110,930 research outputs found

    Protein flexibility is key to cisplatin crosslinking in calmodulin

    Get PDF
    Chemical crosslinking in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) has significant potential for studying protein structures and proteinprotein interactions. Previously, cisplatin has been shown to be a crosslinker and crosslinks multiple methionine (Met) residues in apo-calmodulin (apo-CaM). However, the inter-residue distances obtained from nuclear magnetic resonance structures are inconsistent with the measured distance constraints by crosslinking. Met residues lie too far apart to be crosslinked by cisplatin. Here, by combining FTICR MS with a novel computational flexibility analysis, the flexible nature of the CaM structure is found to be key to cisplatin crosslinking in CaM. It is found that the side chains of Met residues can be brought together by flexible motions in both apo-CaM and calcium-bound CaM (Ca4-CaM). The possibility of cisplatin crosslinking Ca4-CaM is then confirmed by MS data. Therefore, flexibility analysis as a fast and low-cost computational method can be a useful tool for predicting crosslinking pairs in protein crosslinking analysis and facilitating MS data analysis. Finally, flexibility analysis also indicates that the crosslinking of platinum to pairs of Met residues will effectively close the nonpolar groove and thus will likely interfere with the binding of CaM to its protein targets, as was proved by comparing assays for cisplatin-modified/unmodified CaM binding to melittin. Collectively, these results suggest that cisplatin crosslinking of apo-CaM or Ca4-CaM can inhibit the ability of CaM to recognize its target proteins, which may have important implications for understanding the mechanism of tumor resistance to platinum anticancer drugs

    In-situ cross linking of polyvinyl alcohol

    Get PDF
    A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator

    Targeted protein delivery: carbodiimide crosslinking influences protein release from microparticles incorporated within collagen scaffolds

    Get PDF
    open access articleTissue engineering response may be tailored via controlled, sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional (3D) ice-templated collagen scaffolds. However, the effects of covalent crosslinking during scaffold preparation on the availability and release of protein from the incorporated microparticles have not been explored. Here, we load 3D ice-templated collagen scaffolds with controlled additions of poly-(DL-lactide-co-glycolide) microparticles. We probe the effects of subsequent N-(3-dimethylaminopropyl)- N0-ethylcarbodiimide hydrochloride crosslinking on protein release, using microparticles with different internal protein distributions. Fluorescein isothiocyanate labelled bovine serum albumin is used as a model protein drug. The scaffolds display a homogeneous microparticle distribution, and a reduction in pore size and percolation diameter with increased microparticle addition, although these values did not fall below those reported as necessary for cell invasion. The protein distribution within the microparticles, near the surface or more deeply located within the microparticles, was important in determining the release profile and effect of crosslinking, as the surface was affected by the carbodiimide crosslinking reaction applied to the scaffold. Crosslinking of microparticles with a high proportion of protein at the surface caused both a reduction and delay in protein release. Protein located within the bulk of the microparticles, was protected from the crosslinking reaction and no delay in the overall release profile was seen

    Studying synthesis confinement effects on the internal structure of nanogels in computer simulations

    Full text link
    We study the effects of droplet finite size on the structure of nanogel particles synthesized by random crosslinking of molecular polymers diluted in nanoemulsions. For this, we use a bead-spring computer model of polymer-like structures that mimics the confined random crosslinking process corresponding to irradiation- or electrochemically-induced crosslinking methods. Our results indicate that random crosslinking under strong confinement can lead to unusual nanogel internal structures, with a central region less dense than the external one, whereas under moderate confinement the resulting structure has a denser central region. We analyze the topology of the polymer networks forming nanogel particles with both types of architectures, their overall structural parameters, their response to the quality of the solvent and compare the cases of non-ionic and ionic systems

    Role of strain induced crystallization and oxidative crosslinking in fracture properties of rubbers

    Get PDF
    Tensile properties and crack propagation properties, especially critical strain energy release rate in mode I, GIC, have been used to investigate fracture properties of elastomers and their relationships with microstructure. These investigations were mainly based on a series of comparisons: first, the behaviour of polychloroprene rubber (CR), undergoing stress hardening due to strain induced crystallization (SIC) and oxidative crosslinking (OCL) was compared with that of chlorinated polyethylene (CPE), which undergoes SIC but not OCL, and with a polyurethane based on hydroxyl terminated polybutadiene (PU) which undergoes OCL but not SIC. Comparisons were also made on CR between fracture behaviour at ambient temperature, where SIC occurs and at 100°C where there is no SIC. Finally, oxidative crosslinking was used to vary in a continuous way the crosslink density in CR and PU, in order to evaluate the role of crosslinking in fracture behaviour. The results reveal the strong contribution of SIC to fracture strength. Crosslinking, even at low conversion, inhibits SIC which explains the sharp decrease of CR toughness in the early period of exposure to oxidation. When SIC has disappeared, it is possible to appreciate the effect of crosslinking on fracture behaviour. This effect, as evaluated from the density of deformation energy at rupture in tension or from GIC value, is almost negligible while the sample modulus increases regularly as a consequence of crosslinking. It appears that the toughness remains almost constant because it is under the influence of two contradictory phenomena: the negative effect of a reduction of ultimate elongation and the positive effect of a modulus increase. Such behaviour can be explained in terms of heterogeneous distribution of the lengths of elastically active chains. After long exposure, the sample behaviour becomes brittle, very high modulus values indicate that the samples approach, presumably in a heterogeneous way, the glassy state

    Crosslinking of dermal sheep collagen using hexamethylene diisocyanate

    Get PDF
    The use of hexamethylene diisocyanate (HMDIC) as a crosslinking agent for dermal sheep collagen (DSC) was studied. Because HMDIC is only slightly water soluble, a surfactant was used to obtain a clear and micellar crosslinking solution and to promote the penetration of HMDIC in the DSC matrix. Using optimized conditions treatment of non-crosslinked DSC (N-DSC) with HMDIC (H-DSC) increased the shrinkage temperature (Ts) of N-DSC from 56°C to 74°C for H-DSC. A linear relation between the decrease in free amine group content and the increase in Ts was observed. Crosslinking with HMDIC did not influence the tensile strength of the N-DSC samples but increased the elongation at break from 141% to 163% and decreased the high-strain modulus from 26 MPa to 16 MPa for the H-DSC samples, respectively

    Furan-PNA : a mildly inducible irreversible interstrand crosslinking system targeting single and double stranded DNA

    Get PDF
    We here report on the design and synthesis of tailor-made furan-modified peptide nucleic acid (PNA) probes for covalent targeting of single stranded DNA through a crosslinking strategy. After introducing furan-containing building blocks into a PNA sequence, hybridization and furan-oxidation based crosslinking to DNA is investigated. The structure of the crosslinked products is characterized and preliminary investigations concerning the application of these systems to double stranded DNA are shown

    Thermoset-thermoplastic aromatic polyamide containing N-propargyl groups

    Get PDF
    The compounds of the class of aromatic polyamides useful as matrix resins in the manufacture of composites or laminate fabrication were developed. The process for preparing this thermoplastic-thermoset polyamide system involves incorporating a latent crosslinking moiety along the backbone of the polyamide to improve the temperature range of fabrication thereof wherein the resin softens at a relatively low temperature (approx. 154 C) and subsequently sets-up or undergoes crosslinking when subjected to higher temperature (approx. 280 C)
    corecore