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ABSTRACT

In the paper industry today, there is a rising concern over the question of what to do
with the paper mill sludge. Although in the past most of the sludge was sent to a landfill,
this disposal method is becoming less and less acceptable due to increasing environmental
concerns, decreasing landfill space and increasing costs.

Since sludge contains a large fraction of water, one of the alternatives is to increase the
dewaterability of the sludge through the use of electrokinetic forces. Increased
dewatering of the sludge would allow for more economical alternatives to sludge disposal,
such as incineration, as well as decrease the sludge handling, transportation, and disposal
costs by reducing both volume and weight. The main objective of this thesis was to
determine if the application of an electric current through a sludge press would increase
the amount of dewatering in the sludge.

A simulated press that allowed for the sludge to be pressed in-between two charged
screens and water to be collected from both the top and bottom of the press was designed
and constructed. During experimentation, drainage amounts and final sludge consistency
was collected under varying voltage applications and compared to a control run with no
voltage.

From the results, it could be concluded that the application of an electric field did
indeed help increase the dewaterability of the sludge. The results also show that ion
migration does take place in the sludge with positively charged particles carrying water
molecules towards the negatively charged screen. Further studies in applying this concept
at higher pressing consistencies as well as other applications is recommended.



Table of Contents

Page
Introduction 1
Background Discussion 2-3
Procedure | 4-6
Results 7
Discussion 8-12
Conclusions 12
Recommendations 13
References 14

Appendix 15-18



INTRODUCTION

One of the major issues facing the paper industry today is how to reduce the cost of
sludge disposal. With landfill space decreasing and environmental regulations increasing,
there is a growing concern over what to do with the sludge. In North America alone,
there are one hundred pounds of sludge produced per ton of paper production (1). This
equates to approximately 4.6 million tons of sludge being produced in just one year. Of
this, 70% goes to the landfill, 21% gets incinerated, 8% gets land applied and 1% gets
recycled or reused (2).

In sludge, water accounts for a large fraction of the material make-up. By increasing
the amount of water being removed from the sludge, several benefits will arise. These
benefits include the following: 1) reducing the leachate production at landfills, 2)
increasing the energy value of the sludge when incinerated, and 3) decreasing the hauling
and disposal costs by reducing the volume and weight of the sludge (3). Currently,
various mechanical devices are used to increase the consistency of the sludge anywhere
from 10% to 50% solids.

There were three main objectives to this thesis. The first was to design a simulated
sludge press that could pass an electric current through the sludge and also remove the
water from both the top and bottom of the device. Second was to test the effects that
different voltage (current) levels had on the dewaterability of the sludge. The final

objective was to determine the effects of ion migration on dewaterability.



BACKGROUND

Electrokinetics involves the movement of charged particles or water molecules in an
applied d.c. electric field. In electrokinetics, there are two main forces taking place. The
first, electro-osmosis, refers to the movement of a conducting liquid through a membrane.
The second, electrophoresis, is the opposite of electro-osmosis and refers to the
movement of charged particles through an electric field. Electrokinetic dewatering works
by applying an electrical potential across a material causing the positive ions to migrate
towards the negative electrode. Along the way, the positively charged ions “pick up”
water molecules and carry them towards the negatively charged plate. When they reach
the cathode, the water molecules are released.

“The origins of electrokinetics are embedded in double-layer theory and the distribution
of charge at surfaces.” (4) The double layer theory is explained by having one layer of
charges held closely together and immobile while having a second layer free to move with
the attraction or repulsion of an applied electric field (5). An electrical potential is then
created at the slip plane between the two layers and is known as the zeta potential. It was
noted earlier that in the electro-osmotic force, water is moved through a membrane. For
this to happen, a pressure gradient must have been developed so that flow could occur (4).
The equation that explains this differential pressure can be found in equation #1
(Appendix 1) (4). It may also be inferred that the electrophoretic movement is
proportional to the field strength and to the zeta potential and can be calculated by

equation #2 (Appendix 1) (4).



While applications of electrokinetics have been used in both the clay and mining
industries for some time now in helping them to separate suspensions of solids and liquids,
the paper industry has done little in there use and application of electrokinetics for
dewatering of sludge. There have been electrokinetic cells designed that will allow for
dewatering and thickening of various materials. One such device is used in the dewatering
of free flowing sewage and consists of a vertical electrode with a moving filter belt (6).
The sewage was found to increase in consistency from 2.63% to 24.2% solids when
passed through this device (6).

