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Abstract. The wasted activated sludge dewaterability represents a major con-
cern for Wastewater Treatment Plants (WWTPs) managers. Indeed, whereas the
dewatered sludge could represents a re-usable matrix, the principal drawback
related to the wasted sludge dewaterability is the high water content due to the
presence of extracellular polymeric substances (EPS) that allow the trapping of
water molecules within the bio sludge flocs. In order to provide an outlook of
the dewaterability features of activated sludge derived from advanced WWTP,
the present research reports a long term survey (over two years) aimed at
assessing the principal dewaterability parameters of the sludge wasted from
different Membrane BioReactor pilot plants.
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1 Introduction

The wasted activated sludge dewaterability represents a major concern for Wastewater
Treatment Plants (WWTPs) managers. Indeed, whereas the dewatered sludge could
represents a re-usable matrix (e.g., as a supplement to composting or as a feedstock to
energy production, Skinner et al. 2015), the re-use results limited by the high cost
involved in transport and drying.

Furthermore, when sludge features avoid the re-use, the disposal costs significantly
affect the WWTP economical management, up to 60% (Chen et al. 2016; Low et al.
2000). As the cost for sludge treatment and disposal ranges around 280–470 €/t and
since 1t of fresh sludge to be disposed is composed on average by 0.25–0.30 t of
suspended solids (SS), the correct understanding of dewaterability phenomenon rep-
resents a key factor in order to improve the effectiveness of water separation process
(Capodici et al. 2016; Ginestet 2007).

In order to cope with the needing of reduce sludge impact on the economic
management of WWTP, researcher and designer interest moved in developing and
refining treatment technologies such as membrane bioreactors (MBR), capable to
reduce the specific sludge production. However, despite such efforts mechanical
dewatering represents up to nowadays a crucial step in reducing the amount of sludge
to be disposed (Marinetti et al. 2009).
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Several studies have been carried out in order to identify the most effective
dewatering strategy (among others, Bonilla et al. 2015; Chen et al. 2016; Liu et al.
2016; Rao et al. 2017). The principal drawback related to the wasted sludge dewat-
erability is the high water content due to the presence of extracellular polymeric
substances (EPS) that allow the trapping of water molecules within the bio sludge flocs
(Mowla et al. 2013).

In details, four different types of water contained in sludge have been defined: free
water, interstitial water, vicinal water and water of hydratation.

More in details, gravitational settling can easily separate free water. Mechanical
dewatering devices, such as centrifugation or vacuum filtration, can achieve interstitial
water separation. Anymechanical device cannot separate vicinal water, physically bound
to solid particles surface. Water of hydratation, chemically bound to solid particles sur-
face, can be separated only by heating at temperature above 105°C (Mowla et al. 2013).

However, it is worth noticing that also the WWTP layout, affecting the metabolic
reactions that may occur, play a role in the complex dewaterability phenomenon.
Indeed, the sludge origin is recognized as one of the key factor involved in sludge
dewaterability (Capodici et al. 2016; Jin et al. 2004; Wang et al. 2014).

In order to provide an outlook of the dewaterability features of activated sludge
derived from advanced WWTP, the present research reports a long term survey (over
two years) during which the principal dewaterability parameters of the wasted sludge
were investigated.

In details, four different WWTPs layout were investigated: System batch reactor
(SBR), pre denitrification scheme, University of Cape Town (UCT) scheme and
Integrated Fixed Film Activated Sludge (IFAS) operated in UCT scheme.

Furthermore, it was applied also a variation of the influent wastewater features and
the operational parameters, such as sludge retention time (SRT) and hydraulic retention
time (HRT). During the aforementioned layout the solid liquid separation was achieved
by means of an hollow fibres ultrafiltration (UF) unit, thus applying the Membrane Bio
Reactor (MBR) technology.

2 Materials and Methods

The sludge investigated in the present study were collected from 4 different MBR pilot
plant, realized at the Laboratory of Sanitary and Environmental Engineering of Palermo
University, fed with wastewater taken from the sewer system of the Palermo University
and operated in 7 different conditions (see Table 1).

During the configuration I, II and III, solid–liquid separation was performed via UF
membrane module Zenon Zeeweed, ZW 10, with specific area equal to 0.98 m2 and a
nominal porosity of 0.04 µm. During configurations IV, V, VI, and VII the solid–liquid
separation phase was carried out by means of an UF module Koch PURON® 3 bundle
with specific area equal to 1.40 m2 and a nominal porosity of 0.03 µm.

