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Benchmark density functional theory calculations for nanoscale
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DK-2800 Kgs. Lyngby, Denmark
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We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five
representative single-molecule junctions. The transmission functions are calculated using two
different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code in
combination with maximally localized Wannier functions and the norm-conserving pseudopotential
code SIESTA which applies an atomic orbital basis set. All calculations have been converged with
respect to the supercell size and the number of k� points in the surface plane. For all systems we find
that the SIESTA transmission functions converge toward the plane-wave result as the SIESTA basis is
enlarged. Overall, we find that an atomic basis with double zeta and polarization is sufficient �and
in some cases, even necessary� to ensure quantitative agreement with the plane-wave calculation.
We observe a systematic downshift of the SIESTA transmission functions relative to the plane-wave
results. The effect diminishes as the atomic orbital basis is enlarged; however, the convergence can
be rather slow. © 2008 American Institute of Physics. �DOI: 10.1063/1.2839275�

I. INTRODUCTION

First-principles calculations of electrical conductance in
nanoscale contacts represent a main challenge in computa-
tional nanophysics. The interest for this type of calculations
began in the mid-1990s, where advances in experimental
techniques made it possible to contact individual molecules,
thereby making it possible to study the transport of electrons
through true nanoscale structures.1,2 Apart from the scientific
interest, the development of reliable simulation tools for
nanoscale quantum transport is relevant not only in relation
to the continued miniaturization of conventional semicon-
ductor electronics but also for the introduction of a new gen-
eration of molecule based electronics.

It has by now become standard to calculate conductance
in nanoscale contacts by employing a combination of non-
equilibrium Green’s function theory �NEGF� and ground
state density functional theory �DFT�. The resulting NEGF-
DFT formalism provides a numerically efficient way of
evaluating the Landauer-Büttiker conductance due to elec-
trons moving in the effective Kohn-Sham �KS� potential
without having to calculate the scattering states explicitly. It
has been applied extensively to a number of different sys-
tems ranging from pure metallic contacts, over organic mol-
ecules, to carbon nanotubes suspended between metallic
electrodes. Overall, the approach has been successful in de-
scribing qualitative features and trends;3,4 however, quantita-
tive agreement with experiments has mainly been obtained
for strongly coupled systems such as metallic point contacts,
monatomic chains, as well as junctions containing small
chemisorbed molecules.5–7

It is generally accepted that the NEGF-DFT method only
provides an approximation to the true conductance—even if

the exact exchange-correlation �xc-�functional could be used,
and the quality of the result is expected to be strongly system
dependent. Moreover, it is not easy to estimate the effect of
using approximate xc functionals such as the local-density
approximation �LDA� or generalized gradient approximation
�GGA�. We mention here that more sophisticated methods
for quantum transport based on configuration interaction, the
GW method, time-dependent DFT, and the Kubo formula
have recently been proposed.8–12 However, these schemes
are considerably more demanding than the NEGF-DFT and
at present, they cannot replace NEGF-DFT in practical
applications.

Irrespective of the validity of the NEGF-DFT approach
and the role played by the approximate functionals, it re-
mains important to establish a general consensus concerning
the exact result of a NEGF-DFT calculation for a given xc
functional and specified system geometry, i.e., a benchmark.
Although this might seem trivial, the present situation is
rather unsatisfactory as different results have been published
by different groups for the same or very similar systems
�several examples will be given in the text�. Perhaps, the best
example is provided by benzene dithiolate between gold con-
tacts where the calculated conductance varies with up to two
orders of magnitude for similar geometries.3,13–18

The relatively large variation of the results indicates that
the conductance, or more generally, the elastic transmission
function, is a highly sensitive quantity. Indeed, the imple-
mentation of the open boundary conditions defining the scat-
tering problem represents some numerical challenges. Small
errors in the description of the coupling between the finite
scattering region and the infinite leads as well as improper
k-point samplings in supercell approaches can introduce sig-
nificant errors in the resulting transmission function.a�Electronic mail: strange@fysik.dtu.dk.
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In this paper, we take a first step toward establishing a
common reference for NEGF-DFT calculations by perform-
ing benchmark calculations for a set of five representative
nanoscale contacts. The benchmarking is achieved by com-
paring the transmission function obtained using two different
and independent, albeit similar, NEGF-DFT methods: In one
case, the Hamiltonian is obtained from the SIESTA DFT pro-
gram which uses a basis of localized pseudoatomic orbitals
�PAOs� together with norm-conserving pseudopotentials.
The second method applies a basis of maximally localized
Wannier functions �WFs� obtained from the DACAPO DFT
code which uses plane waves and ultrasoft pseudopotentials.
In both cases, we use periodic boundary conditions in the
directions perpendicular to the transport direction and we
apply the PBE xc functional.19

