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ABSTRACT 

THE IMPACT OF PHOSPHOROUS SPECIES ON DEWATERABILITY OF 

WASTEWATER SOLIDS 

 

 

Erik Anderson 

 

Marquette University, 2018 

 

Phosphorus regulations are causing Water Resource Recovery Facilities (WRRFs) to 

implement new technologies to remove phosphorus (P) before they discharge liquid 

effluent.  Enhanced Biological Phosphorus Removal (EBPR) is often employed to 

remove P from water.  However, sludges from EBPR plants have shown decreases in 

dewaterability soon after EBPR was initiated. This decline in dewaterability is not well 

understood, nor is the best way to improve the dewatering EBPR sludge. Specifically, the 

role of different P species on sludge dewaterability is not well understood. Several 

laboratory experiments were conducted at the Marquette University Water Quality Center 

with the following objectives: i) determine the impact of P speciation on dewaterability 

of various sludges, ii) determine an effective method for converting non-reactive P to 

reactive P in sludge, and iii) determine the impact of acid treatment and decanting on 

anaerobic digester dewaterability. P speciation and capillary suction time (a measurement 

of dewaterability) of sludge were the main characteristics measured in this research. A 

survey of various sludges from full-scale WRRFs was conducted and revealed that 

particulate P correlated to poor dewaterability in undigested sludges. Lab-scale anaerobic 

digesters were fed acid pretreated sludge to determine the impact of pretreatment and P 

species on the dewaterability of anaerobic digester biosolids. Acid pretreatment did not 

significantly affect dewaterability relative to control digesters that received untreated 

sludge. Centrate reactive P, which would contain orthophosphate, was correlated to poor 

dewaterability in anaerobic digester biosolids. It was suspected that orthophosphate 

reacted with divalent cations and increased the monovalent to divalent (M/D) cation ratio. 

The M/D ratio was previously suggested to correlate to dewaterability. Indeed, results 

from these lab-scale studied revealed that an increase in M/D ratio correlated with higher 

CST values, i.e. worse dewaterability.  
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1 INTRODUCTION 

 

 

1.1 Motivation 

Phosphorus (P) is a valuable commodity due to its need as a fertilizer, but an over-

abundance of P in wastewater effluent can lead to eutrophication (Mayer et al. 2013). 

Stricter effluent limits on P are forcing water resource recovery facilities (WRRFs) to 

consider technologies to remove P from their effluent (Wisconsin DNR 2010). Enhanced 

biological phosphorous removal (EBPR) is one technology that can aid in reducing P 

from liquid effluent. The sludge generated from EBPR, also known as Bio-P solids, carry 

high amounts of P in their cell structure.  It has been observed at full-scale WRRF 

facilities that, when EBPR is implemented, dewaterability of wastewater solids has 

decreased (Higgins et al. 2014).  A decline in dewaterability is a major issue for WRRFs 

because polymer costs increase as dewaterability decreases.  

Phosphorus-accumulating organisms (PAOs) are bacteria that perform EBPR.  

Soluble phosphate (PO4
3-), is taken up into the organism and converted to polyphosphate, 

a form of P that is not as reactive as phosphate. Wastewater solids that contain these PAO 

organisms have high amounts of P.  If the P in the wastewater solids could be converted 

to soluble phosphate and removed prior to anaerobic digestion, then P possibly could be 

recycled as a fertilizer and the dewaterability of the anaerobic digester effluent solids 

could potentially improve. While phosphate is suspected to negatively impact 

dewaterability (Higgins et al. 2014), it is possible that other P species, such as particulate 

P, could also impact dewaterability, but, to the author’s knowledge, no research has been 

done to determine the impact of various P species on dewaterability. Research is required 
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to better understand how altering and potentially removing P species could impact 

dewaterability and potentially reduce dewaterability costs. 

 

1.2 Objectives 

The goal of this research was to investigate the impact of P speciation in wastewater 

solids samples on dewaterability and to determine if an anaerobic digestion pretreatment 

method to reduce P content could improve dewaterability of digester effluent samples.  It 

is not clearly understood why bio-P sludges have poorer dewaterability. The specific 

objectives of this research were to: 

• Determine the impact of P speciation on dewaterability of available unthickened 

sludges from full-scale WRRFs specifically including sludge from the Bio-P 

process 

• Determine the impact of acid pretreatment followed by replacement of centrate 

with de-ionized water on downstream anaerobic digester biosolids dewaterability 

• Determine the impact of P speciation on anaerobic digester biosolids 

dewaterability 

• Determine the impact of anaerobic digestion on P speciation 

 

1.3 Approach 

Primary sludge, waste activated sludge (WAS), and bio-P sludge were collected 

from four full-scale WRRFs. The sludge samples were characterized for four different P 

species as described in Section 3.1: i) centrate reactive P (cRP), ii) centrate non-reactive 
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P (cNRP), iii) particulate reactive P (pRP) and iv), particulate non-reactive P (pNRP). 

Volatile solids (VS), total solids (TS), monovalent cations, and divalent cations were also 

measured. In addition, dewaterability was quantified by capillary suction time (CST).  

Lab-scale anaerobic digestion experiments were conducted to determine how P 

species and other sludge properties correlated to the dewaterability of anaerobic digester 

effluent biosolids. One set of digesters was fed primary sludge and another set was fed a 

sludge blend that contained Bio-P sludge. Each set included digesters fed acid pre-treated 

sludge for which feed sludge was mixed with acid to alter P speciation as well as control 

digesters fed conventional sludge that was not pretreated (Lhao, Mavinic, and Koch, 

2003). Microsoft Excel and Graphpad Prism (Graphpad Software Inc., CA, USA) were 

used to conduct linear regressions and determine correlations between sludge 

characteristics, including P species, and dewaterability. Finally, the impact of anaerobic 

digestion on P speciation was determined.  

 

1.4 Thesis Structure 

 A literature review on relevant sludge properties that affect dewaterability is 

presented in Chapter 2.  The experimental approach and methods are presented in 

Chapter 3. The results and discussion are found in Chapter 4. Finally, the summary of key 

findings and recommendations for future work are shown in Chapter 5.  Appendices are 

attached with supporting graphics and data.  Appendix A contains a graphic explaining P 

speciation and appendices B-E contain supporting data and graphs for discussion in 

Chapter 4.  
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2 LITERATURE REVIEW 

 

 

2.1 Goals of Biosolids Handling 

Wastewater solids are a byproduct of wastewater treatment.   The United States 

Environmental Protection Agency estimated that over 8 million dry tons of biosolids 

were produced in the US in 2000 (U.S. Environmental Protection Agency 1999).  The 

handling of wastewater solids at a WRRF can range from 25%-50% of the operational 

cost (Batstone, Darvodelsky, and Keller 2014).  At such a large portion of operating 

costs, there is a large financial incentive to reduce the costs associated with biosolids 

handling.  Finding ways to reduce the volume of biosolids has been the main method to 

reduce solids handling costs (Tchobanoglous et al. 2003). Biosolids volume reduction can 

be achieved through anaerobic digestion as well as thickening and dewatering. 

