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Abstract: The tetranuclear ruthenium-μ-oxo–μ-hydroxo-hydride complex 

{[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly 

effective catalyst for the transfer dehydrogenation of amines and carbonyl 

compounds. For example, the initial turnover rate of the dehydrogenation of 

2-methylindoline was measured to be 1.9 s-1 with the TON of 7950 after 1 h 

at 200 °C. The extensive H/D scrambling patterns observed from the 

dehydrogenation reaction of indoline-N-d1 and indoline-α-d2 suggest a 

monohydride mechanistic pathway with the C-H bond activation rate-limiting 
step. 
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Catalytic dehydrogenation reaction is a highly desired 

functionalization method for unreactive sp3 C–H bonds since the 

corresponding alkenes are valuable synthetic intermediates for a 

variety of industrially important processes.1 Significant economic and 

environmental gains are anticipated from an efficient catalytic 

dehydrogenation process because the current dehydrogenation 

methods by stoichiometric oxidizing agents generate copious amount 

of toxic byproducts,2 and heterogeneous catalytic dehydrogenation 

methods often suffer from poor product selectivity and incompatibility 

with functionalized substrates.3 Considerable research has been 

devoted to develop homogeneous catalysts to selectively form α-olefin 

products and to gain mechanistic insights on the catalytic 

dehydrogenation reaction.4 In a seminal work, Jensen and Kaska 

reported that the pincer-ligated (PCP)IrH2 complex is a highly efficient 

homogeneous catalyst for the transfer dehydrogenation of alkanes, 

giving up to 1000 turnovers at 200 °C using t-butylethylene (TBE) as 

the sacrificial hydrogen acceptor (Figure 1).5 Subsequent experimental 

and computational studies led to a detailed description on the reaction 

mechanism involving a highly unsaturated (PCP)Ir complex as the key 

intermediate species.6 The phosphite-modified (PCP)IrH2 catalysts, 

which were found to significantly increase the turnover rate,7 have 

been successfully utilized in tandem dehydrogenation and metathesis 

reaction of n-alkanes.8 However, these Ir-pincer catalysts are 

generally not suitable for the dehydrogenation of heteroatom-

functionalized substrates because of their poor functional group 

tolerance and due to their extreme air and water sensitivity, though 

limited success has been reported on the dehydrogenation of amines 

and related compounds.9 

 
Figure 1 

http://dx.doi.org/10.1021/om8010883
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R1
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In a conceptually related reaction, we previously discovered that 

the ruthenium-hydride complex (PCy3)2(CO)RuHCl is an effective 

catalyst precursor for the dehydrogenative coupling reaction of cyclic 

amines and alkenes to give α-substituted cyclic imines, that featured 

both transfer dehydrogenation and α-C-H bond insertion steps.10 We 

also reported the synthesis of the novel tetrametallic ruthenium-μ-

oxo–μ-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-

OH)} (1) and its high cooperative activity for the alcohol 

dehydrogenation and nitrile hydration reactions.11 Since the complex 1 

showed high thermal stability and functional group tolerance in 

catalyzing these reactions, we thought that it might be suitable for the 

dehydrogenation reactions of unreactive C-H bonds. Here we report a 

highly efficient dehydrogenation reaction of amines and carbonyl 

compounds, which is catalyzed by the tetranuclear ruthenium complex 

1. 

Initially, the dehydrogenation activity of 1 was tested by using 

cyclooctane. Thus, a 1:1 mixture of cyclooctane (3.0 mmol) and TBE 

(3.0 mmol) in the presence of 1 (3.0 μmol) was heated at 200 °C in a 

sealed Schlenk tube.12 The initial turnover frequency (TOF) for the 

formation of cyclooctene product after 8 min was measured to be 7.8 

min-1, but the turnover number (TON) reached only 96 after 1 h. The 

direct dehydrogenation of cyclooctane under the “acceptorless” 

condition led to the TOF of 1.2 min-1. The activity of other selected 

ruthenium complexes such as (PCy3)2(CO)RuHCl, (PPh3)3(CO)RuH2, 

(PPh3)3RuHCl, [(COD)RuCl2]x and RuCl3·3H2O was found to be very low 

(<0.05 min-1), although the previously synthesized bimetallic 

ruthenium-μ-hydroxo-hydride complex {[(PCy3)2(CO)RuH](μ-OH)(μ-

H)[(PCy3)(CO)RuH]} exhibited a significant activity under the similar 

conditions (TOF = 1.0 min-1).11 

 
(1) 