The five reference systems we have chosen for our
benchmark study are �i� a monoatomic gold chain with a
single CO molecule adsorbed, �ii� a three-atom Pt chain sus-
pended between Pt electrodes, �iii� an H2 molecule bridging
two Pt electrodes, �iv� benzene-dithiolate �BDT� between Au
electrodes, and �v� bipyridine between Au electrodes. The
systems have been chosen according to the criterion that both
experimental data as well as previous NEGF-DFT calcula-
tions are available in the literature. Furthermore, they are
representative in the sense that they cover a broad class of
systems: Homogeneous and heterogeneous, computationally
simple �one dimensional� and more complex, and strongly as
well as weakly coupled.

A main result of our work is summarized in Fig. 1 where
we show the overall deviation,

� =
1

E0 − E1
�

�F+E1

�F+E0

�TWF��� − TPAO����d�, �1�

between the transmission functions calculated using the WF
and PAO basis sets, respectively. The energy E1 is taken as
the lowest lying band edge in the lead, while the cutoff en-
ergy E0 is taken to be the energy above which the WFs are
no longer able to reproduce the exact KS eigenstates of the
system which is typically �3 eV above the Fermi level. For
all the systems, we find that the deviation � decreases as the
SIESTA basis is enlarged, meaning that the SIESTA transmis-
sion functions converge toward the WF result. We take this
as evidence for the correctness of the WF results and the

justification for the use of the term benchmark calculation.
In general, we find that the double-zeta polarized �DZP�

basis provides very good agreement with the WF basis,
whereas the single-ZP �SZP� and, in particular, the SZ basis
can produce substantially incorrect features in the transmis-
sion function.

The paper is organized as follows. In Sec. II, we briefly
review the NEGF-DFT formalism and introduce the two spe-
cific implementations used in the present study. In Secs.
III–VI, we present the benchmark calculations for the five
reference systems, and in Sec. VIII, we give our conclusions.

II. METHOD

In this section, we first outline the NEGF-DFT method
which has become standard for nanoscale conductance cal-
culations. The two specific NEGF-DFT implementations ap-
plied in the present work are then introduced and their key
parameters are discussed. We then consider the important
issue, common to both methods, of how to treat periodic
boundary conditions in the plane perpendicular to the trans-
port direction. We end the section with a discussion of the
advantages and disadvantages of the two methods.

A. NEGF-DFT

The zero temperature, linear response conductance due
to noninteracting electrons scattering off a central region �C�
connected to thermal reservoirs via two ballistic leads �L and
R� can be written as

G = G0T��F� , �2�

where T��� is the elastic transmission function and G0

=2e2 /h is the quantum unit of conductance. Using the NEGF
formalism, Meir and Wingreen have derived a very useful
formula which expresses the transmission function in terms
of the Green’s function of the central region,20

T��� = Tr�Gr����L���Ga����R���� . �3�

In this expression, the trace runs over the central region basis
functions and �L/R is obtained from the lead self-energies
�defined in Eq. �5� below� as �L/R= i��L/R−�L/R

† �.
In the NEGF DFT method, both the leads and central

region are modeled by the effective KS Hamiltonian, ĥKS

= 1
2�2+�eff�r�. The self-consistent effective potential consists

of the well-known parts �eff=�ext+�H+�xc. Introducing a ba-
sis of localized orbitals, 	�i
, we define the Hamiltonian and

overlap matrices by Hij = ��i�ĥKS�� j� and Sij = ��i �� j�, respec-
tively. In the original derivation by Meir and Wingreen, the
basis was assumed to be orthogonal, but the generalization to
nonorthogonal basis sets shows that Eq. �3� still holds when
the Green’s function is defined as21

G�z� = �zSC − HC − �L�z� − �R�z��−1. �4�

Here, the matrices HC and SC are the blocks of H and S
corresponding to the central region basis functions. The re-
tarded Green’s function Gr��� is obtained for z=�+ i0+, and
the advanced Green’s function is obtained for z=�− i0+ or
Ga= �Gr�†.

