476,069 research outputs found

    Thermal oxidative degradation reactions of perfluoroalklethers

    Get PDF
    The objective of this contract was to investigate the mechanisms operative in thermal and thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids has not been established. It was determined that this behavior was not associated with hydrogen end-groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres was found to be dependent on the surface/volume ratio. Once a limiting ratio was reached, a steady rate appeared to be attained. Based on elemental analysis and oxygen consumption data, -CF2OCF2CF2O-, not -CF2CF2O-, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys was found to be much more drastic in the case of Fomblin Z fluids than that observed for the hexalfuoropropane oxide derived materials. The effectiveness of antioxidation/anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys was very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appeared to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes; this took place to a much lesser degree with M-50

    Thermal degradation of citrus pectin in low-moisture environment - Influence of acidic and alkaline pre-treatment

    Get PDF
    Pectin powder is degraded during storage and transport by demethoxylation and depolymerisation. The degradation mechanisms and especially the influence of pre-treatments on the degradation reactions are not completely understood. In this study, commercial citrus pectin was modified by either acidic or alkaline demethoxylation. The modified pectins, as well as the commercial pectin, were thermally degraded during four weeks of storage at 60 °C and 80% relative humidity. Demethoxylation and depolymerisation as well as colour alterations were examined during degradation, and the course of the reactions was monitored. It was found that the type of pre-treatment during modification determined the material properties and, thus, the water uptake of the modified pectin powders. The resulting water availability in the samples was crucial to the extent of demethoxylation and to the type and intensity of depolymerisation since some of these reactions competed for the water in the climate chamber. The pre-treatment also determined the content of neutral sugars and sodium ions of the modified pectins. High contents of these components limited the extent of degradation in different ways. A previously assumed third depolymerisation mechanism of pectins, beside backbone hydrolysis and β-elimination, was confirmed.DFG, 268547215, Strukturabhängige Abbaureaktionen von Pektinen und deren Auswirkungen auf nicht-enzymatische Bräunung und technologische Funktionalitä

    Amide-modified poly(butylene terepthalate): thermal stability

    Get PDF
    The thermal stability of a poly(ester amide) copolymer (PBTA) based on poly(butylene terephthalate) (PBT) and nylon-4,T with the diamide of butanediamine and dimethyl terephthalate (N,N′-bis(p-carbomethoxybenzoyl)butanediamine) and homopolymer PBT was studied. The development of inherent viscosity and endgroup concentration was determined during prolonged condensation reactions at 255–275°C. Analysis of the kinetics lead to degradation rate constants for PBT and PBTA with 20 mol% amide (PBTA20). The degradation rate of PBTA20 was comparable to that of PBT, thus β-elimination of the ester groups is the main degradation mechanism in PBTA. At high temperatures ester—amide interchange reactions also take place in PBTA. The change in the melting temperature of PBTA has been related to the decreasing uniformity of the amide segment length. The decomposition was further studied by thermogravimetry and mass spectrometry

    Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation-derived aldehydes, and glucose

    Get PDF
    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model mixtures were carbonyl compounds, resulting essentially from amino-acid-catalyzed aldol condensation reactions. Several 2-alkylfurans were detected as well. Only a few azaheterocyclic compounds were identified, in particular 5-butyl-2-propylpyridine from (E)-2-hexenal model systems and 2-pentylpyridine from (2E,4E)-decadienal model reactions. Although few reaction products were found resulting from the condensation of an amino acid With a lipid-derived aldehyde, the amino acid plays an important role in catalyzing the degradation and further reaction of these carbonyl compounds. These results suggest that amino-acid-induced degradations and further reactions of lipid oxidation products may be of considerable importance in thermally processed foods

    Characterization of Polyphosphoesters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Get PDF
    FT-ICR mass spectrometry, together with collision-induced dissociation and electron capture dissociation, has been used to characterize the polyphosphoester poly[1,4-bis(hydroxyethyl)terephthalate-alt-ethyloxyphosphate] and its degradation products. Three degradation pathways were elucidated: hydrolysis of the phosphate–[1,4-bis(hydroxyethyl)terephthalate]bonds; hydrolysis of the phosphate–ethoxy bonds; and hydrolysis of the ethyl–terephthalate bonds. The dominant degradation reactions were those that involved the phosphate groups. This work constitutes the first application of mass spectrometry to the characterization of polyphosphoesters and demonstrates the suitability of high mass accuracy FT-ICR mass spectrometry, with CID and ECD, for the structural analysis of polyphosphoesters and their degradation products

    Module degradation catalyzed by metal-encapsulation reactions

    Get PDF
    Four major properties are considered to be relevant in determining service life of a photovoltaic module: (1) Mechanical: creep resistance, modulus, tensile strength; (2) Optical: integrated transmission at 0.4 to 1.1 m wavelength; (3) Chemical: inertness with respect to metals and other components, retention of stabilizers, etc. and (4) Electrical; maintaining effective isolation of conductive components. These properties were measured after exposing polymer specimens to three types of accelerated stress: thermal, ultraviolet radiation and metal catalysts. These conditions give rise to a large number of complex interrelated free-radical reactions that result in the deterioration of polymeric materials

    Immobilized phosphorylase for synthesis of polysaccharides from glucose

    Get PDF
    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed

    The Thermal degradation of Bisphenol A Polycarbonate in Air

    Get PDF
    The thermal degradation of polycarbonate in air was studied as a function of mass loss using TGA/FTIR, GC/MS and LC/MS. In the main degradation region, 480–560 °C, the assigned structures of smaller molecules and linear molecules that evolved in air were very similar to those obtained from the degradation in nitrogen; the degradation of polycarbonate follows chain scission of the isopropylidene linkage, in agreement with the bond dissociation energies, and hydrolysis/alcoholysis of carbonate linkage. Compared to the degradation in nitrogen, some differences were observed primarily in the beginning stage of degradation. Oxygen may facilitate branching as well as radical formation via the formation of peroxides. These peroxides undergo further dissociations and combinations, producing aldehydes, ketones and some branched structures, mainly in the beginning stage of degradation. It is speculated that the intermediate char formed in the beginning due to branching reactions of peroxide interferes with the mass transfer through the surface of degrading polycarbonate in the main degradation. Thus, even though the mass loss begins earlier in air, a slower mass loss rate is observed

    Decomposing Noise in Biochemical Signaling Systems Highlights the Role of Protein Degradation

    Get PDF
    AbstractStochasticity is an essential aspect of biochemical processes at the cellular level. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. Here we propose a method that allows us to calculate contributions of individual reactions to the total variability of a system’s output. We demonstrate that reactions differ significantly in their relative impact on the total noise and we illustrate the importance of protein degradation on the overall variability for a range of molecular processes and signaling systems. With our flexible and generally applicable noise decomposition method, we are able to shed new, to our knowledge, light on the sources and propagation of noise in biochemical reaction networks; in particular, we are able to show how regulated protein degradation can be employed to reduce the noise in biochemical systems
    • …
    corecore