From a synthetic point of view, the ruthenium catalyst 1 has a 

number of salient features, in that it is air-and water-stable in solid 

state and is compatible with a variety of heteroatom functional groups. 

http://dx.doi.org/10.1021/om8010883
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Encouraged by the initial results, we next explored the catalytic 

activity of 1 for the dehydrogenation reaction of amines and carbonyl 

compounds. In a typical setting, an equimolar of indoline (6.0 mmol) 

and TBE (6.0 mmol) with 1 (3.0 μmol) was heated in a sealed Schlenk 

tube at 200 °C (eq 1). The initial TOF for the formation of indole 

product 2a after 8 min was measured to be 73 min-1, and moreover, 

TON of 1000 was reached within 1 h as determined by GC and GC-MS 

analyses (Table 1). Propene was found to be just as effective hydrogen 

acceptor as TBE. Remarkably, a nearly 8000 TON was achieved within 

1 h for the dehydrogenation of 2-methylindoline under the 

acceptorless condition (entry 7). It should be mentioned that the 

reaction rate slowed considerably after ~50% conversion apparently 

due to the indole product inhibition, but a greater than 20000 TON can 

be easily achieved by running a longer reaction time (2-3 h) and the 

adding more indoline substrate to the reaction vessel. 

Table 1. Dehydrogenation and Dehydrogenative Coupling Reactions of 

Amines and Carbonyl Compounds.a 

entry substrate acceptor Product(s) TONb 

1 

 

TBE 

 

1080 

2 propene 1180 

3 none 1577c 

4 TBE 3180d 

5 TBE 6840d 

6 

 

TBE 

 

6750d 

7 none 7950c,d 

8 

 

TBE 

 

105 

9 

 

TBE 

 

496 

 

 

 

 

 

10  TBE  210e 

11  TBE  126 

http://dx.doi.org/10.1021/om8010883
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#FD1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/table/T1/#TFN5
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entry substrate acceptor Product(s) TONb 

12  TBE  45 

13 

 

TBE 

 

162 

14 

 

TBE 

 

400 

15 

 

TBE 

 

185 

16 

 

TBE 

 

31 

17 

 

TBE 

 

216 

18 

 

TBE 

 

73 

19 

 

TBE 

 

35 

aReaction conditions: substrate (6.0 mmol), alkene (6.0 mmol), 1 (5 mg, 3.0 μmol), 
200 °C. 
bTON = mol of product/mol of 1 after 1 h. The turnover rate was determined by GC 

and GC-MS. 
cH2 was removed periodically. 
dSubstrate:1 = 15000:1. 
eTrace amount of PhCN was formed in the product mixture. 

http://dx.doi.org/10.1021/om8010883
http://epublications.marquette.edu/
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The primary aliphatic amines gave a mixture of both imine and 

secondary amine products 3 and 4 (entries 8, 9). In contrast, the 

imine products 3i-3k are exclusively produced from benzylic amines 

with sterically demanding groups (entries 12-14). Apparently, the 

initially formed imine further reacted with an unreacted amine to give 

the product 3 and NH3 in these cases. In support of this notion, the 

formation of ammonia was detected by NMR in the crude reaction 

mixture for these cases. Cyclic ketones and lactones were also found 

to be suitable substrates under the transfer dehydrogenation 

conditions using TBE, albeit with a considerably lower turnover rate 

(entries 16-19). To the best of our knowledge, the dehydrogenation 

activity of 1 towards amines and carbonyl compounds is uniquely high, 

as very few homogeneous metal complexes have been able to mediate 

the dehydrogenation of both amine and carbonyl compounds.9 

We performed the following preliminary experiments to gain 

mechanistic insights. First, the reaction rate was found to be strongly 

inhibited by phosphine ligand. For example, the addition of PCy3 (6-30 

μmol) to the reaction mixture of indoline under otherwise similar 

conditions led to a steady decrease on the turnover rate (TON = 546, 

313 and 197 for 2, 5 and 10 equiv of PCy3 after 20 min, respectively). 

This result is consistent with a dissociative activation of the Ru 

catalyst. 