The self-energy of lead � is given by

FIG. 1. �Color online� Deviation between the WF and SIESTA transmission
functions for the five reference systems studied. The dashed line indicates
zero deviation from the WF transmission. Notice that the SIESTA results
converge toward the WF result as the PAO basis is enlarged.
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���z� = �zSC� − HC��g�
0�z��zS�C − H�C� , �5�

where HC� and SC� are the coupling and overlap matrices
between basis functions in the central region and lead �,
respectively. g�

0 is the surface Green’s function describing the
isolated semi-infinite lead, g�

0�z�= �zS�−H��−1, which can be
calculated recursively using the decimation technique.22 We
have used a finite value for the positive infinitesimal 0+ in
the leads and in the central region of 10−1 and 10−3 eV, re-
spectively. By using a relatively large infinitesimal in the
lead, we obtain a considerably speedup due to faster conver-
gence of the recursive calculation of the surface Green’s
function. We checked that a smaller value does not change
our results.

B. Method 1: Wannier functions from plane-wave DFT

In method 1, the Kohn-Sham Hamiltonian is obtained
from an accurate plane-wave pseudopotential DFT code.23

The ion cores are replaced by ultrasoft pseudopotentials,24

and we use an energy cutoff of 25 Ry for the plane-wave
expansion. The Kohn-Sham eigenstates are transformed into
partly occupied WFs,25 which are used to obtain a tight-
binding-like representation of the Hamiltonian. The WFs are
constructed such that any eigenstate below a selected energy
E0 can be exactly represented by a linear combination of
WFs. In the applications, we have chosen E0 in the range of
2–4 eV above the Fermi level. In this way, the accuracy of
the plane-wave calculation is carried over to the WF basis for
all energies relevant for transport.

By performing separate DFT calculations for the �peri-
odic� leads and C, we obtain a set of WFs for each region.
Note that C always contains a few buffer layers of the lead
material on both sides of the nanocontact to ensure that the
KS potential at the end planes of C has converged to its
value in the leads. Since the WFs in the lead, in general, will
differ from those in the outermost lead unit cells of the cen-
tral region, care must be taken to evaluate the coupling and
overlap matrices HC� and SC�. Notice also that although the
WFs by construction are orthogonal within each region, WFs
belonging to different regions will, in general, be nonor-
thogonal. For more details on the construction of the WFs
and the calculations of the Hamiltonian matrix for the com-
bined L-C-R system, we refer to Ref. 26. We shall refer to
the results obtained from method 1 as the WF results.

C. Method 2: PAO SIESTA basis

Method 2, is based on the DFT code SIESTA,27 which
uses finite range PAOs �Ref. 28� as basis functions and
Troullier-Martins norm-conserving pseudopotentials.29 As in
method 1, the Hamiltonians for the leads and the central
region are obtained from separate calculations. Because the
KS potentials to the left and right of C, by definition have
converged to the value in the leads, we can take the coupling
between central region and lead �, HC�, from the pure lead
calculation. Note that this is in contrast to method 1, where
the different shapes of the WFs in the periodic lead and the
lead part of the central region make it essential to evaluate
the coupling matrix directly. Note also that this approxima-

tion, i.e. the use of the intralead coupling matrix elements
�H��� in HC�, can be controlled by including a larger portion
of the lead in C. In practice, we find that three to four atomic
layers must be included in C on both sides of the junction to
obtain converged conductances.

In the present study, we restrict ourself to the standard
PAOs for SIESTA: SZ, SZP, and DZP. For the confinement
energy, determining the range of PAOs, we use 0.01 Ry, and
for the mesh cutoff, we use 200 Ry.

D. Common ingredients

In both methods 1 and 2, we treat exchange and corre-
lation effects with the PBE energy functional.19 Furthermore,
we impose periodic boundary conditions in the surface plane
directions. This means that we are, in fact, considering the
conductance of a periodic array of junctions instead of just a
single junction. Instead of the localized basis function �n�r�
�this could be a WF or a PAO�, we thus consider the Bloch
function

�nk�
= 


R�

eik�·R��n�r − R�� , �6�

where R� runs over supercells in the surface plane and k� is a
wave vector in the corresponding two-dimensional Brillouin
zone �BZ�. Since k� is a good quantum number, we can con-
struct the Hamiltonian, H�k��, for each k point separately.
This, in turn, implies that the conductance per junction is
given by the average

