28,310 research outputs found

    Magnetic monolayer Li2_{2}N: Density Functional Theory Calculations

    Full text link
    Density functional theory (DFT) calculations are used to investigate the electronic and magnetic structures of a two-dimensional (2D) monolayer Li2_{2}N. It is shown that bulk Li3_{3}N is a non-magnetic semiconductor. The non-spinpolarized DFT calculations show that pp electrons of N in 2D Li2_{2}N form a narrow band at the Fermi energy EFE_{\rm{F}} due to a low coordination number, and the density of states at the Fermi energy (g(EFg(E_{\rm{F}})) is increased as compared with bulk Li3_{3}N. The large g(EFg(E_{\rm{F}}) shows instability towards magnetism in Stoner's mean field model. The spin-polarized calculations reveal that 2D Li2_{2}N is magnetic without intrinsic or impurity defects. The magnetic moment of 1.0\,μB\mu_{\rm{B}} in 2D Li2_{2}N is mainly contributed by the pzp_{z} electrons of N, and the band structure shows half-metallic behavior. {Dynamic instability in planar Li2_{2}N monolayer is observed, but a buckled Li2_{2}N monolayer is found to be dynamically stable.} The ferromagnetic (FM) and antiferromagnetic (AFM) coupling between the N atoms is also investigated to access the exchange field strength. {We found that planar (buckled) 2D Li2_{2}N is a ferromagnetic material with Curie temperature TcT_{c} of 161 (572) K.}Comment: Euro Phys. Lett. 2017 (Accepted

    Artificial molecular quantum rings: Spin density functional theory calculations

    Full text link
    The ground states of artificial molecules made of two vertically coupled quantum rings are studied within the spin density functional theory for systems containing up to 13 electrons. Quantum tunneling effects on the electronic structure of the coupled rings are analyzed. For small ring radius, our results recover those of coupled quantum dots. For intermediate and large ring radius, new phases are found showing the formation of new diatomic artificial ring molecules. Our results also show that the tunneling induced phase transitions in the coupled rings occur at much smaller tunneling energy as compared to those for coupled quantum dot systems.Comment: 10 pages, 6 figure

    Benchmark density functional theory calculations for nano-scale conductance

    Get PDF
    We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory (DFT) methods, namely an ultrasoft pseudopotential plane wave code in combination with maximally localized Wannier functions, and the norm-conserving pseudopotential code Siesta which applies an atomic orbital basis set. For all systems we find that the Siesta transmission functions converge toward the plane-wave result as the Siesta basis is enlarged. Overall, we find that an atomic basis with double-zeta and polarization is sufficient (and in some cases even necessary) to ensure quantitative agreement with the plane-wave calculation. We observe a systematic down shift of the Siesta transmission functions relative to the plane-wave results. The effect diminishes as the atomic orbital basis is enlarged, however, the convergence can be rather slow.Comment: 10 pages, 7 figure

    Density functional theory calculations of adsorption-induced surface stress changes

    Get PDF
    Density functional theory calculations of adsorbate-induced surface stress changes have been performed for a number of adsorbate and overlayer systems for which experimental data exists, namely: oxygen and sulphur adsorption on Ni(1 0 0); oxygen adsorption on W(1 1 0); pseudomorphic growth of Ni on Cu(1 0 0) and of Fe on W(1 1 0); oxygen adsorption on a 5 ML pseudomorphic film of Ni(1 0 0) grown on Cu(1 0 0). The theoretical calculations reproduce all the qualitative features of the experimental data, but there are some significant quantitative differences, most notably for the two atomic adsorbates on the bulk Ni(1 0 0) surface, for which the theoretical stress changes are substantially smaller than the experimental ones, a situation not obviously attributable to experimental error. For the W(1 1 0)/Fe system there is also a marked difference between experiment and theory in the coverage at which key surface stress changes occur

    Density functional theory calculations on magnetic properties of actinide compounds

    Get PDF
    We have performed a detailed analysis of the magnetic (collinear and noncollinear) order and atomic and the electron structures of UO2, PuO2 and UN on the basis of density functional theory with the Hubbard electron correlation correction (DFT+U). We have shown that the 3-k magnetic structure of UO2 is the lowest in energy for the Hubbard parameter value of U=4.6 eV (and J=0.5 eV) consistent with experiments when Dudarev's formalism is used. In contrast to UO2, UN and PuO2 show no trend for a distortion towards rhombohedral structure and, thus, no complex 3-k magnetic structure is to be anticipated in these materials.Comment: 5 pages, 3 figures 1 table, submitted to Phys. Chem. Chem. Phy

    Fragment Approach to Constrained Density Functional Theory Calculations using Daubechies Wavelets

    Full text link
    In a recent paper we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions is optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e. without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

    Density functional theory calculations of anisotropic constitutive relationships in alpha-cyclotrimethylenetrinitramine

    Get PDF
    Constitutive relationships in the crystalline energetic material alpha-cyclotrimethylenetrinitramine (alpha-RDX) have been investigated using first-principles density functional theory. The equilibrium properties of alpha-RDX including unit cell parameters and bulk modulus, as well as the hydrostatic equation of state (EOS), have been obtained and compared with available experimental data. The isotropic EOS has been extended to include the anisotropic response of alpha-RDX by performing uniaxial compressions normal to several low-index planes, {100}, {010}, {001}, {110}, {101}, {011}, and {111}, in the Pbca space group. The uniaxial-compression data exhibit a considerable anisotropy in the principal stresses, changes in energy, band gaps, and shear stresses, which might play a role in the anisotropic behavior of alpha-RDX under shock loading
    corecore