Next, the deuterium labeling studies were performed to examine 

the reversibility of the C-H and N-H bond activation steps. Thus, a 

mixture of indoline-N-d1 (0.60 mmol) and TBE (0.60 mmol) with 1 

(0.6 μmol) in toluene-d8 (0.3 mL) was monitored by NMR (Scheme 1). 

After 30 min of heating under refluxing conditions, selective deuterium 

incorporation to both 7-position of the indoline and the vinyl positions 

of TBE substrates was observed prior to the product formation as 

detected by both 1H and 2H NMR. Eventually, an extensive H/D 

exchange to both indole and the ethyl group of t-butylethane products 

was observed after 18 h. A relatively rapid H/D exchange to the vinyl 

group of TBE indicates a reversible vinyl C-H activation of TBE. In a 

complementary experiment, the treatment of a 1:1 mixture of 

indoline-α-d2 (0.60 mmol) with TBE (0.60 mmol) led to the extensive 

deuterium incorporation to both t-butylethane and indole products, 

where the formation of a mixture of t-butylethane-d1, -d2 and -d3 was 

detected by GC-MS.12,13 

http://dx.doi.org/10.1021/om8010883
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/figure/F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R13
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Scheme 1 

While details of the dehydrogenation reaction remain unclear at 

this time, these results suggest of a mechanism involving rapid and 

reversible N-H and C–H bond activation steps via a ruthenium-

monohydride species for the dehydrogenation reaction. Both the 

formation of a mixture of t-butylethane-d1, -d2 and -d3 and a rapid H/D 

exchange to the vinyl positions of the indole product bear the hallmark 

features of a mechanistically similar “monohydride mechanism” 

commonly proposed for the ruthenium-catalyzed hydrogenation 

reactions.14 Such monohydride mechanism would be complementary to 

a well-known “dihydride mechanism” of the Ir-pincer catalyzed 

dehydrogenation reaction, wherein the reductive elimination of TBE 

from (PCP)IrH2 species has been found to be the rate-limiting step 

under the catalytic conditions.1b,7 Further kinetic and mechanistic 

studies are warranted to establish the detailed reaction mechanism of 

the ruthenium-catalyzed dehydrogenation reaction. 

In summary, the tetranuclear ruthenium complex 1 was found 

to exhibit exceptionally high catalytic activity for the dehydrogenation 

of amines and carbonyl compounds, giving up to 20000 TON within 2 h 

at 200 °C. Such high activity for the direct dehydrogenation of amines 

and carbonyl compounds has not been achieved by using 

homogeneous metal catalysts, although heterogeneous Pd and Pt 

catalysts are well-known to mediate the dehydrogenation reactions 

under oxidative conditions.3a,15 Efforts to establish the scope and 

detailed mechanism of the dehydrogenation reaction are currently 

underway. 

http://dx.doi.org/10.1021/om8010883
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/figure/F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658527/#R15
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 2 S 

General Information.  All operations were carried out in an inert-atmosphere glove box or 

by using standard high vacuum and Schlenk techniques unless otherwise noted. Tetrahydrofuran, 

benzene, hexanes and Et2O were distilled from purple solutions of sodium and benzophenone 

immediately prior to use. The NMR solvents were dried from activated molecular sieves (4 Å).  

All organic substrates were received from commercial sources and used without further 

purification.  The 1H, 2H, 13C and 31P NMR spectra were recorded on a Varian 300 or 400 MHz 

FT-NMR spectrometer. Mass spectra were recorded from a Agilent 6850 GC/MS spectrometer. 

The TON of the products was measured from a Hewlett-Packard HP 6890 GC spectrometer. 

 

Representative Procedure of the Catalytic Reaction. In a N2 filled glove box, complex 1 

(5 mg, 2.9 µmol) was charged with indoline (0.71 g, 6.0 mol) and TBE (0.53 g, 6.0 mol; 

contained 5% TBA) in a 10 mol Schlock tube equipped with a Teflon stopcock and a stirring bar. 

The tube was closed and was brought out of the box. The reaction tube was fully immersed into a 

silicone oil bath, which was preset at 200 °C, and the reaction mixture was stirred for 1 h. The 

tube was cooled to room temperature, and was open to air. The crude product mixture was 

analyzed by GC and GC/MS. Analytically pure organic product 2a was isolated after a simple 

column chromatography on silica gel (Et2O/hexane). 