G = 

k�

w�k��G�k�� , �7�

where w�k�� are symmetry determined weight factors. Unless
stated otherwise, we have used a 4	4 Monkhorst-Pack
k�-point sampling of the surface BZ, which for all the sys-
tems studied yields conductances converged to within a few
percent.26,30 We take the Fermi level of the bulk lead as the
common Fermi level of the combined system by shifting the
levels in the central region by a constant. This is done by
adding to HC the matrix 
Sc, where 
= �HL�0,0− �HC�0,0 and
the �0,0� element corresponds to the on-site energy of a basis
function located near the interface between L and C.

The main advantages of method 1 are the following: �i�
The accuracy of the plane-wave calculation carries over to
the WF basis set. �ii� The WF basis set is truly minimal and
often results in even fewer basis functions than a SZ basis.
The WF basis, thus, combines high accuracy with high effi-
ciency. The price that one has to pay is that the actual con-
struction of well localized WFs is not always straightforward
and requires some user interaction, in particular, for metallic
systems. Also, the lack of finite support of the WFs is un-
wanted in the context of transport; although in practice, it is
not a serious problem since the WFs are well localized. Fi-
nally, as already explained above, the risk of obtaining dif-
ferent WFs for two similar but nonidentical systems renders
it less straightforward to patch the parts together using the
Hamiltonians obtained for the separate calculations.

Most of the disadvantages of the WF basis are resolved
by the PAO basis set: By construction, they have finite sup-
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port and are identical as long as the atomic species on which
they are located are the same. This renders it straightforward
to patch together Hamiltonians for separate subsystems as
long as the KS potential can be smoothly matched at the
interfaces. On the other hand, to obtain an accuracy matching
the WFs, one needs to use a significantly larger number of
orbitals and, thus, longer computation times as compared to
the WF method.

III. GOLD CHAIN WITH CO

In this section, we calculate the conductance of an infi-
nite gold chain with a single CO molecule adsorbed. Scan-
ning tunneling microscope �STM� experiments suggest that
CO strongly depresses the transport of electrons through
gold wires.31 This has been supported by NEGF-DFT
calculations32 which show that the transmission function in-
deed drops to zero at the Fermi level. The use of infinite gold
chains as leads is clearly an oversimplification of the real
situation; however, the model seems to capture the essential
physics, i.e., the suppression of the conductance, and further-
more, is well suited as a benchmark system due to its sim-
plicity.

The geometry of the system is shown in Fig. 2�a�. We
use a supercell with transverse dimensions of 12	12 Å2 and
take all bond lengths from Ref. 32: dAu–Au=2.9 Å, dAu–C

=1.96 Å, and dC–O=1.15 Å. The Au atom holding the CO is
shifted toward CO by 0.2 Å. In method 1, we obtain six WFs
per Au atom and seven WFs for the CO molecular states.
Due to the elongated bond length of the Au wire, we found it
necessary in method 2 to increase the range of the Au PAOs
in order to converge the band structure of the Au wire. The
confinement energy was, therefore, in this case set to
10−4 Ry.

In Fig. 2�b�, we show the calculated transmission func-
tion using three different PAO basis sets and the WF basis
set. Overall, the PAO result approaches the WF result as the
basis set is enlarged. For the largest PAO basis �DZP�, the
agreement is, in fact, very satisfactory given the differences
in the underlying DFT methods, e.g., ultrasoft versus norm-

conserving pseudopotentials. The remaining difference can
be further reduced by a rigid shift of the DZP transmission
by about 0.15 eV.

All transmission functions feature an antiresonance near
the Fermi level. However, upon enlarging the PAO basis, the
position of the antiresonance shifts as follows: −0.27 �SZ�,
−0.16 �SZP�, −0.06 �DZP�, and 0.12 eV �WF�. Note that the
position of the antiresonance obtained with the WFs is ap-
proached as the PAO basis set is increased. Also, the curva-
ture of the antiresonance is improved as the PAO basis set is
enlarged. The improvements in these features are, however,
not directly reflected in the conductances indicated in the
parentheses following the legends in Fig. 2�b�. The reason
for this apparent disagreement is the rigid shift between the
PAO and WF transmission functions.

