38,905 research outputs found
The use of niobia in oxidation catalysis
This paper summarises the background to work carried out at the University of Twente on the use of niobia as a catalyst for the oxidative dehydrogenation of propane to propylene and discusses the development of promoted niobia catalysts for this reaction. Results are also presented which illustrate the use of niobia in catalysts for other reactions such as the oxidative coupling of methane, the oxidative dehydrogenation of ethane and the oxidative dehydrogenation of methanol. It appears that niobia and niobia-modified catalysts, when used in high-temperature oxidation processes, can exhibit relatively high selectivities compared with more conventional catalysts
Efficient Dehydrogenation of Amines and Carbonyl Compounds Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo-hydride Complex
The tetranuclear ruthenium-μ-oxo-μ-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly effective catalyst for the transfer dehydrogenation of amines and carbonyl compounds. For example, the initial turnover rate of the dehydrogenation of 2-methylindoline was measured to be 1.9 s−1 with a TON of 7950 after 1 h at 200 °C. The extensive H/D scrambling patterns observed from the dehydrogenation reaction of indoline-N-d1 and indoline-α-d2 suggest a monohydride mechanistic pathway with the C−H bond activation rate-limiting step
Recommended from our members
Coking-Resistant Sub-Nano Dehydrogenation Catalysts: PtnSnx/SiO2 (n=4, 7)
We present a combined experimental/theoretical study of Pt/SiO and
PtSn/SiO (n = 4, 7) model catalysts for the endothermic
dehydrogenation of hydrocarbons, using the ethylene intermediate as a model
reactant. Supported pure Ptn clusters are found to be highly active toward
dehydrogenation of C2D4, quickly deactivating due to a combination of carbon
deposition and sintering, resulting in loss of accessible Pt sites. Addition of
Sn to Ptn clusters results in the complete suppression of C2D4 dehydrogenation
and carbon deposition, and also stabilizes the clusters against thermal
sintering. Theory shows that both systems have thermal access to a multitude of
cluster structures and adsorbate configurations that form a statistical
ensemble. While Pt4/SiO2 clusters bind ethylene in both di-sigma and pi-bonded
configurations, PtSn/SiO binds C2H4 only in the pi-mode, with
di-sigma bonding suppressed by a combination of electronic and geometric
features of the PtSn clusters. Dehydrogenation reaction profiles on the
accessible cluster isomers were calculated using the climbing image nudged
elastic band (CI-NEB) method
Effect of excess iron on oxidative dehydrogenation of 1-butene over a series of zinc ferrite catalysts
The influence of excess Fe3+ in ZnFe2O4 for the catalytic oxidative dehydrogenation of 1-butene to 1, 3-butadiene was investigated to try to clarify inconsistencies in the existing literature. A series of nanoscale zinc ferrite powders were produced with increasing Fe: Zn ratios. The materials were characterized by a range of techniques, which showed the presence of α-Fe2O3 as a distinct phase with an increasing excess of Fe3+ and SEM highlighted the increased presence of surface structures on the ferrites at higher Fe: Zn ratios. Reaction testing showed α-Fe2O3to be virtually inactive for the oxidative dehydrogenation of 1-butene. Results for the ferrite catalysts showed a significant decrease in both conversion and yield with an increasing excess of Fe3+. Therefore an excess of Fe3+ has a negative effect on catalytic activity and selectivity of zinc ferrite for the oxidative dehydrogenation of 1-butene, but acts as a promoter for competing hydrogenation and combustion side reactions
Palladium Catalysts for Dehydrogenation of Ammonia Borane with Preferential B−H Activation
Cationic Pd(II) complexes catalyzed the dehydrogenation of ammonia borane in the most efficient manner with the release of 2.0 equiv of H_2 in less than 60 s at 25 °C. Most of the hydrogen atoms were obtained from the boron atom of the ammonia borane. The first step of the dehydrogenation reaction was elaborated using density functional theory calculations
Design of a Nanometric AlTi Additive for MgB2-Based Reactive Hydride Composites with Superior Kinetic Properties
Solid-state hydride compounds are a promising option for efficient and safe hydrogen-storage systems. Lithium reactive hydride composite system 2LiBH4 + MgH2/2LiH + MgB2 (Li-RHC) has been widely investigated owing to its high theoretical hydrogen-storage capacity and low calculated reaction enthalpy (11.5 wt % H2 and 45.9 kJ/mol H2). In this paper, a thorough investigation into the effect of the formation of nano-TiAl alloys on the hydrogen-storage properties of Li-RHC is presented. The additive 3TiCl3·AlCl3 is used as the nanoparticle precursor. For the investigated temperatures and hydrogen pressures, the addition of ∼5 wt % 3TiCl3·AlCl3 leads to hydrogenation/dehydrogenation times of only 30 min and a reversible hydrogen-storage capacity of 9.5 wt %. The material containing 3TiCl3·AlCl3 possesses superior hydrogen-storage properties in terms of rates and a stable hydrogen capacity during several hydrogenation/dehydrogenation cycles. These enhancements are attributed to an in situ nanostructure and a hexagonal AlTi3 phase observed by high-resolution transmission electron microscopy. This phase acts in a 2-fold manner, first promoting the nucleation of MgB2 upon dehydrogenation and second suppressing the formation of Li2B12H12 upon hydrogenation/dehydrogenation cycling.Fil: Le, Thi-Thu. Helmholtz Zentrum Geesthacht; AlemaniaFil: Pistidda, Claudio. Helmholtz Zentrum Geesthacht; AlemaniaFil: Puszkiel, Julián Atilio. Helmholtz Zentrum Geesthacht; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Castro Riglos, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Helmholtz Zentrum Geesthacht; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Karimi, Fahim. Helmholtz Zentrum Geesthacht; AlemaniaFil: Skibsted, Jørgen. University Aarhus; DinamarcaFil: Gharibdoust, Seyedhosein Payandeh. University Aarhus; DinamarcaFil: Richter, Bo. University Aarhus; DinamarcaFil: Emmler, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Milanese, Chiara. Università di Pavia; ItaliaFil: Santoru, Antonio. Helmholtz Zentrum Geesthacht; AlemaniaFil: Hoell, Armin. Helmholtz Zentrum Berlin für Materialien und Energie; AlemaniaFil: Krumrey, Michael. Physikalisch Technische Bundesanstalt; AlemaniaFil: Gericke, Eike. Universität zu Berlin; AlemaniaFil: Akiba, Etsuo. Kyushu University; JapónFil: Jensen, Torben R.. University Aarhus; DinamarcaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; Alemania. Helmut Schmidt University; AlemaniaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemani
Influence of the Pressure on the Product Distribution in the Oxidative Dehydrogenation of Propane over a Ga2O3/MoO3 Catalyst
The yields and selectivities in both the catalyzed and non-catalyzed oxidative dehydrogenation of propane were found to increase with increasing pressure. The results showed that the maximum yields of valuable ODH products could be obtained by adjusting only reactants' partial pressure, while keeping their ratio constant
- …