST) and the specific resistance to filtration (SRF), identified as representative of sludge dewaterability features, were measured. The results were related to operational parameters, such as extracellular polymeric substances (EPS) and soluble microbial product (SMP), influent salinity and hydrocarbon, in order to elucidate the influence exerted on the dewaterability. Furthermore, the effect of biofilm and suspended biomass was also investigated. The results showed that during the experimentation carried out with salt and hydrocarbon the sludge dewaterability features significantly worsened (CST above 120 s and SRF above 20 * 1012 m kg-1). Furthermore, the sludge derived from the anoxic reactor resulted as the most affected by EPS and SMP concentration

    Digested sludge quality in mesophilic, thermophilic and temperature-phased anaerobic digestion systems

    Get PDF
    Anaerobic digestion (AD) technology is commonly used to treat sewage sludge from activated sludge systems, meanwhile alleviating the energy demand (and costs) for wastewater treatment. Most often, anaerobic digestion is run in single-stage systems under mesophilic conditions, as this temperature regime is considered to be more stable than the thermophilic one. However, it is known that thermophilic conditions are advantageous over mesophilic ones in terms of methane production and digestate hygienisation, while it is unclear which one is better concerning the digestate dewaterability. Temperature-phased anaerobic digestion (TPAD) is a double-stage AD process that combines the above-mentioned temperature regimes, by operating a thermophilic digester followed by a mesophilic one. The aim of this study is to compare the digestate quality of single-stage mesophilic and thermophilic AD and TPAD systems, in terms of the dewaterability, pathogenic safety and lower calorific value (LCV) and, based on the comparison, consider digested sludge final disposal alternatives. The research is conducted in lab-scale reactors treating waste-activated sludge. The dewaterability is tested by two methods, namely, centrifugation and mechanical pressing. The experimental results show that the TPAD system is the most beneficial in terms of organic matter degradation efficiency (32.4% against 27.2 for TAD and 26.0 for MAD), producing a digestate with a high dewaterability (8.1–9.8% worse than for TAD and 6.2–12.0% better than for MAD) and pathogenic safety (coliforms and Escherichia coli were not detected, and Clostridium perfringens were counted up to 4.8–4.9 × 103, when for TAD it was only 1.4–2.5 × 103, and for MAD it was 1.3–1.8 × 104), with the lowest LCV (19.2% against 15.4% and 15.8% under thermophilic and mesophilic conditions, respectively). Regarding the final disposal, the digested sludge after TAD can be applied directly in agriculture; after TPAD, it can be used as a fertilizer only in the case where the fermenter HRT assures the pathogenic safety. The MAD digestate is the best for being used as a fuel preserving a higher portion of organic matter, not transforming into biogas during AD.This research was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no 676070. This communication reflects only the authors’ view and the Research Executive Agency of the EU is not responsible for any use that may be made of the information it contains.Peer ReviewedPostprint (published version

    Oxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterability

    Get PDF
    The enhancement in dewaterability of waste activated sludge (WAS) by oxidative treatment using thermally- and alkali-activated persulfates (i.e., peroxymonosulfate (PMS) and peroxydisulfate (PDS)) was studied with two indices representing dewaterability change, i.e., centrifuged weight reduction (CWR) and standardized-capillary suction time (SCST). The tested conditions include 50 ??C/PMS, 50 ??C/PDS, 80 ??C/PMS, and 80 ??C/PDS as thermally-activated persulfate systems and NaOH/PMS, NaOH/PDS, KOH/PMS, and KOH/PDS as alkali-activated persulfate systems. The oxidation by activated persulfates caused the disintegration of bacterial cells and extracelluar polymeric substance (EPS) of WAS, affecting the sludge dewaterability. The highest dewaterability was found at the KOH/PDS treatment in CWR and at the 80 ??C/PDS treatment in SCST. The EPSs were stratified as soluble, loosely-bound (LB) and tightly-bound fractions, and contents of protein and polysaccharide in each fraction were measured to characterize the EPS matrix before and after treatments. The statistical analysis of the relationship between EPS character and dewaterability indicated that the protein content in LB-EPS was the dominant negative factor for the dewaterability represented by SCST, whereas the polysaccharide content in soluble-EPS was identified as the dominant positive factor for the dewaterability by CWR.ope

    Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate.

    Full text link
    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0-100 mg/g total solids (TS)) and persulfate (0-1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0-100 mg/g TS) and hydrogen peroxide (HP) (0-1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000

    Dual-conditioning of Sludge using Chitosan and Metal Cations

    Get PDF
    Sludge dewatering is important in sludge management and disposal. In practice, chemical conditioners are often introduced to aid sludge dewatering. This study investigated the simultaneous application of chitosan and metal cations as dual-conditioners to improve sludge dewaterability. The dewatering performance of sludge was evaluated using three common measurements, i.e. capillary suction time, specific resistance to filtration, and moisture content of the filtered sludge cake. The effectiveness of metal cations in sludge conditioning and dewatering was found, in ascending order, to be Na+ < K+ ≈ Mg2+ < Ca2+ < Al3+ < Fe3+. Dual-conditioning using chitosan and metal cations further enhanced dewaterability. Cations may have significant effects on sludge conditioning by neutralization of negative surface charges, bridging of floc components, and the salting out effect, leading to improved dewaterability when used in conjunction with chitosan
    corecore