 Anaerobic digestion is a solids handling process whereby sludges generated from 

primary and secondary treatment processes are placed in an anaerobic environment with 

microbes that convert a portion of the organic material to biogas.  Anaerobic digestion 

has been reported to reduce total solids by as much as 50% to 60% (Appels et al. 2008).  

The effectiveness to stabilize sludge, reduce odor, and reduce sludge volume has made 

anaerobic digestion a common process in the United States, with over 1200 digesters 

operating at WRRFs across the country (Edwards, Othman, and Burn 2015).  As an 

additional benefit, methane is created during the anaerobic digestion process which 

facilities can use for energy recovery, typically as electricity or heat (Batstone, 

Darvodelsky, and Keller 2014).  While some solids are destroyed and converted to biogas 
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during digestion, some undigested biosolids still remain that must be handled and 

transported off-site.  

 Thickening and dewatering are processes used to remove water from sludge.  

Thickening generally describes removing water from sludge with the product being a 

pumpable liquid. Thickening is often achieved using gravity thickeners, gravity belt 

thickeners or dissolved air flotation. Influent digester solids are typically thickened to be 

between four and six percent total solids.  Dewatering generally describes the process of 

removing water from sludge with the product being a solid-like cake with final solids 

concentration of 15% or greater. Dewatering commonly occurs via belt filter presses or 

centrifuges (Tchobanoglous et al. 2003).  Dewatering aids such as polymers are used with 

thickening and dewatering processes to alter the characteristics of the sludge to allow 

greater water removal (Reynolds and Richards 1996).  Polymers can be very effective at 

increasing the amount of water removed, but some WRRFs spend hundreds of thousands 

of dollars a year to purchase the polymer (McNamara and Lawler 2008). Polymer 

demand is impacted by the sludge characteristics that affect dewaterability. 

 

2.2 Wastewater Solids Characteristics that Affect Dewaterability 

Many characteristics of wastewater solids affect dewaterability, and not one 

characteristic completely governs dewaterability.  The monovalent to divalent (M/D) 

cation ratio, floc structure, particle size distribution, sludge type, and characteristics of 

extracellular polymeric substances (EPS) have all been investigated for their impacts on 

dewaterability (Neyens et al. 2004). Yet no consensus has been reached regarding the 
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impacts of a given characteristic.  Indeed sludge is a complex matrix, and in specific 

cases, certain factors are correlated to dewaterability for one type of sludge, but the 

correlation was not found when considering other sludge types (Poxon and Darby 1997). 

The following characteristics have been studied in the greatest detail with respect to their 

effects on dewaterability: cation ratio, floc structure, particle size distribution, and 

phosphorus.   

 

2.2.1 Monovalent to Divalent (M/D) Cation Ratio 

The M/D cation ratio was first used by Higgins and Novak (1997) to explain the 

impact of cations on sludge dewaterability. In their work, the M/D ratio was related to the 

divalent cation bridging theory which postulates that divalent cations can bridge together 

flocs (the connection of flocs is the goal of adding polymer) and improve dewaterability. 

Higgins and Novak (1997) suspected that monovalent cations would replace divalent 

cations in sludge flocs mimicking the ion-exchange reaction.  This reaction would 

remove the bridging ability of the floc, thereby weakening the bonds between flocs.   

This weakened floc structure would then lead to worse dewaterability. Higgins and 

Novak (1997) added varying ratios of four common cations: sodium, potassium, 

magnesium, and calcium. They found that sludge with higher M/D ratios resulted in 

poorer dewaterability than sludge with lower M/D ratios. Thus, chemical or biological 

reactions in wastewater sludge that decrease the available magnesium or calcium content 

would likely hurt dewaterability. 

 



14 

 

2.2.2 Floc Structure  

Extracellular polymeric substances (EPS) are the non-living organic materials that 

are found in flocs and can negatively or positively affect dewaterability. The structures 

that EPS forms between cells have the ability to hold water. EPS slime can bind cells 

together, creating flocs, and with more EPS, bigger flocs form, allowing for better 

dewaterability (Lima et al. 2005). Many of these bonds, however, can lead to bound 

water within the flocs and decrease dewaterability. Houghton, Quarmby, and Stephenson 

(2001) found that there is an amount of EPS that is beneficial to creating sludge flocs 

until a threshold is achieved where increased amounts of EPS becomes detrimental as 

more water is trapped inside the flocs. 

Interestingly, there is not agreement in the literature for how to quantify EPS. 

Previously, classification of EPS was conducted by protein and polysaccharide 

measurement until Shao et al. (2009) created a method that defined EPS into categories 

of loosely bound EPS, tightly bound EPS and slime layer. Sometimes EPS can be found 

as a slime layer containing up to 99% water that covers bacteria (Costerton and Irvin 

1981) suggesting an important role in dewaterability. 

 

2.2.3 Particle Size Distribution 

The particle size distribution of wastewater solids has commonly been investigated 

for its impact on dewaterability (Jin, Wilén, and Lant 2004; Filali et al. 2012; McNamara 

and Lawler 2008; Lawler et al. 1986; Higgins, Tom, and Sobeck 2004).  Floc size has a 

significant correlation to CST and dewaterability, but also bound water. Usually larger 

floc size correlates to more free water and better overall dewaterability.  However, flocs 
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too large in size result in higher percentages of bound water in the sludge (Jin, Wilén, and 

Lant 2004).   

 

2.2.4 Phosphorus  

P can be found in different forms in a wastewater solids matrix, and certain forms 

of P can influence dewaterability more than others, with ortho-phosphate suspected to 

have the greatest impact on dewaterability.  Struvite, which is a phosphate crystal bound 

with magnesium (MgNH4PO4 ∙6H2O), has been observed to precipitate in digesters 

(Doyle and Parsons 2002; E. Neyens and Baeyens 2003).  Struvite contains magnesium. 

Therefore, the formation of struvite can reduce the soluble divalent cation concentration 

in the wastewater solids; a drop in divalent cations can be linked to poor dewaterability 

(Higgins et al. 2014; Higgins and Novak 1997; Higgins, Tom, and Sobeck 2004).  

Soluble ortho-P could be related to floc structure and dewatering by reducing the 

available divalent cations, but there is a gap in knowledge of how other forms of P 

influence dewaterability. 