There has also been a field study involving the application of electrokinetics to two
sludge landfills (7). In this study, electrodes were placed in the landfills with the cathodes
having the ability to pass and collect water in them. After forty days, the solids level at
one landfill increased from 9% to 27% and the solids level at the other landfill increased
from 6% to 25%.

Another experiment that relates more closely to my thesis was done by a past WMU
student. She studied the effects of electrokinetics on the dewatering rate of sludge under
gravity conditions (4). In that study, sludge was placed between two electrically charged
screens and allowed to drain. The results showed that the application of the electric

current did increase the dewatering rate of the sludge under gravity conditions.



PROCEDURE

The construction of the pressing device consisted of an acrylic tube, several acrylic
discs glued together and molded to fit into the tube, an air powered piston, four screens

(two fine mesh and two large mesh), and a stand (Figure 1).

Figure 1. EXPERIMENTAL DESIGN
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At the bottom end of the acrylic tube, an immobile disc was placed. The disc was
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designed to allow for the collection of the water draining out and was hooked up to a
vacuum that would help remove and collect the water. The bottom disc also had a screw
drilled through it to allow for a charged connection between the power supply and the
screen. The large mesh screen was placed on top of the bottom disc with the fine mesh
screen above it. This allowed for both the connection to the power supply and the
filtering and draining of the water to take place out of the bottom. The top disc was
attached to the piston and could freely move up and down the tube. This disc as well had
a hole drilled in it and a connection to a vacuum to allow for collection of water out of the
top. It too had a screw drilled in it to allow for the connection between the power supply
and the screens.

The experimental design consisted of nine runs. The first run was done as a control
run and had no voltage applied. Runs two through six consisted of varying voltage levels
of 1, 5, 10, 15, and 20 volts with the cathode connected to the bottom of the tube. Runs
seven through nine had the cathode attached to the top and ran under voltage levels of 5,
10, and 15 volts.

The sludge used was a simulated sludge with a 50/50 mixture of hardwood/softwood
fibers and a 20% ash content (10% Ti02, 90% hydrosparse 30 clay). The sludge mixture
was refined in the Valley Beater for two hours under thirty pounds of weight attached to
the arm. A Kajaani fiber length analysis can be seen in Figure 2.

For each run, approximately 100 ml of the simulated sludge was dumped into the
acrylic tube with the screen on the bottom. The top screens were then placed on top of
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Figure 2. Kajaani Fiber Length

Fiber Length Analysis
: 100\
3
2 _ 80
g $
2 %
5 £ 40
) |
8 20
a
0 ] 1 1 || 1  § 1 T T 1 1 1 Ll T
0 N~ [+¢] - ™ < ©0 ©0 (2] - ™ 0 N~ 0 ~ N
© = N € 10 © KN © O v N ® ¢ 0 o ©
o (=) o o o o o o o - - - - - -
Fiber Length (mm)

the sludge and the device was placed under the top disc and press. The piston would then
be activated and would start lowering the disc into the tube. As this was going on, the
vacuums were turned on and the power supply activated at the desired voltage level. As
the discs pressed the sludge together, water would be collected out of the top and bottom
of the tube into separate collection containers. The press was run for two minutes under
18 psi of pressure. During this time, the current was checked periodically. When the two
minutes were up, the press was deactivated and raised, the vacuum turned off and the
power supply turned off. Measurements of the amount of water removed from each end

were taken along with the final pad consistency of the sludge.



RESULTS

Consult Appendix 2 for the data values and results of this experiment.



DISCUSSION

The most difficult and time consuming aspect of this thesis was the designing and
building of the pressing device. A design was needed that would both allow for an electric
current connection and a vacuum drainage connection at both the top and bottom of the
device. Several designs were constructed on paper until an apbropriate one was thought
up. Once the final design was constructed on paper, acquiring the necessary materials and
then finding the right equipment to craft the device became another problem. 1t required
traveling around to several of the departments around campus as well as purchasing
several other small hand tools for the construction. After the device was built, several dry
runs were taken and minor adjustments were made. For the most part, the pressing device
worked fairly well for the conditions it was placed under. One minor problem that was
faced was that water drained out of the bottom of the tube before it could be sucked up by
the vacuum. This may have resulted in some small losses in water but nothing significant.
Time restraints also became a problem since the power supply could only be loaned out
for one week.