We observe that our results differ from the calculation in
Ref. 32: While the latter finds two peaks in the energy range
of 0–2 eV, our converged transmission function shows a
single broad peak. In general, both our PAO and WF based
transmission functions present less structure than the trans-
mission function reported in Ref. 32. We suspect that these
differences are related to the way the coupling H�C is calcu-
lated in Ref. 32.

IV. Pt CONTACT

Atomic point contacts formed from late transition metals
such as Au, Pt, and Pd show very stable and reproducible
features in conductance measurements.1 This, together with
the simplicity implied by their homogeneity, makes them
ideal as benchmark systems for transport calculations. Here,
we consider the conductance of a pure Pt contact for which
both experimental conductance data33–36 as well as theoreti-
cal calculations5,7,37 are available.

Conductance histograms obtained from mechanically
controlled break junction experiments on pure Pt samples
show a peak near 1.5G0, indicating that as a Pt contact is
pulled, structures with a conductance at around 1.5G0 are
frequently formed. NEGF-DFT calculations have shown that
�zigzag� monatomic Pt chains indeed have a conductance
close to this value.5,7,36 Moreover, the calculations predict an
increasing conductance as the Pt chain is stretched and
evolves from a zigzag to a linear configuration. This effect
has also been observed experimentally.35

In Fig. 3�a�, we show the supercell used to model the
scattering region of the Pt contact. The Pt contact is modeled
by two four-atom pyramids attached to �111� surfaces con-
taining 3	3 atoms in the surface plane. In order to ensure
that the effective KS potential has converged to its bulk
value at the end planes of the supercell, we include three to
four atomic layers �ABC-CABC stacking� on either side of
the pyramids. The chain is formed by inserting a single Pt
atom between the apex atoms of the two pyramids. We have
relaxed the contact region �pyramids+chain� while keeping
the rest of the structure fixed in the bulk configuration with
lattice constant of 3.93 Å and a distance of 14.60 Å between
the �111� surfaces. The cutoff energy used in the construction
of WFs was set to �F+4.0 eV ensuring that the KS eigen-
states below this value are exactly reproducible in terms of

FIG. 2. �Color online� �a� Central region used to describe a single CO
molecule adsorbed on a monatomic Au wire. �b� Transmission functions for
the Au wire CO system calculated using method 1 �WF� and method 2 for
three different PAO basis sets. The transmission function at the Fermi level
is indicated in the parentheses following the legends.
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the WFs. The transmission function was converged by a
4	4 k�-point sampling as stated in Sec. II D.

In Fig. 3�b�, we show the calculated transmission func-
tions using methods 1 and 2. The qualitative agreement be-
tween the two methods is striking; however, only the SZP
and DZP basis sets provide quantitative agreement with the
WF result. The SZ basis set results in a downshift of the peak
at −6 eV and an incorrect description of the features in the
important region near the Fermi level. Here, the converged
transmission function shows two peaks positioned at �F

−0.8 eV and just below the Fermi level, respectively. The
main peak astride the Fermi level, in fact, consists of three
smaller peaks, as seen more clearly in the inset for the DZP
and WF basis sets. These particular features in the transmis-
sion function were also observed in Ref. 37 for a similar Pt
contact, employing a method based on quantum chemistry
software and a description of the bulk electrodes by a semi-
empirical tight-binding Hamiltonian on a Bethe lattice.38

Also, the calculated conductance of 2.3G0 is in agreement
with our results, considering the structural differences.

In Fig. 4, we show the calculated conductance of the Pt
contact for three electrode displacements. The three configu-
rations correspond to an unstrained Pt chain, the chain just
before it snaps, and the broken chain, respectively. The
surface-surface distances are 13.62, 14.60, and 14.75 Å in
the three cases.

All basis sets, except for the SZ, are able to reproduce
the trend of increasing conductance prior to rupture. The SZ
basis set underestimates the absolute conductance by nearly
0.5G0 in the strained and broken configurations as compared
to the WF result. The conductance calculated with the SZP
and DZP basis sets is almost identical and shows
results more consistent with the WF basis for all three
configurations.