 

2.3 P Species in Sludge 

 P can be found in many forms in sludge, yet only a few forms have been 

investigated in relation to dewaterability.  Soluble ortho-phosphate and total P have been 

the prevailing forms of P measured in sludge (Novak et al. 2017; Popel and Jardin 1993; 

Barnard and Shimp 2013).   Ortho-phosphate, also known as reactive P, is observed to 

create precipitates and influence dewaterability in sludge and biosolids (Popel and Jardin 
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1993; Doyle and Parsons 2002). Some researchers have begun to define and measure 

other forms of P, such as  loosely-bound P, resin exchangeable P, and organic P (Huang, 

Chen, and Shenker 2006).  

P classified as non-reactive P encompasses any form of P that is stable and does not 

react chemically in solution when measuring reactive P according to standard 

methods(Rice et al. 2012). Examples of non-reactive P are P bound to organic 

compounds or as phosphate bound to multiple phosphates in a chain called poly-

phosphates.   

Based on the literature reviewed, it is not known if soluble non-reactive P impacts 

dewaterability. Guibaud et al. (2005) stated in their study on the complexation potential 

of EPS that their measurement method of P did not determine the species of P but only 

total P, thus exposing the need for research in this area. Park et al (2007) found that total 

P influenced the hydrophobicity of EPS, which strongly correlated to bound water and 

poor dewaterability.  No explanation for P speciation was given in this research so it was 

not determined if poor dewaterability was impacted by a specific P species or simply total 

P. The lack of reporting on specific P species highlights the lack of knowledge regarding 

the impacts of different P species on dewaterability. 

  

2.4 Summary of Research Needs 

 Existing literature has several gaps in knowledge regarding how P speciation affects 

dewaterability in sludge and digested biosolids.  A deeper understanding of P speciation 

and its effects on dewaterability could allow WRRFs to implement new technologies and 
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processes to help reduce polymer costs and create new value-added products. In this 

study, the impact of P on sludge and biosolids dewaterability was evaluated through four 

research objectives.   

 

Objective 1: Determine the impact of P speciation on dewaterability of WRRF 

sludges 

Hypothesis: Higher soluble reactive P (most closely measured in this study as 

centrate reactive P (cRP)) decreases dewaterability 

 

Objective 2: Determine the impact of acid treatment and replacement of supernatant 

on anaerobic digester biosolids dewaterability. 

Hypothesis: Acid treatment will improve digester biosolids dewaterability. 

 

Objective 3: Determine the impact of P speciation on anaerobic digester effluent 

sludge dewaterability. 

Hypothesis: Higher cRP will decrease digester biosolids dewaterability 

 

Objective 4: Determine the impact of anaerobic digestion on P speciation. 

Hypothesis: Non-reactive P species will increase due to the formation of struvite. 
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3 METHODS 

 

 

3.1 Phosphorus Species Characterization  

3.1.1 Particulate and Centrate P 

Four types of P are reported in this work: centrate reactive P (cRP), centrate non-

reactive P (cNRP), particulate reactive P (pRP), and particulate non-reactive P (pNRP), 

and are further detailed in Table 3.1. P speciation in wastewater solids was defined and 

measured in these experiments to mimic a wastewater solids centrifuge system since 

centrifugation is used in full-scale systems (Dueñas et al. 2003), i.e, solids and liquids are 

commonly separated by a centrifuge and not a 0.45 micron filter in a full-scale system.  

Measuring P speciation in a sample of centrate can be helpful to WRRFs looking to 

design P recovery processes from the centrifuge effluent stream.   

Centrate P was the P remaining in the centrate from a sludge sample that was 

centrifuged at 6000 rpm for 7 minutes.  Rotation speed was the maximum speed of the 

existing equipment, and centrifuge time was determined experimentally to ensure all 

visible sludge particles were found in pellet form. To quantify particulate P, total 

phosphorus (TP) concentration was measured in a well-mixed (uncentrifuged) sludge 

sample and in a centrate sample; the difference in TP between the sludge sample and the 

centrate sample concentrations was calculated as the particulate P concentration. 

Determining particulate P by difference of two values followed the assumption, but not 

the process, laid out by standard methods, i.e., that all P not in centrate is assumed to be 

particulate (Rice et al. 2012). 
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3.1.2 Reactive P and Non-reactive P 

 Reactive P was measured according to standard methods (Rice et al. 2012). Briefly, 

a sample was diluted with DI water to be within the limits of the standard curve values. 

Then, 1.6 mL of a reagent containing potassium tartrate, ammonium molybdate, sulfuric 

acid, and ascorbic acid were added to 10 mL of sample. The sample was mixed and 

reacted for ten minutes.  Then absorbance at 880 nm wavelength was measured on a 

spectrophotometer.  A standard curve was made by adding dipotassium phosphate to de-

ionized water at concentrations ranging from 0.12 to 3 mg/L as ortho-P. 

TP was measured according to standard methods (Rice et al. 2012). Briefly, solids 

digestion was performed to break down organic matter and convert all phosphorus to 

ortho-P. Section B of method 4500-P was followed whereby persulfate and acid were 

added to a sample prior to autoclaving (Higgins et al. 2014; Britton et al. 2015).  For the 

results reported, 0.5 grams of potassium persulfate and 1 mL of 30% sulfuric acid were 

used in each sample.  Non-reactive P was calculated by subtracting the measured reactive 

P from the TP measurement (Table 3.1).  In standard methods, the difference between 

total P and reactive P is defined as organic P, non-reactive P.  However not all P 

converted in the digestion process is in organic form; there are inorganic polyphosphates 

converted as well (Moore 2010). Therefore, the term non-reactive was used to encompass 

all P species converted via persulfate digestion. 
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Table 3.1 P Species Calculation Explained.  

Four P species were analyzed in sludge samples (labeled with *). P species that were 

measured directly via a single lab method are indicated with the word “measured” below 

the name. P species that were calculated by the difference of other measured P values are 

indicated by “Calc” followed by the equation used to determine the value. 

 Total P Reactive P Non-reactive P 

total P 
total P (TP) 

measured 

total reactive P (tRP) 

measured 

total non-reactive P (tNRP) 

Calc: TP-tRP 

centrate P 

centrate total P 

(cTP) 

measured 

*centrate reactive P (cRP) 

measured 

* centrate non-reactive P 

(cNRP) 

Calc: cTP-cRP 

particulate 

P 

particulate total P 

(pTP) 

Calc: TP-cTP 

* particulate reactive P 

(pRP) 

Calc: tRP-cRP 

*particulate reactive P 

(pNRP) 

Calc: pTP-pRP 

 

3.2 QA/QC 

3.2.1 Impact of Solids on P Measurements 

  The solids present in wastewater could interfere with P measurements, ostensibly 

due to solids reacting with the oxidant. To test this effect, aliquots from the same batch of 

sludge were diluted to different ratios before being digested with the same amount of acid 

and oxidant. The TP values of the diluted samples were measured and normalized by the 

dilution factor so that, if solids had no impact on P measurements, then all reported TP 

values would be the same.  Solids interference would result in lower TP measurements.  
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3.2.2 Reproducibility of P Species Measurements 

 P species were measured in triplicate in a subset of sludge samples to determine the 

reproducibility and variability of the P species measurements. Three aliquots were taken 

from the same sludge sample and all four P species (cRP, cNRP, pRP, pNRP) were 

measured for each aliquot resulting in three values for each P species.  The average and 

standard deviation of the three values were determined, and the relative standard 

deviation (RSD) was calculated by dividing the standard deviation by the average. In 

total, 38 sludge aliquots were analyzed in triplicate. The average RSD value from the 38 

samples was calculated to find the largest variability. 