The results shown in Figure 3 show that the amount of water drained from the sludge
increased when voltage was applied to the sludge with the cathode at the bottom. This
would support the fact that electro-osmosis and electrophoresis is taking place when a
current is applied. When compared to the control run with O volts, all but one of the other
runs with the cathode at the bottom had a higher final pad consistency than the
consistency at O volts. At one volt, the final pad consistency jumped up by .7 percent
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Figure 3. Voltage Vs. Consistency
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while at five volts, the final pad consistency dropped back down to 21.6% which is even
with the control run. The only explanation that can explain this is that there is some
electrical phenomenon taking place at five volts but the expectation would be for the
consistency of the pad to be between 22.3 % and 24.4%. The amount of water removed
peaked out at 10 volts at 24.4% pad consistency. This consistency is nearly 3% higher
than the control run which is a considerable difference. At 15 and 20 volts, the pad
consistency dropped back down again but still remained higher than the control run. This
information suggests that electrokinetics are at work and that the cathode electrode is
attracting the water molecules so it can be removed from the sludge.

When the cathode was switched to the top of the press, totally different results
occurred. At five volts, the pad consistency dropped, only by .1%, but it still dropped. At
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10 volts, the pad consistency was above the control run consistency but the consistency
was still considerably lower than at 10 volts with the cathode at the bottom. Then at 15
volts the pad consistency dropped below the control run consistency by .7%. One
explanation for this is that since the cathode is attracting the water molecules upwards
through ion migration, it is fighting the pull of gravity and therefore leaving some of the
water molecules suspended in the sludge without allowing them to drain out either the top
or the bottom.

This ion migration theory can also be seen in Figure 4.

Figure 4. Percent of Water Removed
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From this graph, it can be seen that there is a definite difference in drainage amounts
when the cathode is at the bottom as compared to when it is at the top. When the cathode
was at the bottom, more water was removed from the bottom then when the cathode was
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at the top. This is also the case when looking at the drainage amounts out of the top of
the device. When the cathode is at the top, more water is removed out of the top then
when the cathode is at the bottom. Likewise, when the cathode is at the top, more water
remains in the sludge then when the cathode is at the bottom. All of this information
supports the idea that ion migration takes place and moves towards the cathode. It would
also explain why the pad consistencies were higher when the cathode was at the top
because the cathode was pulling the water molecules against the force of gravity and they
were getting suspended in the sludge pad.

Another interesting observation that took place was that as the pressing time increased,
the current decreased. This can be explained by the physics equation which states that
voltage is equal to the product of electrical current and resistance. In this experiment, the
water was the conductor and the fibers provided the resistance. Thus since the voltage
remained constant, as the water was removed, the resistance of the fibers increased

causing the current to decrease.
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CONCLUSIONS

The results of this experiment showed that applying an electric current through a
simulated sludge under pressing conditions did increase the amount of dewatering in the
sludge. The amount of water removed was the highest when the cathode was placed at
the bottom of the device under a voltage of 10 volts. When the cathode was placed at the
top, the migration of the water towards the cathode had to fight the pull of gravity and
thus did not get as favorable results. In some cases it even decreased the amount of water
removed when compared to a control run with O volts. The ion migration theory could be
seen when looking at the amount of water removed off of each side. When the cathode
was attached to the top, more water was drained off the top than when the anode was
attached there. Along the same lines, when the cathode was attached to the bottom, more

water was removed than when the anode was attached there.
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RECOMMENDATIONS

As these results indicate and past studies have shown, the application of an electric
field to sludge does increase the amount of water removed filom the sludge. Thus I would
recommend that further electrokinetic studies be done on sludge that simulates the higher
consistencies found in the paper industry today (around 30% - 50%). I would also
recommend electrokinetic studies on furnish pulps to see if it has the same effects it does
on sludge. If so, there may be practical applications of applying this knowledge to the

paper machine itself in helping to increase dewaterability on the machine.
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APPENDIX

Equation #1
The pressure developed due to an applied voltage through a capillary resulting in electro-

osmotic flow is calculated as follows:

AP = 2LeF1

7U'2

€ = zeta potential & = dielectric constant of bulk phase  F = field strength
1= capillary length  r = capillary radius

Equation #2
The electrophoretic velocity:

v =_CeF
47n

n = viscosity of bulk phase
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APPENDIX #2

*This data was collected at the end of a 2 minute time period under 18 psi of pressure.
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Table #1
Voltage Current | Caic. Beg. Wt. l-)rainage l-)rainage Wt. After Wt. After Consistency |Std. Dev.
(Voits) | Test# (ma) |of Sample (gms)| Cathode/Anode |Bottom (ml)] Top (ml) | Pressing (gms)| Drying (gms) | After Press (%) Jof Cons.