V. Pt–H2–Pt CONTACT

In this section, we consider the simplest possible mo-
lecular junctions, namely, a single hydrogen molecule be-
tween metallic Pt contacts. Similar to the metallic point con-
tacts, the Pt–H2–Pt junction shows stable and reproducible
behavior in conductance measurements. In particular, a very
pronounced peak close to 1G0 appears in the conductance
histogram obtained when a Pt contact is broken in a hydro-
gen atmosphere.33 Although reported conductance calcula-
tions show significant variation �see below�, there have been
given substantial evidence that the structure responsible for
the peak consists of a single hydrogen molecule bridging the
Pt contacts.33,39

Several groups have published NEGF-DFT calculations
for the transmission function of the Pt–H2–Pt system. Most
find a conductance of �0.9–1.0�G0,4,6,33,41 but also much
lower values of �0.2–0.5�G0 have been reported in Ref. 40.

For the benchmark calculations, we use the same setup
as in Sec. IV with the central Pt atom replaced by a hydrogen
molecule �see Fig. 5�a��. The relevant bond lengths determin-
ing the structure after relaxation of the Pt pyramids and the
hydrogen atoms are dPt–H=1.7 Å and dH–H=1.0 Å.

In Fig. 5�b�, we show the calculated transmission func-
tions. Similar to the case of the Pt contact, the agreement
between the different calculations is striking, especially in
the important region around the Fermi level. The SZ basis set
reproduces the qualitative features of the larger basis sets but
introduces a considerable downshift of the low-lying peaks.

The very good agreement between the two methods in-
dicates that the transmission function for this system is rather
insensitive to the basis set. We stress, however, that a proper
k�-point sampling of the transmission function is crucial to

FIG. 3. �Color online� �a� Supercell used for the DFT calculation of a short
linear Pt chain between Pt�111� surfaces. �b� The calculated transmission
function using methods 1 and 2. The transmission at the Fermi level is
indicated in the parentheses following the legends. In the inset, we show the
transmission function in the important region near the Fermi level for the
DZP basis set and the WF basis set.

FIG. 4. �Color online� Conductance for three different configurations during
the stretching of a small Pt chain. Configurations 1, 2, and 3 correspond to
the unstrained chain, maximally strained chain, and a broken chain, respec-
tively. The contact atoms are shown in the insets.

FIG. 5. �Color online� �a� Supercell used to model the central region of the
Pt–H2–Pt junction. �b� Transmission function for the Pt-hydrogen bridge.
The transmission function at the Fermi level is indicated in the parentheses
following the legends.
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obtain meaningful results independently of the quality of the
basis set. Restricting the calculation to the � point yields a
transmission function with a �unphysical� peak at the Fermi
level.6 We note in passing that such a peak is present in the
transmission function reported in Ref. 4. Such unphysical
features resulting from an insufficient k�-point sampling are
not properties of the molecular junction but are rather due to
van Hove singularities in the quasi-one-dimensional leads.30

The results reported in Ref. 41 are based on SIESTA DFT
code and show good agreement with our results. The con-
ductance obtained in one of the early theoretical
calculations40 on the hydrogen molecular bridge is consider-
ably lower than our and most other results. The calculational
method applied in Ref. 40 is, however, the same as applied in
the study of pure Pt contacts,37 which agrees well with our
results as discussed in Sec. IV. We speculate if this could be
related to the smaller size of the Pt cluster used to model the
electrodes in Ref. 40 as compared to the one used in Ref. 37.
Another possibility for the discrepancies is the use of the
B3LYP energy functional in Ref. 40 instead of a LDA/GGA
functional used in most other works.

VI. BENZENE-1,4-DITHIOL BETWEEN Au„111…
SURFACES

The BDT molecule suspended between gold electrodes
was among the first single-molecule junctions to be studied
and has become the standard reference for calculations of
nanoscale conductance. Depending on the experimental
setup, measured conductances vary between 10−4G0 and
10−1G0,42–46 while the calculated values typically lie in the
range of �0.05–0.4�G0.3,13,16–18,47–49 In general, it has been
found that the transmission function is strongly dependent on
the bonding site of the S atom,18,48 while variations in the
Au–S bond length only affects the transmission function
weakly.47

As our objective is to establish a computational bench-
mark for the Au-BDT system, we choose the simple junction
geometry, shown in Fig. 6�a�. The S atoms are placed at the
minimum energy positions in the fcc hollow sites of the

Au�111� surface and the molecule has been relaxed while
keeping the Au atoms fixed in the bulk crystal structure. We
use a Au lattice constant of 4.18 Å and a distance between
the Au�111� surfaces of 9.68 Å. With these constrains the
relevant bond lengths are dAu–S=2.45 Å, dS–C=1.73 Å, and
dC–H=1.09 Å.