 

3.3 Dewaterability Characterization by Capillary Suction Time 

CST was conducted to determine dewaterability of sludges ( Higgins, Tom, and 

Sobeck 2004) . A multi-purpose CST apparatus (Triton Electronics Limited, Great 

Dunmow, Essex, England) measured the time for water to move across filter paper (GE 

Whatman, Grade 17 7x9cm) from an inner diameter near an input well to an outer 

diameter.  The sludge solids remained in the well on top of the filter paper, and the water 

from the sludge flows out of the sludge and through the paper. The time for water to 

move from inner diameter to outer diameter was measured by electrodes and is typically 

called CST. A low CST value indicates good dewaterability, while a higher CST value 

indicates poorer dewaterability. 
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3.4 Full-scale Sludge Survey to Determine Links between P Species and 

Dewaterability 

Sludge samples were collected from four different wastewater reclamation districts 

to test the hypothesis that cRP decreases dewaterability (CST). This survey was 

conducted to complete the following objective: 

Objective 1: Determine the impact of P speciation on dewaterability of WRRF 

sludges 

Hypothesis: Higher soluble reactive P (most closely measured in this study as 

centrate reactive P (cRP)) decreases dewaterability 

 Sludge samples were characterized by measuring P speciation (cRP, cNRP, pRP, 

pNRP), TP, TS, and VS). Dewaterability was characterized by measuring CST.  Four 

sewerage districts in the midwest US contributed sludge; Milwaukee Metropolitan 

Sewerage District (MMSD), Green Bay Metropolitan Sewerage District, City of Fond du 

Lac Wastewater Treatment Division, and the Metropolitan Water Reclamation District of 

Greater Chicago (MWRD).  Different types of sludges were surveyed. A thickened blend 

of primary and waste activate sludge (WAS) was analyzed from Green Bay, Fond du Lac, 

and MWRD.  Unthickened primary sludge was analyzed from Green Bay, MMSD Jones 

Island plant, and MMSD South Shore plant. The WAS sample from Fond du Lac 

included bio-P sludge 80% of the time, according to the superintendent of the facility (A 

Fischer, Personal Communication, June 19, 2017). A thickened primary sludge sample 

was analyzed from Green Bay, as well as WAS samples from MMSD Jones Island plant 

and MMSD South Shore plant.  All different types of samples from these locations were 
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analyzed once with the exception of the blended sludge from Fond du Lac and the 

primary sludge from South Shore which were analyzed twice.  

 

Table 3.2 Sludge Inventory from different WRRFs. 

MMSD Green Bay Fond du Lac MWRD 

Unthickened 

primary, 

WAS 

Thickened blend, 

Unthickened 

primary, 

thickened primary 

 

Thickened blend, 

WAS 

Thickened blend 

 

 Linear regressions between the sludge characteristics and CST values were plotted.  

Coefficient of determination (r2) values and linear regression slope values were 

calculated.  The slope of the linear regression trendline was used to determine the impact 

of the correlation. A low slope value indicated less of an impact of a parameter on CST 

than a higher slope value. GraphPad was used to determine if the mean slope from 

replicate analyses was statistically different from zero. 
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3.5 Lab-Scale Anaerobic Digestion Experiments to Test Impact of Acid 

Pretreatment on Dewaterability 

3.5.1 Purpose of Experiments 

Lab-scale anaerobic digesters were operated to meet the following research objectives 

and test the following hypotheses: 

Objective 2: Determine the impact of acid treatment and replacement of supernatant 

on anaerobic digester biosolids dewaterability. 

Hypothesis: Acid treatment will improve digester biosolids dewaterability. 

Objective 3: Determine the impact of P speciation on anaerobic digester effluent 

sludge dewaterability. 

Hypothesis: Higher cRP will decrease digester biosolids dewaterability 

Objective 4: Determine the impact of anaerobic digestion on P speciation. 

Hypothesis: Non-reactive P species will increase due to the formation of struvite. 

 

3.5.2 Sample Procurement  

Two sets of lab-scale digesters were operated. One digester set was fed screened 

primary sludge from the South Shore WRRF (Oak Creek, WI) and the other set was fed a 

blend of primary and WAS from the city of Fond du Lac WRRF.  According to the 

wastewater superintendent, the activated sludge system at Fond du Lac was run 

intermittently as bio-P approximately 70-80% of the time.  The sludge from Fond du Lac 

was shipped weekly on ice to the Water Quality Center lab.  Primary sludge from the 
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South Shore facility was picked up from the facility on a weekly basis.  Sludge fed to the 

digesters was stored in refrigerators at 2-5 °C for up to two weeks.  

Primary sludge samples were also procured from Jones Island for pre-treatment 

tests described in the following section. This sludge was used for pre-treatment testing for 

two reasons:  1) Jones Island primary sludge is piped to the South Shore facility for 

anaerobic digestion and 2) Jones Island was more readily accessible for sample 

procurement.  Primary sludge from South Shore was used for the lab-scale anaerobic 

digesters because it most closely represented the typical sludge fed to the anaerobic 

digesters at the South Shore facility. For the remainder of this thesis, the primary sludge 

from the South Shore facility will be referred to as South Shore sludge (SS), and the 

blended sludge from Fond du Lac will be referred to as Fond du Lac sludge (FDL). 

 

3.5.3 Selection and Implementation of Acid Pretreatment Step 

Various pre-treatment processes, which occur directly before the anaerobic 

digestion of sludge, were assessed to determine the impact of treatment on P-speciation in 

sludge samples. The goal was to determine which pretreatment was most effective at 

increasing cRP in sludge, because cRP is the form of P that is easiest to recover.  These 

pretreatment tests were conducted to determine which pre-treatment step would be used 

to alter influent cRP levels for lab-scale digester experiments.  

MMSD primary sludge from Jones Island WRRF was treated in the following 

ways: sulfuric acid treatment, sodium hydroxide treatment, calcium hydroxide treatment, 

mechanical lysis using a blender, and heat treatment using autoclave. The concentrations 

of chemical addition can be found in Appendix A.  One experiment was performed for 
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each method with a control for each due to the variability of the sludge used, as several 

sludge samples from Jones Island were used to conduct the experiments. All control 

samples underwent stirring and no pre-treatment for the same time the test sludge was 

stirred (30 minutes) with the exceptions of the heat treatment that was not stirred and 

blender treatment which was treated for 10 minutes.  This step of stirring the control was 

done to account for any effects from stirring.  From the multiple pre-treatment methods 

that were tested, acid pretreatment resulted in the largest increase in cRP (See Appendix 

B). Acid pretreatment converted the highest percentage of P to cRP and was selected as 

the process to increase the cRP content in sludge and subsequently remove it via 

centrifuging the sludge and decanting the supernatant.    