For Phosphate Inhibition Experiments: PCy3 (2-10 mg) was added to the reaction tube 

containing the same amount of substrates, and the reaction mixture was analyzed after 20 min of 

heating at 200 °C. 

 

Deuterium Labeling Study. Indoline-N-d1 (72 mg, 0.60 mol) and indoline-α-d2 (73 mg, 

0.60 mol) were added to a separate J-Young NMR tube containing TBE (53 mg, 0.60 mol) and 1 

(1 mg, 0.60 µmol), and the mixture was dissolved in toluene (0.3 mol). The reaction tubes were 

brought out of the box, and were immersed in a silicone oil bath set at 200 °C. The deuterium 

content of the products was measured by both 1H NMR (toluene-d8) and 2H NMR (toluene). The 

distribution of deuterium measured from the reaction of indoline-N-d1 with TBE in toluene after 



 3 S 

18 h: Ar (15%), N-D (20%), Cα (17%) and Cβ (29%) of indole; methyl (12%) and methylene 

(7%) of t-butylethane. From the reaction of indoline-α-d2 with TBE in toluene after 18 h: Ar 

(6%), N-D (12%), Cα (40%) and Cβ (18%) of indole; methyl (15%) and methylene (9%) of t-

butylethane. 

 

Preparation of Labeled Indoline Compounds. Indoline-N-d1 was prepared by following 

a reported procedure.1 In a 25 mL Schlenk tube, indoline (5.0 g, 42 mmol) was added to a NaOD 

(40 wt% in D2O, 1.0 g, 10 mmol) solution in D2O (5 mL), and the reaction mixture was stirred at 

110 °C for 16 h. The tube was cooled to room temperature, and 20 mL of CH2Cl2 was added to 

reaction tube. Organic layer was separated from the aqueous layer, and the solution was washed 

two times with brine solution. The extracted solution was dried in anhydrous MgSO4, and was 

concentrated under vacuum. The product was isolated after distillation under high vacuum (4.7 g, 

94% yield; 93% deuterium as determined by both 1H and 2H NMR). 

 

N-Nitrosoindoline-α-d2 was prepared by following a reported procedure.1 In a 25 mL 

Schlenk tube containing NaOD (40 wt% in D2O, 1.0 g, 10 mmol) in D2O (5 mL), was added N-

nitrosoindoline (3.0 g, 20 mmol),2 and the reaction mixture was stirred at 110 °C for 16 h. The 

tube was cooled to room temperature, and 20 mL of CH2Cl2 was added to the reaction tube. 

Organic layer was separated from aqueous layer, and the solution was washed two times with 

brine solution. The solution was dried in anhydrous MgSO4, and was concentrated under 

vacuum. The product (2.7 g, 90% yield), which was isolated after recrystallization in CH2Cl2 and 

hexanes, was found to contain 94% of deuterium as determined by both 1H and 2H NMR. 

 

Indoline-α-d2 was prepared by a modified reported method.1 In a 100 mL Schlenk flask, 

N-nitrosoindoline-α-d2 (2.7 g, 18 mmol) was added slowly to a diluted 6 N HCl (10.5 g, 54 

mmol) in water solution (30 mL). After refluxing the reaction mixture for 3 h, the reaction flask 

was cooled to room temperature. The black precipitate was filtered through a fritted funnel, and 
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was washed 3 times with water. Saturated aqueous NaHCO3 solution was slowly added to 

neutralize the solution. Ethyl ether (100 mL) was added to the reaction mixture, was extracted 

from the aqueous solution, and the ether solution was washed two times with brine solution. The 

solution was dried in anhydrous MgSO4, and was concentrated under vacuum. The product was 

isolated after distillation under high vacuum (1.0 g, 46% yield; 94% deuterium as determined by 

both 1H and 2H NMR). 

 

(1) Lautie, M. F. J. of Labeled Compounds and Radiopharmaceuticals 1979, 16, 735-744. 

(2) Ohwada, T.; Miura, M.; Tanaka, H.; Sakamoto, S.; Yamaguchi, K.; Ikeda, H.; Inagaki, 

S. J. Am. Chem. Soc. 2001, 123, 10164-10172. 
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The 1H and 13C NMR Spectra of Selected Crude Product Mixture 
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