The dewaterability was investigated by measuring, in accordance with literature
(Capodici et al. 2016), in mixed liquor samples collected from each biological reactor,
the Capillary Suction Time (CST) and the Specific Resistance to Filtration (SRF) in
void conditions (–50 kPa).
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Furthermore, in order to highlight the influence exerted by the biological behaviour
of biomass on the dewaterability features, the main chemical parameters were measured
in accordance with standard methods (APHA 2005): among others, Chemical Oxygen
Demand (COD), Total Nitrogen (TN), and nitrogen forms (NH4-N, NO2-N, NO3-N),
Total Suspended Solid (TSS). Moreover, since the EPS content of mixed liquor is
recognized as a key factor related to sludge dewaterability features, the total EPS
content and the Soluble Microbial Product (SMP) were measured in accordance with
literature (Capodici et al. 2014; Cosenza et al. 2013).

3 Results

A correspondence between the sludge dewaterability features and the different lay out
configurations was noticed.

In Fig. 1, the mean values of CST measured in the aerobic reactor during each
experimental Phase are depicted.

Reported data allow to observe that during the Phases I, II and III (salinity stepwise
phase and diesel fuel addition, see Table 1), the CST increased with the salinity
increase. Thus, when diesel fuel was treated, the CST (as well as SRF) sharply
increased (142 s as maximum CST measured during Phase III).

The SRF measurements provided similar results, thus corroborating the CST
findings with respect to the progressive decrease of sludge filterability during Phase III.
The worsening in the sludge filterability was also noticed by filtering the sample
collected for the chemical analysis. Indeed, a longer duration of the vacuum pump
operations needed to collect significant volumes of filtered sample was required during
Phase III.

Furthermore, after filtration, the filtration media resulted covered by a homoge-
neous jelly layer. Such result is likely ascribable to a progressive increase in sludge
viscosity due both to the salinity increase and to the hydrocarbon presence.

Table 1. Layout and operative condition of the investigated MBR systems

Phase WWTP Layout MBR
module

Operative condition Reference

I SBR-DN-MBR ZW10 Stepwise salinity (0–10
gNaCl L−1)

(Mannina et al.
2016a)

II DN-MBR ZW10 Stepwise salinity (10–20
gNaCl L−1)

(Mannina et al.
2016b)

III DN-MBR ZW10 20 gNaCl L−1 and diesel
fuel

(Mannina et al.
2016b)

IV UCT-MBR PURON Influent C/N variation (Mannina et al.
2016c)

V UCT-IFAS-MBR PURON SRT variation
VI UCT-IFAS-MBR PURON Influent C/N variation
VII UCT-IFAS-MBR PURON HRT/SRT variation
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Furthermore, during the experimentation it was noticed the influence exerted by
EPS and SMP content. In Fig. 2 some correlations involving EPS, SMP, CST and SRF
during Phase V are depicted.

Fig. 1. Mean values of Capillary Suction Time measured on sludge collected from aerobic
reactor during the experimentation

Fig. 2. Correlation during Phase V: CST vs specific bound carbohydrates EPS in anaerobic
reactor (a); specific bound proteins and carbohydrates EPS vs SRF in anoxic reactor(b); CST and
SRF vs specific bound carbohydrates EPS in aerobic reactor (c); CST and SRF vs specific bound
carbohydrates EPS in MBR reactor (d)
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Results reported in Fig. 2 highlight that the carbohydrate fraction of EPS signifi-
cantly affected the dewaterability during Phase II. In details sludge derived from aer-
obic and MBR reactors (Fig. 2c and d) resulted affected from carbohydrate in terms of
CST as well as SRF. Conversely, in the anoxic reactor the influence exerted by the
protein fraction resulted evident (R2 = 0.81).

The anaerobic reactor resulted less affected by the EPS content likely due to the
lowest TSS concentration.

4 Conclusion

The hardest sludge to be dewatered was found during the phases I, II and III. Such
result points out the importance played by influent features in affecting dewaterability.
Indeed, during the stepwise salinity increase, the CST as well as the SRF grew
up. Moreover, when hydrocarbon was treated (Phase III), the dewatering operations
resulted extremely difficult to accomplish. Moreover, this finding allows affirming that
further study aimed at improving the dewaterability of sludge originated from industrial
wastewater treatment are needed.
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