The acid pre-treatment process follows the steps depicted in Figure 3.1. First, 

hydrochloric acid was used at a dosage of 180 meq/L.  To treat the sludge, half of the 

volume fed to the digesters (150 mL) was treated with 3.1 mL of 6N acid to create the 

180 meq/L dosage conditions and stirred in an open beaker for 30 minutes. After 

treatment, the sludge was centrifuged at 6000 rpm for 7 minutes in 50 mL centrifuge 

tubes.  The centrate was discarded and DI water was added to reconstitute the sludge to 

the original solids concentration by matching the original volume.   The reconstituted 

sludge was then mixed with the same volume of untreated sludge to increase the pH of 

the sludge and keep the digesters from becoming too acidic.  This final mix was fed to the 

acid digesters.  Control digesters received the same volume of sludge without any pre-

treatment (Figure 3.1). 
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3.5.4 Digester Set Up & Operation  

Four sets of duplicate digesters were operated. The sets included: i) test digesters fed 

acid-treated primary sludge from SS (named SA1 and SA2), ii) control digesters fed 

primary sludge from SS (named SC1 and SC2,) iii) test digesters fed acid-treated, 

blended sludge from FDL (named FA1 and FA2), and iv) control digesters fed blend 

sludge from FDL (named FC1 and FC2). All digesters were operated in a temperature-

controlled room at 35 °C on multi-position stir plates operated between 180 and 190 rpm.  

The stir plates ran on a timer for 6 hours a day and digesters were fed during the stirring 

hours. Intermittent stirring was conducted to match full scale digestion practices, as well 

as for concern of erosion of internal stir bars due to sediment buildup. Each digester was 

a cylinder of poly-carbonate with an acrylic lid and a ½” valve port on the lid and 1” 

from the bottom as the feed and effluent ports respectively. A volume (2.25 L) of digester 

effluent from full scale digesters at the South Shore WRRF were used to seed all 

A 
Add acid 

Stir 30 minutes 

B 
Centrifuge 7 minutes 

C 
Decant centrate, fill 

to original volume 

with DI 

D 
Mix with non-
treated half 

Figure 3.1 Sludge pre-treatment process schematic. A Step: Addition of 3.1 mL of 6N 

HCl into 150 mL of sludge and stirred for 30 minutes on a stir plate. B Step: Sludge 

placed in centrifuge tubes and ran in centrifuge. C Step: Centrate decanted from tubes, 

lost volume replaced with de-ionized water and remixed into sludge. D Step: 150 mL of 

reconstituted sludge was mixed with 150 mL of untreated sludge. 
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digesters and the digesters were initially sparged with a 30% carbon dioxide and 70% 

nitrogen gas. One small port was installed on each lid of the digester cylinders to release 

the gas via Tygon tubing to a Tedlar bag which held the gas until analysis. 

The digesters were operated on a 15-day solids retention time (SRT) for a total of 

69 days, which was the amount of time needed to measure P speciation seven times each 

for all digesters during steady state conditions.  Feeding required 150 mL of sludge to be 

removed and fed each day to the digesters.  A funnel was placed in the top of the feed 

valve to aid in sludge feeding and care was taken to close the valve quickly after the 

sludge flowed into the digester.   Original experimental planning estimated quasi-steady-

state to be attained after digesters were operated for 3 SRT values (i.e., after 45 days), 

after which P measurements and CST measurements were taken to observe the effects of 

P speciation on CST.  However, after operation and data analysis, it was determined that 

substantial variation in P speciation was still occurring after 45 days (see Appendix D). 

Quasi-steady-state was assumed to occur when the average total P effluent concentration 

was within 20% of the influent total P concentration. This definition resulted in n=4 

steady state samples for the digesters fed SS sludge and n=6 steady state samples for the 

digesters fed FDL sludge.  

Several sludge and biogas characteristics were measured during digester operation 

to monitor performance. The pH of the effluent sludge was measured every day after 

feeding. The biogas methane concentration as well as TS, VS, CST, cation concentrations 

and concentration of various P species were measured weekly in effluent from all 

digesters. Biogas volume was measured as needed as the Tedlar bags filled up.  
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3.5.5 Analytical Methods 

Biogas methane concentration and gas production volume from the digesters were 

measured to determine overall digester function. Gas production was determined by 

attaching Tedlar bags to the digester and measuring the gas volume in the bag using a wet 

test meter (Precision Test Company, San Antonio, Texas, United States). Average daily 

gas production was determined by dividing the measured volume in the bag by the 

number of days gas was collected. Gas composition was determined by taking a well-

mixed gas sample from Tedlar bags attached to the digester vessel and  analyzing the 

sample using a gas chromatograph with a thermal conductivity detector (GC-TCD) as 

described elsewhere (Venkiteshwaran 2010).  
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4 RESULTS & DISCUSSION 

 

 

4.1 QA/QC for P Measurements 

4.1.1 Reproducibility of P Speciation Measurement 

Reproducibility of P measurements was investigated to understand precision of the 

method. Triplicate P samples were taken from 38 samples and relative standard deviation 

was calculated. For each sample, three values for each P species concentration were 

generated and the average, standard deviation, and relative standard deviation (RSD) 

were calculated for every sample. The RSD values from all triplicate sample groups were 

averaged together for each species and the results are found in Table 4.1 (e.g., all cRP 

RSDs were averaged). TP and cRP were determined from direct measurements, cNRP 

and pRP were calculated by the difference of two measured values, and pNRP was 

derived by taking the difference twice (see Table 3.1 for description of measurements and 

calculations).  The average RSD for TP was lowest which was expected because TP was 

determined directly and did not encompass taking the difference of multiple values 

determined in the lab. The pNRP, on the other hand, had the highest RSD value and 

encompassed multiple measurements in the lab and inherently contained more steps for 

variability. The determination of some P species concentrations by difference yielded 

some individual results that were negative (see Appendix B for a list of all data from 

these 38 triplicate measurements). 
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Table 4.1 Average RSDs of P species for triplicate samples 

 (n=38). 