In Fig. 6�b�, we show the calculated transmission func-
tions �the SZ result has been omitted for clarity�. Notice that
we plot the transmission function only up to 2 eV above the
Fermi level. This is because the WF transmission at larger
energies is sensitive to the parameters used in the construc-
tion of the WFs, in particular, the cutoff energy E0, and thus,
we cannot be sure about the WF result above 2 eV+�F.

The three transmission functions agree very well in the
energy range from 2 eV below the Fermi level to 1 eV above
the Fermi level, while only the DZP result agrees quantita-
tively with the WF result in the entire energy range. We
again notice the downshift of the PAO transmission functions
relative to the WF result.

The presence of a broad transmission peak positioned at
�1 eV below the Fermi level is in qualitative agreement
with previous results.3,16,47,48,50,51 For more stretched con-
figurations, i.e., for larger values of the S–C bond length,
than the one used in the present study, the broad peak splits
into two more narrow peaks.26

The transmission function presented in Ref. 3 was ob-
tained using a method very similar to our method 2; how-
ever, the reported conductance of 0.4G0 is almost twice as
high as our DZP results of 0.24G0. The large conductance
arises because the transmission peak closest to the Fermi
level is considerably broader than what we find. If, however,
we restrict the k� to the � point, we find the same broadening
as in Ref. 3 and a very similar conductance of 0.37G0. An-
other feature of the �-point only transmission function is that
the second peak positioned at �3 eV below the Fermi level
separates into a number of more narrow peaks.

In Ref. 16, the transmission function is calculated from
the linear combination of muffin-tin orbitals–atomic sphere
approximation method and averaged over 36 irreducible k�

points. Both the width and the position of the two peaks in
the transmission function at 1 and 3 eV below the Fermi
level are in good agreement with our results. The height of
the former peak is, however, lower than in our calculation
and this reduces the conductance to a value of 0.07G0. We
suspect that this difference could be due to differences in the
adopted contact geometries.

When comparing a supercell approach to quantum trans-
port with a cluster based calculation as the one in Ref. 47, it
is essential that �i� the cluster size is converged and �ii� the
number of k� points and supercell size are converged. In the
supercell approach, a N	N Monkhorst-Pack sampling of the
surface Brillouin zone corresponds to a �-point calculation
for a supercell consisting of the original supercell repeated
N	N in the surface plane.25

Extrapolating our converged calculations for 3	3 atoms
within the surface plane of the supercell and 4	4 k� point to
a �-point calculation gives a supercell consisting of �1000
atoms. We speculate that clusters of similar sizes are needed
to reach the same level of convergence. However, the re-

FIG. 6. �Color online� �a� Supercell used to model the central region of the
Au�111�–BDT–Au�111� system with S at the fcc hollow site. �b� The calcu-
lated transmission functions. Note, that the SZ transmission function has
been omitted for clarity. The transmission function at the Fermi level is
indicated in the parentheses following the legends.
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peated supercell introduces a periodic array of molecules on
the surface, which could give rise to interference effects blur-
ring the comparison to single-molecule cluster calculations.
To quantify this intermolecule interference effect, we show
in Fig. 7 the SZP transmission function for the Au�111�–
BDT–Au�111� system, where the number of Au atoms in the
surface plane is varied from 2	2 to 5	5 atoms. Each cal-
culation has been converged with respect to the number of k�

points by a 4	4 Monkhorst-Pack sampling for all the super-
cells, except the smallest supercell for which 8	8 k� points
was needed.

It is evident that the transmission function is well con-
verged with 3	3 atoms in the surface plane. This shows that
our calculations should be directly comparable to fully con-
verged single-molecule cluster calculations.

VII. BIPYRIDINE BETWEEN Au„111… SURFACES

As the last reference system, we consider a bipyridine
molecule attached between two gold electrodes. STM experi-
ments on bipyridine molecules in a toluene solution52 show
that the conductance of Au-bipyridine junctions is quantized
in multiples of 0.01G0 which was interpreted as the forma-
tion of stable contacts containing one or more molecules.
The conductance is expected to be sensitive to the details of
the contact geometry;53 however, for the benchmark calcula-
tion, we use a flat Au�111� surface with bipyridine binding at
an on-top site which is the minimum energy configuration, as
shown in Fig. 8�a�. The Au electrodes are the same as used
for the BDT molecule in Sec. VI. The Au�111�–N distance is
2.180 Å, while the distance between the Au�111� surfaces is
11.53 Å.