1 0 116 Bottom/Top 56 37 23.01 4.97 21.6
0 2 0 122 Bottom/Top 60 40 24.82 5.23 21.1
3 0 122 Bottom/Top 64 37 23.77 5.25 22.1

Average 21.6 0.414
1 410 10 126 Bottom/Top 68 38 24.19 5.40 22.3
1 2 41010 128 Bottom/Top 66 43 24.36 5.49 225
3 41010 134 Bottom/Top 62 46 26.08 5.78 22.2

Average]| 22.3 0.153]
1 50 - 80 109 Bottom/Top 59 37 21.23 2.70 22.1
5 2 50 - 80 140 Bottom/Top 70 44 28.03 6.03 215
3 50 - 80 143 Bottom/Top 68 45 29.04 6.14 21.1

| Average 21.6 0.411
17 ]100 - 200 98 Bottom/Top 51 32 17.69 4.20 23.7
10 2 |100-200 144 Bottom/Top 76 36 23.94 6.19 25.9
3 |100-200 125 Bottom/Top 67 33 22.81 5.38 236

Average 24.4 1.035)
1 ]200 - 350 117 Bottom/Top 63 32 22.59 5.05 22.4
15 2 |200- 350[ 137 Bottom/Top 75 37 26.03 5.88 226
3 |200-350 109 Bottom/Top 58 35 20.64 468 22.7

Average 22.5 0.135|
1 [300 - 400 123 Bottom/Top 63 36 23.75 5.27 22.2
20 2 |300- 4oo| 127 Bottom/Top 66 37 24.80 5.47 22.1
3 |300- 400 126 Bottom/Top 70 30 25.07 5.41 21.6

Average 21.9 0.262




APPENDIX #2 (cont.)

Table #1 (cont.)

Voltage Current | Calc. Eeg. Wt. ﬁrainage Brainage Wt. After Wt. After Consistency |Std. Dev.
(Volts) | Test# (ma) |of Sample (gms)| Cathode/Anode |Bottom (ml)] Top (ml) | Pressing (gms)| Drying (gms) | After Press (%) Jof Cons.
1 40- 70 116 Top/Bottom 53 39 23.35 5.00 21.4
5 2 40-70 129 Top/Bottom 56 42 25.86 5.55 21.5
3 40-70 132 Top/Bottom 61 45 26.33 5.66 21.5
Average 21.5 0.034
1 100 - 200 103 Top/Bottom 58 38 20.01 4.42 ~22.1
10 2 100 - 200 135 Top/Bottom 60 54 25.88 5.80 224
3 100 - 200 128 Top/Bottom 60 46 24.73 5.50 22.2
Average 22.2 0.132
1 |200 - 350 110 Top/Bottom 52 35 22.64 474 20.9
15 2 200 - 350 126 Top/Bottom 56 46 25.32 5.40 21.3
3 200 - 350 128 Top/Bottom 59 47 27.10 5.51 20.3
Average 20.9 0.409

*This data was collected at the end of a two minute time period under 18 psi of pressure.
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APPENDIX #2 (cont.)

Table #2 Percent of Water Removed

Voltage From From In Cake
(Volts) Test # Cathode/Anode |Bottom (%)] Top (%) (%)
1 " Bottom/T op 51 33 16
0 2 Bottom/Top 51 34 17
3 Bottom/Top 55 32 16
Average 52 33 16
1 Bottom/T. op 56 31 16
1 2 Bottom/Top 54 35 15
3 Bottom/Top 48 36 16
Average 53 34 16
1 Bottom/T op 56 35 16
5 2 Bottom/Top 52 33 16
3 Bottom/Top 50 34 17
Average 53 34 16
1 ~ Bottom/T op 54 34 14
10 2 Bottom/Top 55 26 13
3 Bottom/Top 56 28 15
Average 55 29 14
1 Bottom/Top 56 28 16
15 2 Bottom/Top 57 28 15
3 Bottom/Top 56 34 15
Average 56 30 15
1 Bottom/Top 53 3 16
20 2 Bottom/Top 54 30 16
3 Bottom/Top 58 25 17
Average 55 29 16
1 Top/Bottom 48 35 17
S 2 Top/Bottom 48 36 16
3 Top/Bottom 50 35 17
Average 49| 35 17|
1 Top/Bottom 58 38 16
10 2 Top/Bottom 47 42 16
3 Top/Bottom 49 37 16
Average 51 39| 16
1 Top/Bottom 49 33 171
15 2 Top/Bottom 46 38 17
3 Top/Bottom 48 38 17
Average 48 36 17]
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