 

cRP cNRP pRP pNRP TP 

10% 10% 12% 23% 6% 

 

4.1.2 Impact of Solids on P Measurements  

Experiments were performed to determine how solids concentration impacted P 

measurements. Triplicate samples from the same sludge sample were diluted to different 

solids concentrations. TP was measured in all samples, and the dilution factors were used 

to determine original P concentrations. TP measurements fell within ten percent of the 

average for diluted samples with solids concentrations less than or equal to 225 mg/L 

(Figure 4.1). A variation of ten percent was deemed acceptable and was attributed to 

inherent measurement variability. At solids concentrations higher than 225 mg/L, the 

corrected TP values declined, indicating that solids were interfering with TP 

measurements. Therefore, the concentration of solids in diluted sludge samples for 

analysis in remaining experiments did not exceed 225 mg/L to minimize inhibition due to 

solids.  To be conservative, a solids concentration of 45 mg/L was used as a target in 

diluted samples for P analysis. 
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Figure 4.1 Solids concentration can affect P measurements. A sludge sample was 

diluted and the total P was measured. Dilution factors were taken into account such that 

all samples should have the same total P values if solids were not inhibitory. 

 

4.2 Full-Scale Sludge Survey: Correlations Between Dewaterability and Sludge 

Characteristics  

Analyses were performed to determine how P speciation in full-scale sludge 

samples correlated to dewaterability.  The hypothesis stated that higher cRP 

concentrations would result in worse dewaterability. This hypothesis was rejected on the 

grounds of the low r2 value between cRP and CST (r2= 0.06, n=8, see Appendix C). 

However, pRP and pNRP concentrations were found to trend with CST with slopes of 

1.80 and 1.13, respectively (Figure 4.2). Raw EBPR sludge has been reported to have 

y = 1808.2e-1E-04x

R² = 0.8926
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between 3-6% P content by mass (Bi, Guo, and Chen 2013). If particulate P increases, 

ostensibly solids concentration increases as well.  
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Figure 4.2 Dewaterability becomes worse as pRP and pNRP increase. Data points 

represent CST measurements from sludge samples acquired from various municipal 

WRRFs. Trendline R2 values are 0.81 and 0.94, respectively; n= 8. 

 

4.3  Bench Scale Digesters: Dewatering Performance 

4.3.1 Impact of Acid Pretreatment Followed by Decanting of Centrate on 

Dewaterability 

Experiments were executed to test the hypothesis that removing cRP would 

improve dewaterability. Influent sludge to the lab-scale anaerobic digesters was treated 

with acid, centrifuged, and the centrate was decanted and replaced with DI water. 

Pretreatment with acid followed by decanting of centrate did not impact dewaterability of 

biosolids from South Shore (SS) digesters (Figure 4.3).  The average CST of effluent 

from steady state acid-treated digesters was lower but not significantly different from that 
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of the control (t-test, p = 0.366).  Centrate was decanted to mimic removal of soluble 

phosphates, which in this work was qualified as cRP.  This step, however, would also 

remove other constituents such as soluble anions and cations like sodium and 

magnesium. Any effects on dewaterability would have to consider effects of removing 

chemical species beyond P.  Nevertheless, this step had minimal impact on 

dewaterability.   

 S
o

u
th

 S
h

o
re

 C
o

n
tr

o
l

S
o

u
th

 S
h

o
re

 A
c
id

0

5 0

1 0 0

1 5 0

2 0 0

C
S

T
 (

s
e

c
o

n
d

s
)

 

Figure 4.3 Acid pretreatment did not impact dewaterability. Error bars represent 

average CST values of South Shore Digesters. Error bars represent ± 1 standard 

deviation; n=8 

 

Similarly, pretreatment with acid followed by decanting of centrate did not impact 

dewaterability of biosolids from Fond Du Lac (FDL) digesters (Figure 4.4). Again, 

average CST of effluent from acid-treated digesters was lower but not significantly 
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different from that of the control (p = 0.456).  This trend was observed in both SS and 

FDL digesters. Therefore, acid-pretreatment followed by decanting of centrate is not 

recommended as an approach to improve downstream dewaterability. 
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Figure 4.4 Acid pretreatment did not impact dewaterability. Bars represent average 

CST values of Fond du Lac Digesters. Error bars represent ± 1 standard deviation; n=12 

 

Interestingly, feed sludge type did have an impact on biosolids dewaterability 

(Figure 4.5).  The average CST values for digesters fed SS sludge were significantly 

lower than CST values for digesters fed FDL sludge (p<0.001)  These findings are in line 

with previously reported results from literature indicating that bio-P sludge is more 

difficult to dewater (Roeleveld et al. 2004; Britton et al. 2015).  These data indicate there 

are inherent characteristics of sludge that influence dewaterability, but the acid pre-
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treatment applied in this work does not significantly impact dewaterability with the 

sludge tested. 
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Figure 4.5 Digester effluent from Bio-P (Fond du Lac) fed digesters is statistically 

higher than primary (South Shore) fed digesters. Error bars represent ± 1 standard 

deviation, n= 18 (SS), n=24 (FDL) 

 

4.3.2 Correlation between anaerobic digester effluent sludge characteristics and 

dewaterability. 

Experiments were also executed to test the hypothesis that increasing cRP would 

make dewaterability worse. The dewaterability, as measured by CST, from the eight lab-

scale anaerobic digesters was correlated to the cRP in effluent from the anaerobic 

digesters (Figure 4.6).  The cRP species characterizes the liquid content in the sludge 

matrix more than the solid flocs in the sludge matrix. The cRP content potentially 

influences dewaterability in a manner described by the divalent cation bridging theory 
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and the M/D ratio.  This theory posits that divalent cations can connect or “bridge” flocs 

together thereby contributing towards better dewaterability (Britton et al. 2015; 

Roeleveld et al. 2004; Higgins and Novak 1997). Anions, such as ortho-phosphate (a 

reactive P species that would be measured as cRP in this work) can negatively impact 

divalent cation bridging by binding to divalent cations and neutralizing their ability to 

bridge flocs.  The results in Figure 4.6 add evidence to support the M/D theory. 
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Figure 4.6 Dewaterability becomes worse as cRP concentration increases. Data points 

represent effluent sludge measurements from all digesters during quasi-steady state. 

Trendline r2 value is 0.32 and n= 40. 

 

The M/D ratio was also quantified in digester effluent, and the M/D ratio was 

compared with CST (Figure 4.7). The sum of the sodium and potassium concentrations 

was used for monovalent quantification, and the sum of magnesium and calcium 

concentrations was used for divalent quantification. A higher M/D ratio means there are 

more monovalent cations than divalent cations. As the M/D ratio increased, 



38 

 

dewaterability became worse. The divalent cation bridging theory states that the divalent 

cations aid in flocculation, therefore a lower M/D ratio would be most beneficial for 

dewatering.  Figure 4.7 supports this theory by presenting a correlation between lower 

M/D ratio to better dewaterability. The r2 value was 0.26 meaning that 26% of the 

variation in CST (the y-variable) can be explained by M/D (the x-

variable)(Stackexchange.com 2017). While M/D impacts dewaterability, this ratio is not 

the only factor that affects dewaterability (based on R2 value less than 1).  
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Figure 4.7 Monovalent to divalent (M/D) cation ratio plotted against CST. r2 value= 

0.26  n=40. A higher M/D ratio indicates more monovalent cations to divalent cations. 