The transmission functions calculated using either PAOs
or WFs are shown in Fig. 8�b�. At first, it is noted that the
overall structures of the transmission functions are similar.
We have used a logarithmic scale to make the differences in
the low transmission regime more visible. In the SIESTA cal-
culations, the position of the narrow lowest unoccupied mo-
lecular orbital �LUMO� peak which governs the transport is
underestimated but converges toward the WF result as the
PAO basis set is enlarged �see the inset of Fig. 8�b��. The
alignment of the LUMO energy level with respect to the

Fermi level and its relation to charge transfer were studied in
Ref. 54. The LUMO peak is close to the Fermi level and in
this regime, it is expected that small changes in the position
of the LUMO peak should change the conductance consid-
erably. However, this is not the case when comparing the
DZP basis set to the WF basis set since the conductance is, in
fact, unchanged even though the position of the LUMO peak
differs. The reason is that the WF transmission function has a
different tail in the high barrier tunneling regime. The origin
of this difference can be twofold: �i� The density of states of
the Au�111� surface which influence the LUMO’s density of
states could be different in the two cases. �ii� Although the
WFs have rapidly decaying tails, they do not vanish and,
therefore, they must be truncated. This truncation could in-
troduce artificial features in the transmission function in the
low tunneling regime.

Several groups have investigated the transport properties
of bipyridine-gold junctions, and there is general agreement
that the low bias conductance depends crucially on the de-
tails of the contact geometry. As different groups have cho-
sen different geometries and models for the gold electrodes,
a direct comparison of the reported transmission functions is
difficult.

To the best of our knowledge, the first theoretical paper
on the bipyridine system is by Tada et al.55 In their calcula-
tions, bipyridine is adsorbed on top of a Au atom of a rather
small Au cluster, and the coupling to the infinite electrodes is
modeled by a broadening parameter fitted to experimental
data. The zero-voltage transmission function contains some
of the same peak structures as we observe. Hou et al.56 have
published several papers on the gold-bipyridine junction.
Similar to Tada et al., they include only a few gold atoms in
the ab initio calculation and treat the coupling to electrodes
through a model self-energy term. The peak structure of the
transmission function is quite different from ours. This could
be due to the small size of the gold clusters used to mimic
the electrodes. While most other groups observe tunneling
through the LUMO tail,53,54,57 Hou et al. argue that the trans-
port is mainly taking place via the highest occupied MO–2
state. Calculations by Wu and co-workers58,59 obtained using

FIG. 7. �Color online� The transmission function of Au�111�–BDT–Au�111�
for supercells containing a single BDT molecule and with the number of
Au�111� surface atoms varying from 2	2 to 5	5 atoms, as indicated in the
legends. All the calculations apply the SZP basis set and have been con-
verged with respect to the number of k� points. The transmission function at
the Fermi level is indicated in the parentheses following the legends.

FIG. 8. �Color online� �a� Supercell used to describe the central region of
the bipyridine-Au�111� junction. �b� Calculated transmission functions �the
SZ result has been omitted for clarity�. The inset shows the dependence of
the LUMO position on the basis sets. The transmission function at the Fermi
level is indicated in the parentheses following the legends.
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a SIESTA-based transport code,60 for bipyridine attached to
the on-top site of a gold surface show overall good agree-
ment with our results �see Fig. 7�a� in Ref. 58�. The minor
differences are probably related to the fact that only the �
point has been used in the latter paper.

VIII. CONCLUSIONS

We have established a set of benchmark calculations for
the Kohn-Sham �PBE� elastic transmission function of five
representative single-molecule junctions using two different
methods based on independent DFT codes: �i� A plane-wave
DFT code in combination with maximally localized Wannier
functions. �ii� The SIESTA program which applies finite range
pseudoatomic orbitals.

For all five systems, we find that the SIESTA result con-
verges toward the WF result as the SIESTA basis is enlarged
from SZ to DZP with the latter yielding very good quantita-
tive agreement with the WF transmission. In the SIESTA cal-
culations, the transmission peaks relative to the peaks ob-
tained with the plane-wave calculation are systematically
shifted toward lower energies. The problem can be overcome
by enlarging the SIESTA basis; however, the convergence can
be rather slow.
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