The positive correlation indicates that dewaterability decreases as more monovalent 

cations are present relative to divalent cations. 

 

The cNRP, pRP, and pNRP concentrations were not strongly correlated to 

dewaterability (Figure 4.8). cNRP line of best fit had a negative slope (-0.055, r2=0.00), 

pRP had a r2 value of 0.04, and pNRP had a positive slope with a slightly higher r2 value 

(slope =0.118  r2=0.10).  Physical properties of the sludge as measured by these P species 
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may not affect dewaterability, while other qualities such as particle size, sludge age, and 

EPS could impact dewaterability.   
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Figure 4.8 cNRP, pRP, and pNRP, plotted against CST. Data points represent effluent 

sludge measurements from all digesters during quasi-steady state. Trendline r2 values 

0.00, 0.04, and 0.10 respectively. n= 40 

 

Interestingly, pNRP and pRP had higher r2 values with CST of non-digested sludge 

samples in the full-scale survey (Section 4.2) than in the lab-scale anaerobic digester 

study. The major difference between the full-scale survey and the lab-scale digester 

experiments was the type of sludge analyzed, specifically related to if the sludge had 

undergone anaerobic digestion. The r2 values from data in Figures 4.6-4.8 was comprised 
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of only anaerobic digested biosolids samples. The full-scale survey was comprised of 

sludge samples such as primary or WAS that had not undergone digestion. These two sets 

of results reflect comparisons between sludge characteristics and dewaterability on 

different types of sludge. Therefore, sludge type, and characteristics not measured in this 

work that describes these sludge types such as floc structure could impact dewaterability.  

VS concentrations were also measured to determine if organic solids content had an 

impact on dewaterability. VS content was not positively correlated to CST (Figure 4.9).  

The slope for the trendline was -0.009 and the R2 value was 0.04. A positive trend would 

have indicated that higher VS content increased CST times, but this trend was not 

observed.  Overall, VS can be considered a proxy for biomass, but the results suggest an 

increase in effluent biomass does not impact dewatering.  
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Figure 4.9 Volatile solids plotted against CST.  R2 value= 0.04 n=40. 

4.3.3 Impact of Digestion on P Speciation 
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The third objective of these lab-scale anaerobic digestion experiments was to 

determine the effect of digestion on P speciation.  Note that the sample size for the 

influent was less than the sample size for the effluent because the influent was 

characterized and fed to duplicate digesters. Therefore, both duplicates received the same 

influent sludge, but each produced independent effluent results. 

 The pRP species increased after digestion in both the SS fed control digesters and 

SS acid treated digesters (Figures 4.10 & 4.11, p-value for influent vs effluent in control 

and acid digesters = 0.001 and 0.001, respectively).  P was ostensibly converted from 

pNRP to pRP. In other words, the P converted from a non-reactive form to a reactive 

form.  Reactive forms of P are chemically reactive (ortho-phosphate) and can interact 

with cations.  Non-reactive forms of P are P in forms that do not chemically react and 

need to be digested with acid and heat to be measured by the method employed herein.  

The increased pRP in effluent could be struvite, brushite, or could indicate biomass 

destruction in digester (Poxon and Darby 1997)   
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Figure 4.10 Particulate reactive P increases in control digesters fed with primary 

sludge from South Shore treatment plant. Bars represent average values taken at quasi-

steady state and error bars represent standard deviation.  Influent n=4, effluent n=8 
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Figure 4.11 Particulate reactive P increases in acid treated digesters fed with primary 

sludge from South Shore treatment plant. Bars represent average values taken at quasi-

steady state and error bars represent standard deviation.  Influent n=4, effluent n=8 
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Unlike digesters fed SS sludge, the biggest change for the digesters fed FDL sludge 

for P speciation was from high cRP in the influent to high pRP in the effluent.  In contrast 

to the primary-fed digesters, cRP decreased after digestion in the FDL fed control and 

acid digesters (Figures 4.12, 4.13. FC p=0.001, FA p=0.002).  P was converted from a 

centrate form to a non-centrate form during digestion. It is possible that P was used for 

growth of anaerobic microbial biomass or used to create EPS by the microbes.  Another 

possibility was that struvite or brushite was formed (Guibaud et al. 2005).  Phosphorus 

accumulating organisms in Bio-P sludge accumulate high amounts of P as polyphosphate 

and release P as ortho-P, this behavior could explain the elevated cRP levels observed 

and the higher overall P levels in the FDL sludge(Bi, Guo, and Chen 2013).   
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Figure 4.12 Particulate reactive P increases in control digesters fed with Fond du Lac 

sludge. Bars represent average values taken at quasi-steady state and error bars 

represent standard deviation.  Influent n=5, effluent n=12 
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Figure 4.13 Particulate reactive P increases in acid treated digesters fed with Fond du 

Lac sludge. Bars represent average values taken at quasi-steady state and error bars 

represent standard deviation.  Influent n=5, effluent n=12 

 

   

5 CONCLUSIONS 

 The goal of this research was to investigate the impact of P speciation in various 

sludges on dewaterability and to determine if an anaerobic digestion pretreatment method 

to reduce P content could improve dewaterability.  It is not clearly understood why bio-P 

sludges are observed to have poorer dewaterability.  A more detailed understanding of the 

speciation of P in raw sludge is necessary to understand what pre-treatment technologies 

would be most effective at converting P to a recoverable form. These conclusions are 

based on the experiments performed at the Marquette University Water Quality Center: 

 

1. Particulate P speciation had r2 values of 0.81 and 0.94 for CST of raw 

wastewater sludges. These results imply that solids concentration is correlated 
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with poorer dewatering.  Further work should be done to determine if other 

sludge characteristics correlate to dewaterability for these sludge types, or if 

particulate P is the dominant characteristic impacting dewaterability.. 

 

2. Acid pre-treatment of sludge was conducted in attempt to remove soluble 

reactive P. However, the method conducted for P removal allowed for cation 

removal as well.  If future work were to be completed, development of a 

method to selectively remove P without affecting cations would provide a 

clearer understanding of the effects P has on dewaterability. 

 

3.  Acid pretreatment and decanting did not significantly influence the 

dewaterability of digested sludge.  The sludge used for this experiment was a 

primary and WAS blend, and perhaps the effects of P removal could have 

been more pronounced if complete bio-P sludge with more total P was 

characterized and treated. 

 

4. Anaerobic digestion resulted in the conversion of centrate P to particulate 

reactive phosphorus.  Further work could be done to investigate the chemical 

nature of the particulate reactive P. Knowledge on whether struvite was 

formed would be helpful for solids handling design. 
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APPENDIX 

A: Results from Pre-treatment testing 

 

  

C A O H  1 3 5  M E Q / L

C A O H   I N F L U E N T

C A O H  2 7 0  M E Q / L

C A O H   I N F L U E N T

N A O H  1 4 0  M E Q / L

N A O H  I N F L U E N T

N A O H  2 7 0  M E Q / L

N A O H  I N F L U E N T

S U L F U R I C  A C I D  9 0  M E Q / L

S U L F U R I C  A C I D  I N F L U E N T

S U L F U R I C  A C I D  1 8 0  M E Q / L

S U L F U R I C  A C I D  I N F L U E N T

B L E N D E R  

B L E N D E R  I N F L U E N T

RESULTS OF VARIOUS PRETREATMENT 
PROCESSES

Reactive Soluble Non-reactive Soluble Reactive Solid Non-reactive Solid
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B: Average, Standard Deviation, and Relative Standard Deviation Data for P Species 

from Triplicate Tests on Sludge Samples from Full-Scale WRRFs 

Code  Location 

FC Fond du Lac Bio-P and primary blend 

FA 
Fond du Lac acid treated Bio-P and primary 
blend 

SC South Shore Primary 

SA South Shore acid treated primary 

FM Fond du Lac mesophillic digester effluent 

FT Fond do Lac Thermophillic digester effluent 

GB UTP Green Bay unthickened primary sludge 

GB TP Green Bay thickened primary sludge 

GB C Green Bay combined WAS and primary 

SW South Shore WAS 

CB Chicago combined WAS and primary 

--inf indicates samples used as digester influent 

--eff indicates samples used as digester effluent 

 

Average & standard Deviation Relative Standard Deviation 

cRP cNRP pRP pNRP Total cRP cNRP pRP pNRP Total 

782 ± 2 -15 ± 19 126 ± 15 757 ± 70 1650 ± 77 0% -128% 12% 9% 5% 
557 ± 3 67 ± 6 31 ± 15 657 ± 41 1311 ± 33 0% 10% 48% 6% 3% 
97 ± 0 39 ± 3 375 ± 12 482 ± 17 993 ± 9 0% 8% 3% 3% 1% 
115 ± 0 15 ± 4 230 ± 9 372 ± 83 733 ± 82 0% 29% 4% 22% 11% 
166 ± 2 18 ± 4 931 ± 7 630 ± 14 1745 ± 22 1% 24% 1% 2% 1% 
162 ± 1 28 ± 5 963 ± 7 548 ± 46 1701 ± 52 1% 17% 1% 8% 3% 
234 ± 3 64 ± 1 486 ± 54 482 ± 64 1265 ± 11 1% 1% 11% 13% 1% 
246 ± 2 40 ± 5 563 ± 12 360 ± 23 1209 ± 9 1% 12% 2% 7% 1% 
71 ± 1 26 ± 1 804 ± 75 386 ± 147 1287 ± 77 2% 4% 9% 38% 6% 
64 ± 1 23 ± 4 619 ± 28 489 ± 32 1196 ± 2 2% 16% 4% 6% 0% 
101 ± 2 30 ± 3 493 ± 17 292 ± 23 916 ± 8 2% 9% 4% 8% 1% 
179 ± 2 -48 ± 1 444 ± 24 361 ± 27 936 ± 4 1% -3% 5% 7% 0% 
305 ± 264 264 ± 

266 

416 ± 

254 

423 ± 253 1407 ± 10 87% 101% 61% 60% 1% 

76 ± 0 23 ± 2 238 ± 9 293 ± 54 630 ± 46 1% 7% 4% 19% 7% 
52 ± 1 25 ± 1 165 ± 12 264 ± 11 506 ± 4 1% 5% 7% 4% 1% 
511 ± 4 119 ± 8 353 ± 3 530 ± 17 1513 ± 16 1% 7% 1% 3% 1% 
232 ± 12 168 ± 18 675 ± 6 53 ± 6 1129 ± 1 5% 11% 1% 11% 0% 
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60 ± 1 17 ± 3 342 ± 37 665 ± 116 1084 ± 
151 

1% 17% 11% 17% 14% 

65 ± 0 23 ± 2 161 ± 9 312 ± 17 560 ± 26 1% 8% 6% 5% 5% 
566 ± 15 29 ± 10 374 ± 39 820 ± 61 1789 ± 94 3% 34% 11% 7% 5% 
432 ± 20 20 ± 28 238 ± 39 465 ± 35 1155 ± 17 5% 139% 17% 7% 1% 
96 ± 6 29 ± 7 269 ± 30 374 ± 20 767 ± 11 6% 24% 11% 5% 1% 
125 ± 4 6 ± 5 200 ± 32 224 ± 25 556 ± 9 3% 85% 16% 11% 2% 
508 ± 2 57 ± 8 254 ± 21 431 ± 37 1250 ± 41 0% 13% 8% 9% 3% 
91 ± 2 23 ± 2 1028 ± 4 394 ± 12 1535 ± 9 2% 7% 0% 3% 1% 
425 ± 547 -295 ± 

548 

666 ± 

544 

581 ± 535 1376 ± 15 129% -186% 82% 92% 1% 

897 ± 3 -32 ± 12 163 ± 31 1664 ± 55 2691 ± 28 0% -38% 19% 3% 1% 
1 ± 0 51 ± 1 544 ± 13 383 ± 9 979 ± 12 65% 3% 2% 2% 1% 
850 ± 10 138 ± 19 99 ± 18 311 ± 1229 1398 ± 

1211 
1% 13% 18% 396% 87% 

660 ± 9 111 ± 15 109 ± 18 716 ± 21 1596 ± 36 1% 14% 17% 3% 2% 

2 ± 0 5 ± 1 17 ± 2 36 ± 4 59 ± 4 25% 23% 10% 11% 6% 
12 ± 1 11 ± 1 72 ± 9 289 ± 38 383 ± 33 11% 10% 12% 13% 9% 
105 ± 2 35 ± 2 1023 ± 

57 

2027 ± 71 3190 ± 

125 
2% 7% 6% 4% 4% 

718 ± 33 59 ± 28 342 ± 49 1016 ± 37 2135 ± 29 5% 47% 14% 4% 1% 
80 ± 0 38 ± 2 529 ± 56 755 ± 138 1402 ± 

147 
0% 6% 11% 18% 10% 

4 ± 1 20 ± 1 120 ± 11 420 ± 20 565 ± 11 25% 3% 9% 5% 2% 
730 ± 5 59 ± 7 708 ± 25 1086 ± 89 2583 ± 88 1% 11% 4% 8% 3% 
362 ± 2 105 ± 7 498 ± 5 834 ± 145 1799 ± 

138 
1% 7% 1% 17% 8% 
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C:  cRP vs CST scatter plot 
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D: Time series of P Species for Every Digester 
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SA1 and SA2, ExXX stands for effluent species, IxXX stands for influent species 
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